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Abstract—With the growing incidents of flash crowds and
sophisticated DDoS attacks mimicking benign traffic, it be-
comes challenging to protect Internet-based services solely
by differentiating attack traffic from legitimate traffic. While
fair-sharing schemes are commonly suggested as a defense
when differentiation is difficult, they alone may suffer from
highly variable or even unbounded waiting times. We propose
RainCheck Filter (RCF), a lightweight primitive that guaran-
tees bounded waiting time for clients despite server flooding
without keeping per-client state on the server. RCF achieves
strong waiting time guarantees by prioritizing clients based on
how long the clients have waited—as if the server maintained a
queue in which the clients lined up waiting for service. To avoid
keeping state for every incoming client request, the server sends
to the client a raincheck, a timestamped cryptographic token
that not only informs the client to retry later but also serves as
a proof of the client’s priority level within the virtual queue.
We prove that every client complying with RCF can access the
server in bounded time, even under a flash crowd incident or
a DDoS attack. Our large-scale simulations confirm that RCF
provides a small and predictable maximum waiting time while
existing schemes cannot. To demonstrate its deployability, we
implement RCF as a Python module such that web developers
can protect a critical server resource by adding only three lines
of code.

I. INTRODUCTION

Internet users are impatient. A recent study found that

more than half of online shoppers abandon websites that fail

to load in three seconds [1]. When a wait is unavoidable,

users perceive known, finite waits to be shorter than uncer-

tain waits [2], and are willing to wait much longer periods

given visual feedback, such as a progress bar [3], [4].

In the presence of Distributed Denial of Service (DDoS)

attacks, users would suffer from an uncertain or even

infinite waiting time for accessing an online service, as

neither the server nor the user knows when the attack will

cease. Unfortunately, DDoS attacks are easy to launch and

can cause severe damage. Enterprise solutions for DDoS

∗ This work was done while the authors were at Carnegie Mellon
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protection, such as adding more servers or using Content

Delivery Networks (CDN), may be too costly for small-

and medium-sized companies to afford [5], and CDN web

hosting may be inappropriate for security-sensitive services.

Also, sophisticated DDoS attacks successfully emulate flash

crowds and become stealthier as the attacks target scarce

server resources, such as CPU and disk I/O, with only a low

traffic volume [6]. Hence, differentiating the attack traffic

from the legitimate traffic is difficult, if not impossible, for

DDoS defense.

Even under a DDoS attack or a flash-crowd incident, it

is important for a server to guarantee a Maximum Waiting

Time (MWT) to its clients in addition to accurate waiting

time estimates, since the MWT ensures that a client’s request

is accepted for the service within some finite time T .

Unfortunately, existing fairness based (e.g., fair queueing)

or proof-of-work based (e.g. computational puzzles) DDoS

countermeasures fail to provide any MWT guarantee.

In this paper, we present RainCheck Filter (RCF), a DDoS

mitigation primitive that enables a server to guarantee a

MWT to clients when the server is overloaded. The core idea

behind RCF is simple yet effective: RCF prioritizes clients’

requests based on their waiting time (i.e., the time elapsed

from the initial request) and rate-limit the number of requests

per client, as if the server maintains an infinite queue in

which the clients’ requests are lined up waiting for the

service. To simulate the infinite queue with a small physical

buffer, in RCF the server sends the client a raincheck, a

timestamped cryptographic token which not only tells the

client when to retry but also serves as a proof of the client’s

priority level. In other words, an infinite virtual queue is

simulated using rainchecks propagating over the network

and stored at clients’ buffer. Rainchecks are only valid for

a limited time duration so that the server can efficiently

rate limit each client and prevent raincheck reuse without

keeping per-client state. RCF can be used to protect any

critical resource, for example, as a middlebox in front of a

flooded link or a server. Due to the rapid growth of DDoS



attacks at the application layer [6], we mainly focus on

applying RCF to protect critical resources at the server in

this paper.

We prove that an RCF client can access the server within

a finite time T which is linear in the number of clients.

Besides achieving strong guarantees, RCF is lightweight

and extremely simple to deploy. Our implementation shows

that RCF can operate at line rate, and requires minimal

modification to servers and no modification to clients. We

envision that RCF works as a complementary defense to

resolve server overload when detection-based schemes fail

to block bots, and as a primary mediation for flash crowds.

Our main contributions are as follows:

• We present RCF, a lightweight DDoS mitigation prim-

itive that helps legitimate clients obtain their fair share

of the server’s processing power by utilizing the net-

work as an infinite virtual queue. RCF can mitigate

flash crowds and be a last resort when it is ineffective

or insufficient to separate the attack traffic from the

legitimate traffic.

• We prove that RCF achieves MWT guarantees with

only a small amount of state that is independent from

the number of users, and that RCF does not require

precise request scheduling, which none of the prior

work can achieve.

• We thoroughly evaluate the performance and effective-

ness of RCF using theoretical analysis, simulations,

and an implementation. Our results confirm that in

practice RCF not only guarantees bounded waiting

time but also reduces variance in the waiting time.

Such characteristics enable servers to provide reliable

feedback to clients.

• We introduce a fully functional RCF Python module

that can provide fine-grained (i.e. per-URL) protection

to web developers with merely three additional lines of

code. No modification is required on the client side.

II. PROBLEM DEFINITION

Our primary goal is to provide Maximum Waiting Time

(MWT) guarantees during server flooding, where the flood

of incoming requests deplete the server’s scarce resources

(e.g., processor, disk I/O, or internal bandwidth.) As we

are interested in the context of server flooding attacks, we

assume that the network infrastructure, such as the link

bandwidth, is well-provisioned.

