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ABSTRACT

Many networking and security applications can benefit from
exact detection of large flows over arbitrary windows (i.e.
any possible time window). Existing large flow detectors
that only check the average throughput over certain time
period cannot detect bursty flows and are therefore easily
fooled by attackers. However, no scalable approaches pro-
vide exact classification in one pass. To address this chal-
lenge, we consider a new model of exactness outside an ambi-
guity region, which is defined to be a range of bandwidths be-
low a high-bandwidth threshold and above a low-bandwidth
threshold. Given this new model, we propose a deterministic
algorithm, EARDet, that detects all large flows (including
bursty flows) and avoids false accusation against any small
flows, regardless of the input traffic distribution. EARDet

monitors flows over arbitrary time windows and is built on a
frequent items finding algorithm based on average frequency.
Despite its strong properties, EARDet has low storage over-
head regardless of input traffic and is surprisingly scalable
because it focuses on accurate classification of large flows
and small flows only. Our evaluations confirm that existing
approaches suffer from high error rates (e.g., misclassifying
1% of small flows as large flows) in the presence of large flows
and bursty flows, whereas EARDet can accurately detect
both at gigabit line rate using a small amount of memory
that fits into on-chip SRAM.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Net-
work Operations—Network monitoring ; C.2.0 [Computer-
Communication Networks]: General—Security and pro-
tection
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1. INTRODUCTION
Being able to identify large flows1 over any possible time

window (referred to as the arbitrary window model) is of
great importance for a wide variety of networking and se-
curity applications such as traffic engineering, accounting,
anomaly detection, and Denial-of-Service (DoS) defense.
The arbitrary window model monitors time windows on
all time-scales, starting at each instant in time and end-
ing at the current time, and can thus detect bursty flows
and outperform models that are based on fixed-length win-
dows. Given the high traffic volumes in today’s Internet, no
scalable approaches provide exact classification in one pass.

Thus, we consider a novel model of exactness outside a
small ambiguity region, which contains flows that use band-
width between two configurable thresholds. Our model clas-
sifies flows as either large, medium, or small. A flow is de-
fined to be a large flow if there exists a time window in
which the bandwidth of the flow exceeds the high-bandwidth
threshold. A small flow is defined to be a flow whose vol-
ume is consistently lower than a low-bandwidth threshold
function over all arbitrary window. The rest are defined as
medium flows, or the flows in the ambiguity region. Ex-
actness outside an ambiguity region guarantees perfect de-
tection of large flows (including bursty flows) and no false
accusation against any small flows. This model is reason-
able because it limits the damage caused by large flows and
allows existing techniques to handle the medium flows sta-
tistically. Prior work [17] [16] adopts a similar concept, yet
they can only provide probabilistic bounds outside a re-
gion. The ambiguity region between the high-bandwidth
and low-bandwidth thresholds allows us to trade the level of
exactness for scalability, so that we can maintain state small
enough to fit into limited on-chip memory for link-speed up-
date.

The new models of exactness and arbitrary window benefit
many applications. For example:

• Detecting various DoS flows: Denial-of-Service (DoS)
attacks use a combination of large attack flows and
bursty attack flows. Flows that are only bursty are
hard to catch due to their low average traffic band-
width. However, using the arbitrary window model, a
detector can instantly detect DoS attempts that use
bursty flows [25].

• Bandwidth guarantees: To enforce bandwidth allo-
cation, schemes such as IntServ make impractical

1Large flows are flows that consume more than a threshold
amount of bandwidth. They are also called elephant flows
in the literature.
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assumptions that either every router keeps per-flow
state [33] or first-hop routers are trusted to regulate
traffic on a per-flow basis [36] on behalf of intermediate
routers [34]. Although a scalable and robust approach
was proposed [28], it causes collateral damage due to
the detection delay. Moreover, it cannot catch bursty
flows. Our efficient detector built upon these two new
models can help enforce bandwidth limits on flows be-
cause it enables fast detection with no false accusation
on the legitimate small flows and no missed detection
on large flows including bursty flows.