A server may be flooded by either bots or legitimate

clients, and the waiting time for legitimate clients may

grow indefinitely. In a flash crowd, the server is swamped

with requests from legitimate clients alone. In a bot-driven

DDoS attack, the adversary directs compromised endhosts

to overload the server with an overwhelming number of

requests. In this paper, we make no assumption on the

adversary’s power and strategy. For example, a powerful and

smart adversary can compromise the majority of endhosts

and target one client to increase the client’s waiting time.

We consider flooding by initial requests but not data

following the requests, as the server can rate limit the

requests and never accept requests at a rate higher than what

it can support.

Waiting time model. Among various waiting time guar-

antees, we consider a strong notion called maximum waiting

time (MWT) guarantees – a finite time T within which a

client’s request is accepted for service [7].

From the server’s perspective, the waiting time of a

client request c that is accepted after rc times of retries

is: T (c) = T (c, rc) − T (c, 0), where T (c, i) is the time at

which the server sees the ith retry by client c, and the 0th

retry represents the original request. Similarly, the waiting

time from a client’s perspective, T ′(c), is the elapsed time

from the time of the client’s initial request to the time

that the client receives the acceptance response from the

server after rc retries: T ′(c) = T (c)+RTT (c)+process(c),
where RTT(·) and process(·) indicate the round trip time and

the server’s request processing time, respectively. Assuming

that RTT(·) and process(·) are bounded, a bounded T (c)
implies a bounded T ′(c). Hence, without loss of generality

we consider only the waiting time observed by the server.

Server model. When a request arrives, the server first

performs some operations at line rate, such as replay detec-

tion. Since the incoming request rate, Rin, is bounded by

the network line rate, the server can process every request

before adding it to a queue. The queue is kept in fast memory

such that enqueue and dequeue operations can be done at

line rate as well. The server’s processing rate, Rs, is limited

by bottleneck operations (e.g., database query).

Client model. We consider a network of N clients,

consisting of Z compromised and N −Z legitimate clients,

where Z and N are bounded but may be unknown to

the server. Typically, compromised clients are controlled

by an adversary via malware, while legitimate clients are

controlled by their human users.

We assume that each client has a unique and unforgeable

ID but make no assumption on how IDs are defined. Web

developers can flexibly choose their identification methods,

such as login, CAPTCHA, single-sign-on, IP address, or a

combination of multiple factors. For example, a member-

based web service can use login credentials as IDs to

mitigate flash crowds. We discuss possible choices of client

IDs and compare them in our full report [8].

Desired properties. A practical system should be effi-

cient, immediately deployable, and usable. These desired

properties are translated into the following design require-

ments:

• MWT guarantees: The DDoS-limiting primitive

should bound the waiting time of a legitimate client,



and the bound should be independent of other clients’

strategies.

• Minimal overhead for both clients and servers:

The DDoS-limiting primitive should incur minimal

overhead for both servers and clients, thereby avoiding

the increase of the attack surface. In particular, the

primitive should avoid per-request or per-client state

on a server.

• No modification to clients and the network in-

frastructure: To support immediate deployment, the

system should be easy to adopt on the server side

and require no modification to clients and the network

infrastructure.

• Accurate feedback: The server’s estimate of a client’s

waiting time should be within a reasonable error margin

of the actual waiting time in order to increase users’

willingness to wait.

III. RAINCHECK FILTER

Our core observation about RCF is that Maximum Waiting

Time (MWT) guarantees can be achieved if the server keeps

a large queue of size N , where N is the number of clients.

We call this an ideal buffer because in reality we would like

to avoid keeping per-client state. RCF simulates the ideal

buffer using a realistic buffer whose size is much smaller

than N by leveraging the network as an infinite virtual

queue. Such a simulation is achieved through the exchange

of a special type of message called raincheck between the

client and the server.

We first present a simple approach using an ideal buffer

and discuss its fundamental properties to achieve MWT

guarantees. We then present RCF, which satisfies the fun-

damental properties, but with a realistic buffer. The notation

is summarized below.

Table I: Notation

c Client ID
ρc Client c’s raincheck
N Total number of clients
Rs Server S’s request processing rate
Z Number of compromised clients
L Server queue length (L ≪ N )
∆ Raincheck expiration period

∆pause Pause time before resending the raincheck
t Current time

tstart Start of a raincheck’s lifetime
tend End of a raincheck’s lifetime

A. MWT Guarantees Using an Ideal Buffer

Using a buffer of size N , we can achieve MWT guarantees

as follows. The buffer is modeled as a FIFO queue that

enqueues incoming requests. By limiting each client to have

no more than one request in the queue, we ensure that the

buffer never overflows. Since the server can process Rs

requests per time unit, the waiting time is bounded by N
Rs

.

This approach adopts a simple rate-limiting policy (i.e.,

one request per client in the queue) as well as a request-

ranking policy that orders requests by their age, or the time

during which a request has stayed in the buffer. The server

processes the request with the lowest rank (i.e., the oldest

request) first.

We observe that the request-ranking policy presents two

properties that lead to MWT guarantees in this ideal case:

(1) The initial rank of each request is bounded, and (2) the

rank decreases over time. In Section IV-A, we generalize

this observation and present a theorem that we use to prove

RCF’s MWT guarantee.

B. RCF Design

With a buffer of size L ≪ N , a flooded server has to

discard most of the requests, making it difficult for the server

to treat each client fairly and to bound the waiting time. To

address this challenge, RCF leverages the network as an

infinite virtual queue from which the server can retrieve the

knowledge of previously dropped requests.

RCF is designed as a generic primitive that can be applied

at different protocol layers and granularities. In this section,

we describe high-level overview of the RCF protocol design,

and present in Section VI-B the implementation details of

RCF that supports per-URL protection at the application

layer.

Overview. Figure 1 illustrates how RCF works on an

overloaded server. The server can (1) accept, (2) reject, or

(3) postpone an incoming request, which could be either

raincheck-carrying or raincheck-absent. When the server

needs to postpone a request, the server asks the client to

revisit at a later time by issuing a raincheck to the client.

Note that a raincheck-carrying request can be postponed

again, in which case the client obtains an updated raincheck.

To manage rainchecks, RCF implements two core compo-

nents on the server side—raincheck issuance and raincheck

validation—both of which operate at line rate.

The raincheck validation component checks a raincheck’s

validity using the server’s secret key. Requests with an

invalid (e.g., expired) raincheck are rejected, while requests

with a valid raincheck are added to a priority queue of length

L, in which a request that has waited longer than others gets

higher priority.

For each valid yet dropped request, the raincheck issuance

component constructs a raincheck using a server’s secret

key and returns the raincheck to the client. Rainchecks

are protected using Message Authentication Codes (MACs)

to prevent forgery, tampering, or sharing among multiple

clients. The client can resend its request with the returned

raincheck as a proof of the waiting time.

Raincheck-absent requests are forwarded to the raincheck

issuance component directly (rather than being assigned the

lowest priority) for two reasons: (1) To prevent the server
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Figure 1: RCF overview.

from queuing requests with spoofed IP addresses (the client

must return with the raincheck in order to use the server’s

service), and (2) to ensure bounded waiting time. Otherwise,

a raincheck-absent request can be stuck in the queue forever

when raincheck-carrying requests arrive at the same speed

as the server’s processing rate.

One major challenge is how to prevent double-spending

of rainchecks without keeping per-client state. To address

this challenge, we impose on every raincheck a valid lifetime

from tstart = t+∆pause to tend = tstart+∆. Consequently,

the server only needs to remember accepted requests for

∆pause+∆ period of time, since the client’s other raincheck

(s), if any, will expire after that. The server can adjust

∆pause and ∆ to strike a balance between communication

and storage overhead.

Raincheck message format. A raincheck contains a

MAC that protects client ID c, timestamp ts, and lifetime

[tstart, tend), all computed with the server’s secret key

k such that an adversary cannot tamper with or forge a

raincheck:

ρc = m‖MACk(m), where m = c‖ts‖tstart‖tend. (1)

A unique client ID c is included to enable rate limiting

based on source identities and to prevent two clients from

sharing their rainchecks. Since each MAC is computed using

the server’s secret key, only the server can correctly create

and validate the raincheck. If the server enables more than

one instance of RCF, each RCF should use a different secret

key.

C. Server Description

Raincheck issuance. A raincheck issued or renewed at

time t is valid from tstart = t+∆pause to tend = tstart+∆,

where ∆pause is a small amount of minimum time that

the client has to wait before resending. Moreover, when a

raincheck-absent request arrives, the server drops the request

directly and returns to the client c a raincheck in which the

timestamp is the current time. When the server’s queue over-

flows, a raincheck-carrying request is dropped and directed

to the raincheck issuance component for renewal but the

timestamp stays the same as the one in the old raincheck.

Since the server issues a raincheck to every dropped

request, a client can have multiple valid rainchecks concur-

rently. However, having multiple valid rainchecks provides

no additional benefits to the client, because the server (or its

raincheck validation component) limits the rate of accepted

rainchecks per client as described below.

Raincheck validation. For efficient double-spending pre-

vention and rate limiting, the server keeps a set Accepted

that contains requests that were accepted during time [t −
(∆+∆pause), t). We denote by Accepted(c) whether a client

c’s request is in the set. Similarly, we denote by Buffered(c)
whether c’s request is currently buffered in the queue. Size

of these records are irrelevant to the total clients and can

be implemented efficiently using Bloom Filter variants [9],

[10]. A raincheck is valid if all of the following conditions

hold:

1. Lifetime: tstart ≤ t < tend.

2. No duplicate: The same raincheck cannot be reused

more than once.

3. Limited client request rate: Only one request is

allowed per client in any interval ∆. That is, a client’s

request is accepted only if Accepted(c) = False and

Buffered(c) = False. This condition can be easily

extended to allowing multiple requests per client in a

time interval, which is useful when one instance of RCF

is deployed to protect multiple critical resources.

4. Integrity: the MAC is verified correctly.

The first three conditions ensure that once a client’s request

is accepted, all other rainchecks that this client possesses

become invalid.

Valid requests are added to the priority queue and ranked

unambiguously based on their timestamps.1 If L requests are

already queued, this component dequeues the lowest priority

request, issues a raincheck, and returns it to the client.

D. Client Description

Figure 2 illustrates the client-server interaction in the

RCF protocol. The client initiates the protocol by sending a

raincheck-absent request. The server returns to the client a

raincheck that expires after ∆ in the future.

Before the raincheck expires, the client resends the

raincheck-carrying request, and if the server is still busy, the

client obtains a renewed raincheck with an extended lifetime.

The client keeps resending until the request is accepted.

We prove in Section IV that a client following this resend

strategy will be able to access the server after a bounded

delay.