To the best of our knowledge, none of the existing algo-
rithms provide exactness outside an ambiguity region under
the arbitrary window model. Prior algorithms monitoring
average throughput (e.g., algorithms based on fixed win-
dow and sliding window models) cannot detect bursty at-
tacks. For example, in a large-flow detection system that
resets state and starts a new measurement interval periodi-
cally [17], a large bursty flow can bypass detection by staying
lower than the threshold of throughput across this whole in-
terval, or even by deliberately spreading its burst across two
consecutive intervals. Although randomization of measure-
ment intervals can mitigate the problem of a burst spread
across a measurement interval, randomized algorithms may
be unable to provide strong deterministic guarantees.
In addition to lacking exactness and the arbitrary window

model, the storage overhead of existing algorithms may grow
unboundedly with the size of the input traffic in the presence
of malicious inputs. For example, an adversary can perturb
his traffic patterns (e.g., by varying the size and timing of
packets) so as to cause algorithmic complexity attacks [11]
because many algorithms bound their storage and compu-
tational overhead by assuming that the flow sizes follow a
certain distribution, such as Zipfian.
To identify large flows over arbitrary windows with low

storage overhead, we explore deterministic algorithms with
a new model of exactness considering a small ambiguity
region. We propose EARDet (Exact-Outside-Ambiguity-
Region Detector), a simple, efficient, and no-per-flow-state
large-flow detector which is exact outside an ambiguity re-
gion regardless of the input traffic distribution. Built on
the Misra-Gries algorithm (a two-pass frequent items find-
ing algorithm based on average frequency) [31], EARDet is
a one-pass streaming algorithm with simple operations: it
only keeps a small array of counters which are increased or
decreased as each new packet arrives. A flow is identified as
a large flow if its associated counter exceeds a threshold.
Surprisingly, despite EARDet’s strong guarantees, we

show in our analysis that EARDet requires extremely small
amounts of memory that fit into on-chip SRAM for line-
speed packet processing. We discuss implementation details
to further demonstrate EARDet’s efficiency. EARDet is
highly scalable because it focuses on the accurate classifica-
tion of large and small flows; unlike prior approaches, it does
not aim to estimate flow volumes or identify the medium
flows. In addition to our theoretical analysis, we also evalu-
ate EARDet using extensive simulations based on real traf-
fic traces. We demonstrate that existing approaches suffer
from high error rates under DoS attacks, whereas EARDet

can effectively detect large flows in the face of both flooding
and burst DoS attacks [22,25].
Our main contributions are as follows.

• We propose a deterministic streaming algorithm that
is exact outside an ambiguity region regardless of the
input traffic. Two novel settings distinguish EARDet

from previous work: it monitors flows over arbitrary
windows, and it supports exact detection outside an
ambiguity region.

• We rigorously prove the two guarantees—catching all
large flows and preventing false accusation on any
small flows—without making assumptions about the
flow size distribution.

• Our numerical analysis shows that EARDet can oper-
ate at 40 Gbps high-speed links using only hundreds of
bytes of on-chip SRAM, which is substantially smaller
than the memory consumption in many existing sys-
tems. We also provide guidelines on how to configure
EARDet to satisfy application-specific requirements.

• We compare EARDet with two closely related pro-
posals [16, 17] via comparative analysis and extensive
simulations based on real and synthetic traffic traces.
The results confirm that these two are vulnerable to
attack flows that manipulate the input traffic, while
EARDet consistently catches all large flows without
misclassifying small flows.

2. PROBLEM DEFINITION
Our goal is to design an efficient arbitrary-window-based

algorithm which is exact outside an ambiguity region. In
this section, we present the system model, formulate the
large flow problem over arbitrary windows, and summarize
our design goals.

2.1 System Model

Flow identifiers. Generally, packets are classified into
flows based on the flow identifiers (or flow IDs) derived from
the packet header fields.2 Because our approach to large-
flow detection is generic, we make no assumption on the
definition of flow IDs. As in prior traffic monitoring work,
we assume flow IDs are unforgeable, which is achievable by
ingress filtering [19] and source authentication [4,24,27,32].

Packet streams. Let X be the packet space. We con-
sider a packet stream X = 〈x1, · · · , xk〉 coming through a
link of capacity ρ, where xi ∈ X ∀i = 1 · · · k. Packets in
X are processed in sequence by a detection algorithm for
identifying large flows. The algorithm can only make one
pass over the packet stream due to the high link capacity
and limited memory.

For a packet x, we denote by time(x) the time at which
the detection algorithm observes the packet, by size(x) the
size of the packet, and by fid(x) the flow ID of the packet.
The traffic volume of a flow f during a time window [t1, t2) is

defined as vol(f, t1, t2) ,
∑

x∈X ,fid(x)=f,t1≤time(x)<t2
size(x).