A greedy client may attempt to reduce the waiting time by

resending the request as quickly as possible. However, our

protocol guarantees that the greedy client gains no benefit if

he sends at a rate faster than Rs

L
, because the buffer keeps

only one copy of the request for each client. Moreover, the

server explicitly specifies in the raincheck how long the

1A trade-off exists between the timestamp granularity and the waiting
time bound. When at most v requests are allowed with the same timestamp
value, the waiting time bound is increased by v

Rs

.
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client has to wait before retrying (i.e., setting tstart in the

raincheck’s lifetime) to further restrain greedy clients and to

minimize communication overhead.

E. Configurations and Further Improvements

To build a practical and deployable system, we have

investigated the details of RCF’s functionalities, corner

cases, and the actual parameter configurations for MWT

guarantees (e.g., minimum number of requests for various

application scenarios, estimated number of requests that the

bottleneck server can process given varying processing time,

∆ configuration to satisfy performance requirements, etc.).

Due to space limitations, we highlight the core ideas in

this section, and leave the detailed description in our full

technical report [8].

1. Accurate waiting time estimation. Providing users

with feedback of their expected waiting time can help

increase their willingness to wait [3], [4]. While the waiting

time bound T can serve as a loose estimate of the actual

waiting time, a better estimate that incorporates the current

client status is desirable. We design and analyze a rank

estimation algorithm that allows the server to estimate any

client c’s rank (i.e., position in the virtual queue) at time

t without keeping per-client state. Extending probabilistic

counting algorithms [11], our algorithm refines the estimate

by taking into account the number of clients that did not

renew their rainchecks, and the server informs the client the

estimated rank by piggybacking it on the raincheck.

2. Balancing load distribution. To avoid sudden increase

in the bandwidth loads in the rare case when all clients

concurrently retry, it is desirable to distribute the band-

width loads caused by raincheck renewals. We propose a

hybrid scheme that combines RCF with a coarse-grained

scheduling for balancing load distribution. Similar to the

original RCF, this hybrid scheme requires each client to

renew its raincheck periodically. The novel improvement is

the assignment of the coarse time interval such that all the

requests from the same client always fall in the same time

interval, reducing the overhead for duplicate detection and

rate limiting.

3. Accommodating multiple rainchecks. There are ap-

plications where multiple rainchecks may be needed per

client. For example, if RCF is applied to the HTTP protocol

and each raincheck allows one HTTP request, multiple

rainchecks would be needed to load a single webpage.2

Getting a raincheck for each request sequentially would

significantly increase the waiting time of the client. Our

implementation in Section VI-B resolves this issue by

enabling one RCF instance per resource-consuming URL,

which likely accounts for a small set of all the HTTP

requests for a webpage, such that the client can use multiple

rainchecks in parallel. We also explore in our full report the

effects of using an extended rate limit mechanism that allows

a sender to have multiple requests in one virtual queue.

IV. ANALYSIS

A. Waiting Time Guarantees

To prove that RCF guarantees MWT, we first show two

properties of a rank function that imply MWT, and then that

RCF satisfies these two properties.

Let tinic be the time at which the server sees client c’s
first trial and taccc be the time at which the sever accepts c’s
request/retry. We denote by rank(c, t) client c’s priority of

service (e.g., the position in the ideal queue) at time t, and

rank(c, t) is defined only for tinic ≤ t < taccc . Client c is

served immediately at time t when rank(c, t) = 0.

The rank function in RCF can be formulated as

rank(c, t) , |{c′|c′ <t c}|, where c1 <t c2 means c1 has a

lower rank than c2 at time t (i.e. at time t client c1 has a valid

raincheck whose timestamp is smaller than any of client c2’s

valid raincheck.) When rank(c, t) < L (i.e., server queue

length), c’s request will be accepted.

Theorem 1: Properties of a rank function ensuring MWT.

There is a bound T such that for all c, taccc − tinic ≤ T , and

T is independent of the attacker’s power or strategy if the

rank function satisfies the two conditions:

1. The initial rank of each client is bounded:

rank(c, tinic ) ≤ B for all c, and B is adversary-

independent.

2. The rank of each client decreases over time: ∃ δ > 0
and γ > 0 such that rank(c, t−δ)−rank(c, t) ≥ γ > 0
for all c and t, and δ and γ are adversary-independent.

Sketch of Proof: Since it takes at most δB
γ

time to reduce

a client’s rank to zero, the waiting time is bounded: T ≤ δB
γ

.

That is, the server guarantees MWT for any ranking function

that satisfies the above two conditions.

Theorem 2: RCF guarantees MWT. RCF guarantees that

a legitimate client will be served in a finite time T , regard-

less of how other (both legitimate or compromised) clients

behave, and T is linear in the total number of clients.

2A a typical webpage requires multiple HTTP requests, and modern
browsers support concurrent HTTP connections (e.g., Firefox allows 15
concurrent connections).



Sketch of Proof: In RCF, the initial rank is bounded by

N , the number of clients in the network. Between c’s i-
th and i + 1-th retries that are at least L

Rs

time apart, the

server either accepts c’s request or accepts L requests from

the more privileged clients. Also, RCF ensures that once a

client’s request is accepted, all its rainchecks become invalid.

Therefore, rank(c, t) decreases by L for every retry, which

means after at most ⌈N
L
⌉ attempts the server will accept the

request. Also, as specified in Section III, a legitimate client

resends its request at a frequency f such that 1

∆+∆pause

≤

f ≤ min{Rs

L
, 1

∆pause

}. Hence, based on Theorem 1, the

waiting time is bounded as follows:

T (C) ≤

⌈

rank(C, tinic )

L

⌉

/f ≤

⌈

N

L

⌉

(∆ +∆pause). (2)

If the RTT is not negligible compared to ∆+∆pause, the

bound should be revised to ⌈N
L
⌉(∆ + ∆pause + RTT ) to

compensate the delay.

The upper bound represents the worst case scenario where

a strong attacker who knows the client’s request sending

schedule and controls every host except the victim client and

server. In the presence of a realistic attacker not targeting a

specific client, the actual waiting time can be much lower

than the upper bound, because bots will keep consuming

their high-ranked rainchecks while the legitimate client waits

silently. This demonstrates a strength of RCF: the client

can increase its priority by simply waiting, in contrast to

prior work where the client has to “work”, such as solving

computational puzzles.

B. Overhead Analysis

RCF incurs low computational, communication, and stor-

age overhead for both servers and clients. Clients are not

required to perform any additional computation. A client

simply keeps the most recent raincheck for each protected re-

source, and renews the raincheck roughly every ∆+∆pause

time period.

Our implementation uses a 32-byte raincheck format: 32-

bit client ID, 64-bit microsecond-level timestamp, 32-bit

lifetime of the raincheck as an offset from the timestamp,

and 128-bit MAC. Given this size, the server’s computational

overhead is minimal. For each generated raincheck, the

server has to perform one MAC generation, and for each

received raincheck, the server performs one MAC verifi-

cation. With an efficient MAC function, rainchecks can be

generated and verified at line rate. For example, it takes only

61 cycles (22ns) to compute a 128-bit CBC-MAC using AES

on Intel i5-4430S that supports the AES-NI instruction set.

Our implementation in Section VI confirms that enabling

RCF does not degrade the service throughput.

RCF avoids keeping state for all clients at the cost of

sending rainchecks, but RCF only keeps the “recently” (not

every) accepted clients to support efficient validations (e.g.,

rate-limiting, duplicate detection) using expiration time. A

server can further adjust the raincheck expiration period

to strike a balance between communication and storage

overhead.

RCF only incurs a small overhead to communication

between servers and clients. For instance, when applying

RCF to HTTP applications, the size of the HTTP header

(where a raincheck would be stored) increases by less than

5%—the size of typical HTTP request/response headers are

700-800 bytes [12] and a raincheck is 32 bytes. Moreover,

RCF explicitly specifies how long clients have to wait before

retrying and thus incurs small overhead compared with

the case where greedy clients or bots aggressively resend

requests.

In RCF, initial requests without a raincheck are rejected,

and a raincheck is issued and returned to the client. This

initial rejection adds resiliency against IP spoofing attacks,

but adds slight latency to serve the request. To minimize the

initial latency, RCF can be dynamically enabled and disabled

by the server. During peacetime (e.g., server utilization less

than 70%), RCF remains inactive so that incoming new

requests are served by the server. When the server utilization

increases beyond the threshold, the RCF becomes active and

start issuing rainchecks to incoming new requests.

C. Security Benefits

We design RCF to avoid expanding the attack surface:

Rainchecks are protected against forgery with Message Au-

thentication Codes that can be generated and validated at line

rate. RCF prevents traffic amplification attacks as rainchecks

are smaller than typical HTTP request/response headers.

Also, RCF is secure against source spoofing and other

misuses (e.g., raincheck reuse, accumulation, or sharing),

and prevents compromised or greedy clients from gaining

an advantage over legitimate clients.

V. EVALUATION

To validate that RCF effectively simulates an infinite

buffer and thereby enables bounded waiting time with low

variance in the presence of flash crowds or DDoS attacks,

we evaluate RCF using the NS-3 simulator. Our large-scale

simulation measures the waiting time of legitimate users in

two cases. Section V-A describes a flash-crowd case where

a large number of legitimate users simultaneously try to

access a server within a short-time period. Section V-B

shows a DDoS attack case where a server is flooded by

bots. For both cases, we compare results among (1) RCF,

(2) a traditional client-server model with no protection, and

(3) a computational puzzle [13].

A. Flash-Crowd Effect

We consider 100,000 legitimate clients, and a server that

can buffer up to 200 requests and process requests at a rate

following an exponential distribution with an average of 5



Figure 3: Scatter plots of the initial request time vs served time.

ms. Every client makes one request where the initial request

time is uniformly distributed across a 100-second interval,

and hence, the server experiences on average 1,000 incoming

requests per second, five times the rate of its average request

processing capacity. Next we briefly describe the server and

client models to simulate the flash-crowd effect.

Computational puzzles. We model a client that solves

a computational puzzle before sending a request [13]. We

model the puzzle server with a priority queue which uses

the puzzle-level as the priority metric. For requests with the

same priority level, the server processes them based on their

arrival order.

To send an initial request, the client solves a level-1

puzzle. If the request with level-n is denied, the client solves

a level-(n+1) puzzle and resubmits its request. The puzzle

computation time determines the delay that a client waits

before submitting its request. The delay associated with

a l-level puzzle is derived from the geometric distribution

0.01geometric(2−l), as the number of computed hashes

before successfully finding a length-l hash is geometrically

distributed.

Unprotected. The unprotected server implements a stan-

dard FIFO queue and informs the client whenever its request

is dropped. The client continues to resubmit requests until

one of those request is processed by the server.

Results. The waiting times for the clients of the three

models are shown as scatter plots in Fig. 3. Each dot or

diamond in the scatter plot shows the requested time (x-

value) and the accepted time (y-value) for a client’s request.

A green dot on the left figure represents a request of an

unprotected client while a green dot on the right figure

represents a request of a puzzle client. In both figures,

the red diamonds represent the requests of the raincheck

clients. The solidly filled-in green trapezoid areas in both

figures demonstrate the large variances of the waiting times

for unprotected and puzzle clients: some lucky clients are

served almost immediately, while most clients are unlucky

and experience long waiting times.

On the other hand, RCF clients, marked by red diamonds,

resemble a thin line indicating that RCF supports low

variance such that the waiting time steadily increases as

the number of requests that are yet to be served increases.

Specifically, the ordering of the requests is well-preserved—

requests generated at earlier times are served before the

requests generated at later times. Although not shown in

the figure, the scatter plot for the raincheck server is almost

identical to that for an ideal server that has an infinite buffer.

B. Flooding Attacks

We consider 10,000 legitimate clients and bots ranging

from 10,000 to 200,000 to observe the relationship between

the volume of attack traffic and the waiting times that the

clients experience. In this experiment, every client makes

one request and the request times are uniformly distributed

across a 200 second interval, and the servers’ capacity are

identical to the simulation in V-A.

To simulate the DDoS attack case, the bots adopt the

following strategies to flood the servers. The bot’s request

generation model follows a Poisson process with λ = 1.

Attacker strategy against RCF. Since an RCF server

favors requests with earlier timestamps, simple flooding (i.e.,

sending new requests at a high rate) is ineffective. Instead,

a bot saves all valid rainchecks and sends the one with the

earliest timestamp for each flooding period. Only when the

bot runs out of valid (unexpired) rainchecks, it sends a new

request.

Attacker strategy against puzzles. Since the puzzle

server favors requests with higher-level puzzles, a puzzle bot

submits a request with the highest puzzle-level that it solves

in a requests generation interval. In addition to shorten the

puzzle computation time, bots collaborate with each other,

and the collaborative puzzle solving time is modeled as
0.01
|bots|*geometric(2−l).

Attacker strategy against unprotected. A bot periodi-

cally submits a request to the server.

Results. The distribution of the waiting times of the

10,000 clients are shown as box plots in Fig. 4. Similar to

the flash-crowd simulation, this simulation confirms that the

maximum waiting times for the raincheck clients are much

smaller than the unprotected and puzzle clients regardless of

the number of bots. In addition, the simulation also confirms

that the variance of the waiting times are smaller than the

other two cases (shown by the height of the boxes). Although

not drawn in the figure, the maximum waiting times for the

raincheck clients are below the upper bound in Eq. 2.

The maximum waiting time varies significantly for the

unprotected clients. The increase in variance becomes more
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Figure 4: Box plot of the waiting times for 10,000 clients under varying number of bots for the raincheck server, puzzle server, and unprotected server. Note that the mean

waiting times for the unprotected server goes up to 800 sec (and thus outside the graph).

dramatic as the number of bots increases. This is because

the unprotected server treats every request equally and the

bot’s collective request submission rate is much higher than

that of the clients, depriving clients’ access to the server.

For the puzzle clients, while the median waiting time is

comparable to that of the raincheck clients, the variance

among the waiting times as well as the maximum waiting

times are higher than that of the raincheck clients. This large

variance is attributed to the amount of time needed to solve

the puzzles.

VI. IMPLEMENTATION

To demonstrate the efficiency and feasibility of RCF, we

implement RCF (1) on a high-bandwidth testbed supporting

line-rate raincheck validation and issuance, and (2) as a

Python module that can be easily incorporated into HTTP

servers.

A. DPDK Testbed Evaluation

In this evaluation, we show that raincheck generation and

validation can be done at line rate on a commodity machine

and thus do not cause any additional bottleneck at the server.

Testbed Setup. We build a small testbed containing

two machines—one machine to simulate a malicious traffic

generator (TG) and the other to simulate an RCF. Two

machines are directly connected to each other via a gigabit

Ethernet cable and operate on identical commodity PCs

with the following hardware specification: 4-core Intel Core

i5-4430S CPU (Haswell), 1,600 MHz Hynix DDR3 4GB

memory, and one dual-port 10 GbE NIC (Intel 82599EB).

We use Intel Data Plane Development Kit [14] (DPDK)

as the packet I/O engine on both machines to generate and

process high-bandwidth traffic. Intel DPDK supports high-

performance packet processing without involving the system

kernel. DPDK avoids OS interrupts while packets are being

transferred between the user space and the NIC’s memory

buffer to eliminate redundant memory copies in the kernel.

AES-CBC-MAC in RCF is implemented using the Intel

AES-NI instruction set [15], a hardware accelerated crypto-

graphic engine, to efficiently verify/issue rainchecks.

Experiment Design. TG initiates the experiment by

sending a request packet to RCF (Step 1). Upon receiving

the request, RCF generates a raincheck and sends a packet

with the raincheck back to TG (Step 2). After this initial

exchange, we start measuring the performance of RCF for

raincheck validation and issuance in the following manner:

TG simply forwards the raincheck-carrying packet back to



the server (Step 3). Then, RCF validates the raincheck,

updates the raincheck with a new timestamp, and sends the

updated raincheck back to TG (Step 4). Steps 3 and 4 are

repeated to measure the worst-case processing time of an

incoming request.

For comparison, we establish the following baseline case:

(1) TG sends the initial requests to RCF, (2) RCF replies

a packet with a dummy raincheck, (3) TG immediately

resends the received request back to the server, and (4) RCF

simply forwards the packet back to TG without verifying

or updating the raincheck. Steps (3) and (4) are repeated for

evaluation.

Result. For the baseline case, TG sends raincheck-

carrying requests to the server at a rate of 9.826 Gbps3.

The same rate of 9.826 Gbps is achieved for the raincheck

case. Even though RCF has to validate and issue a raincheck

for each incoming request, we observed no degradation

in throughput, confirming that the raincheck computation

incurs a low overhead.

B. Raincheck over HTTP

In this section, we present how RCF can be easily

deployed to HTTP servers. Applying RCF to web servers

can efficiently rate-limit requests that are compute-intensive

(e.g., WolframAlpha) or IO-intensive (e.g., database queries)

while ensuring per-client fair access.

Our implementation is a Python module that serves as

an extension of Flask4, a microframework for Python web

development. This solution is practical in the real world

because it requires no modification nor additional installation

on the client side, and incurs minimal effort on server side.

Specifically, our server-side implementation works as an

intermediate level between the web server and the applica-

tion, using Python’s decorator feature such that developers

can integrate RCF to existing server applications with little

effort.

Listing 1 demonstrates the basic usage of the module.

Text in bold is the additional code needed for applying the

RainCheck module. Beside initialization (line 5), developers

only have to add a line of code to mark the critical

resource they want to protect (line 8). It is independent of

applications being protected so that developers can easily

turn RCF on and off even without any knowledge about the

implementation details of applications.

The RainCheck module provides per-URL fine-grained

protection, which is useful to flexibly apply RCF to critical

resources only and leave noncritical resources (e.g., static

content) freely accessible. Specifically, it allows different

configurations and separated queues for different URLs,

which is essential for web servers to provide various ser-

vices.

3We cannot achieve the full capacity of 10 Gbps due to the bottleneck
at the PCI that interconnects the NIC to the mainboard.

4http://flask.pocoo.org

1 from flask import Flask

2 app = Flask(__name__)

3

4 from raincheck import RainCheck

5 rc = RainCheck(queue_size=100, time_pause=1,

time_interval=10, concurrency=4)

6

7 @app.route('/')

8 @rc.raincheck()

9 def index():

10 # compute-intensive or IO-intensive jobs

11 return resp

Listing 1: Basic usage of the RCF module.

Implementation Details. We fully implemented the

RainCheck module described in Section III including is-

suance, validation, communication protocol, and ranking.

The following are additional details and concerns of the

implementation.

Rainchecks are carried through HTTP cookies, a common

feature that the majority of clients support, so no additional

modifications are needed on the client side. Cookies pro-

vide a simple mechanism allowing us to renew and expire

rainchecks.

We use HTTP Refresh header to indicate how long a

client should wait before coming back to renew its raincheck

(i.e., no time synchronization is needed). The refresh time

is uniformly random from tstart to tend − tnetwork delay .

Consequently, subsequent renewing requests will not cluster

together regardless of clients’ initial requesting pattern.

In addition to using the source IP as the client ID, we

accept any entry in session storage5 as the client ID, allowing

developers to use login, CAPTCHA, single-sign-on, or other

identification methods for the unique client ID generation,

and addressing the issues with sharing the same public IP

due to the prevalence of NAT.

The estimated current position of a client in the virtual

queue is exposed to developers as a variable, such that

developers can customize their web interfaces (e.g., show

the estimated waiting time or error messages to clients).

The most computationally critical part of RCF is deriving

message authentication codes. To integrate with the low

overhead AES-NI implementation and be DoS-resilient, we

use Python’s ctypes library to invoke native functions and

thus achieves comparable performance with Sec˙ VI-A.

Raincheck over TCP vs. HTTP. We now discuss the

advantages and disadvantages of implementing RCF at the

TCP layer and the HTTP layer.

Implementing RCF at the TCP layer may be more robust

and efficient. It incurs less overhead as fewer layers are

passed and requests can be dropped or sent back as soon as

possible. When the bottleneck is out of application layer’s

sight (e.g., TCP flooding attack), implementation at the

5In Flask, this is implemented on top of cryptographically-signed cook-
ies.



Figure 5: Scatter plots of the initial request time vs. served time and step charts of the average waiting time.

TCP layer can also protect more resources than that at

the HTTP layer. Moreover, RCF can serve as a generic

defense mechanism that protects all upper layer protocols

and applications.

However, such a modification requires OS kernel changes

or privileged module installation on both clients and servers

which may be too intrusive and less favorable. It is also

difficult to make changes in a widely used protocol and

persuade people to update it at the same time. Furthermore,

it may not be suitable to adopt a universal setting for various

protocols and applications above TCP layer; some of them

may even be unnecessary to protect.

On the other hand, implementing RCF at the HTTP

layer is more flexible and transparent. Changes occur only

on servers and developers have the full control to decide

when to enable RCF, what resources to protect, and how to

configure the queue size, waiting time, and other parameters.

With the better knowledge of applications, RCF can be more

accurately customized to a specific situation.

RCF can also be used to protect UDP packets, and RCF

integration with UDP is relatively easier than with TCP,

since UDP is connectionless. RCF can also be applied to

protect other application requests, such as DNS queries.

Parameter Selection. We briefly describe here the rule

of thumb in selecting parameters, particularly, determining

reasonable ranges of ∆ and ∆pause within which changing

these parameters does not affect much of the server’s per-

formance. Detailed mathematical analysis is included in the

full report. The value of ∆ can be determined by network

delays and memory consumption: It should be long enough

to tolerate the variance in network delay and short enough

to keep small states of accepted clients. The value of ∆pause

can be determined by bandwidth consumption and rank

feedback frequency: It should be long enough to prevent too

much overhead on frequently raincheck renewal and short

enough to update the ranking of clients promptly.

Experiment. We show the effectiveness of RCF over

HTTP on a compute-intensive web server. We deployed

the server on a m3.xlarge instance of Amazon EC2 service

in Singapore, and used another EC2 instance in Tokyo to

send requests. The configuration of the server is summarizes

below.

Server without RCF with RCF

Queue Size 16 entries

Concurrent Processing 4 clients

Computing Time per request 1.5˜2.5 seconds

∆pause N/A 1 second

∆ N/A 4 seconds

For the unprotected server, we used a FIFO queue to

buffer requests and to limit concurrent processing requests.

(Otherwise, the server will be overloaded and all the requests

will timeout.) The clients of the unprotected server retries in

1 to 5 seconds whenever the request fails until the request

is accepted, mimicking the realistic scenario.

The server receives 10 requests per second uniformly from

distinct clients for about 50 seconds. For the experimental

purpose, we assume that clients already acquired unique IDs.

Result. Figure 5 shows the result of the server with and

without RCF under the flash-crowd effect. The unprotected

server suffers from high variances in the waiting time when

the queue is full, whereas RCF server’s waiting time is

almost directly proportional to the initial request time. These

consistent results validate our simulation’s correctness and

prove RCF’s capabilities in the real world.

VII. RELATED WORK

One typical defense against service-level DDoS attacks

aims to offer a fair chance of service access to clients. To

avoid granting access to non-existing entities (e.g., via IP

address spoofing) and to limit a client’s attempt to gain

advantage over others by masquerading multiple entities,

DDoS defense mechanisms employ an interactive protocol



requesting clients to present an evidence proving the clients’

identity.

Computational puzzles [13], [16]–[19] demand clients to

show their computational effort to get a service. Despite

simple and stateless, they cause high overhead to legitimate

clients while providing only weak probabilistic waiting time

guarantee [7], which hinders their real world adoption.

CAPTCHAs [20] use a hard AI problem, which can be

easily solved by most humans but not by machines (e.g.,

bots), to test the human presence behind a service request.

CAPTCHAs have been widely adopted by many web-based

applications to test human presence, and is also used to

distinguish Flash Crowd and a DDoS attack [21]. How-

ever, advances in CAPTCHA breaking techniques [22]–

[24] weaken its effectiveness as a DDoS defense tool.

Furthermore, requirement for human interaction limits its

applications.

We follow a line of thought of latency-based proof-of-

work [25], where a server under a DoS attack prioritizes the

requests of the clients who have waited long for the service.

Crowcroft et al. proposed a mechanism to enforce passive

delay on clients, slowing down the request rate. However,

in contrast to raincheck, this mechanism needs per-client

state at a server and does not provide any service access

guarantee.

Various proposals aiming at a faster web [26]–[29] use

a cryptographic credential (which is similar to TCP SYN

cookie [30]) to reduce the number of round trips for the

connection establishment. For example, TCP Fast Open

(TFO) [26] speeds up successive TCP connections using

a TFO cookie, a server-generated Message Authentication

Code that proves the client’s ownership of a source IP.

Technically, RCF creates credentials in a similar way to

the aforementioned mechanisms. A key distinction is that

each raincheck contains a fine-grained timestamp by which

RCF performs admission control, guaranteeing a maximum

waiting time for establishing a connection.

Queuing systems are heavily researched in computer

science and operations research. Some mechanisms [31],

[32] assign queues to aggregated requests by their origin.

Among them, Lee et al. [32] proposed a mechanism that

provides differential guarantees to the aggregates based on

the observation that bot distribution is not uniform across do-

mains. Stoica et al. [33] proposed a core stateless weighted

fair queueing mechanism for fair network scheduling. Only

edge routers maintain per-flow state while core routers use

the labels inside packet headers created by edge routers

to realize fair scheduling. However, queuing systems do

not intend to offer nor can they provide precise waiting

time guarantees to clients. Alternately, Gligor [7] proposed

a scheme that provides per-client, maximum waiting time

guarantees via precisely time-scheduled service-access to-

kens. Such scheduling requires conservative workload pre-

diction for every single service and assumes all granted

tokens would be used on time—which unavoidably leads

to significant resource under-utilization.

Service replication via infrastructure outsourcing is a

common practice for DDoS mitigation. However, many

services, such as financial, government, and healthcare

services, are hard to replicated/relocatable, distributed, or

outsourced, e.g., for security and privacy reasons. Moreover,

SSL-protected contents can only be served via a man-

in-the-middle approach [34], which is highly undesirable

from a security perspective. Traffic-scrubbing clouds are

ineffective when it is difficult to differentiate malicious and

legitimate clients. RCF outperforms prior works as it can be

a simple yet practical solution to protect initial requests and

guarantees access to a public service that cannot afford a

server farm.

VIII. CONCLUSION

Recent technology advances introduce unfortunate side ef-

fects: Internet users are becoming increasingly impatient. To

increase users’ willingness to wait, the waiting time should

be kept small and with low variances, and users should be

informed with accurate waiting time estimations. To this end,

We propose RCF, a lightweight DDoS mitigation primitive

that bounds the waiting time of a legitimate client. RCF

achieves strong guarantees by leveraging the network as a

virtual queue and ordering clients based on their arrival time,

such that the resulting guarantees are close to the optimal

case where the server has infinite memory. Since RCF

focuses on bounding waiting time, it can work in conjunction

with DDoS countermeasures that differentiate bots from

legitimate clients to further strengthen the waiting time

guarantees. Without RCF, there is little hope for legitimate

clients to access the flooded server because the attacker

who sends a large number of requests has huge advantage

over legitimate clients. In contrast, with RCF, the server

effectively provides legitimate clients with access guarantees

in the presence of bot-driven DDoS attacks or flash crowds.
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