Synopses. A traffic synopsis is a data structure that
summarizes flows and can be used to answer queries regard-
ing certain flow statistics. When a new packet x arrives,
the algorithm updates its traffic synopsis based on x’s flow

2While the flow definitions vary depending on the applica-
tions, in most applications a flow consists of packets that
share one or more header fields, such as the source IP, des-
tination IP, source port, destination port, and the protocol
number.
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Landmark window model

(Landmark at 0)

0

Sliding window model

(window size=30ns)

Arbitrary window model

A B C D B

Examine flows in [0, t) → flow B evades detection

Examine flows in [t-30, t) →  flow B evades detection

Examine flows in [s, t) for all t > s ≥ 0 →  

flow B is a large flow over [10, 50) and can be detected

10 20 30 40 t=50 (ns)

40 Gbps link congested

by 50-Byte packets

Figure 1: In this example, a flow is large if it sends
more than 40Mbps ·w+500kb for any time window of
size w. Although flow B violates the limit over the
time window [10, 50), it can only be caught in the
arbitrary window model.

ID, size, and arrival time. Formally, a large-flow detection
algorithm supports three operations over a synopsis S:
• Init(params)→ S0. The initialization operation takes

as inputs the large-flow definitions and desired detec-
tion accuracy, etc.

• Update(Si−1, xi) → Si. The update operation out-
puts an updated synopsis Si by incorporating the
new packet xi into the previous synopsis Si−1. For
convenience, we denote Update(Si, 〈xi+1, · · · , xi+j〉) =
Update(Si+1, 〈xi+2, · · · , xi+j〉) = Si+j .

• Detect(Si, xi) → b ∈ {0, 1}. The detection operation
evaluates Si to determine if xi belongs to a large flow.

Time window models. Prior approaches to large-flow
detection can be classified into three main categories based
on the type of time window they monitor: landmark win-
dow [10, 14, 17, 18, 23, 29–31], sliding window [5, 21, 26], and
arbitrary window [16].
In the landmark window model, each time window starts

at the closest landmark in the past (e.g., a landmark is
placed every five seconds) and ends at the current time. In
the sliding window model, recent traffic is considered more
important than old traffic, so the time window begins at
some recent time in the past. The window slides as new
packets arrive, such that the measurement incorporates the
new packets and excludes the oldest packets. Finally, the ar-
bitrary window model monitors every time window ending
at the current time. It is more difficult to evade detection in
this model than in others, as illustrated in Figure 1. Note
that while the arbitrary window model covers every possi-
ble window, flows can still evade detection if the detection
algorithm is inaccurate.

2.2 Large-Flow Problem Over Arbitrary
Windows

Small, medium, and large flows. A flow f is a large
flow if there exists a time window [t1, t2) over which its vol-
ume vol(f, t1, t2) exceeds a high-bandwidth threshold func-
tion THh(t2 − t1). A flow is a small flow if its volume
vol(f, t1, t2) is lower than a low-bandwidth threshold func-
tion THℓ(t2− t1) over all possible time windows [t1, t2). The
rest are defined as medium flows, i.e. flows in an ambiguity
region.
In this paper we define the two threshold functions in the

form of leaky bucket descriptors: THh(t) = γht + βh and

Limited

Memory
Incoming Packet Stream

Detection Algorithm

x
i

x
i+1

x
i+2

Report

Report

Figure 2: A general framework for a large-flow-
detection algorithm. The detection algorithm pro-
cesses incoming flows and keeps limited state in
memory. Results may be reported to a remote
server for further analysis.

THℓ(t) = γℓt+βℓ, where γh > γℓ > 0 and βh > βℓ > 0.3 Al-
though selecting appropriate parameters largely depends on
the targeted application, we provide guidelines for selecting
these parameters in Section 4.

Exact-outside-ambiguity-region large-flow problem.
As exact solutions are inefficient, we consider a relaxed no-
tion of exactness:

Definition 1. Given a packet stream, the exact-outside-
ambiguity-region large-flow problem returns a set of flows F
such that (1) F contains every large flow, and (2) F does
not contain any small flow.

Because the number of large flows can increase indefinitely
over time, F may become too large to fit into the limited
on-chip memory. Hence, such an algorithm often reports to
a remote server with mass storage that keeps a complete
copy of F , as illustrated in Figure 2. The algorithm must
therefore operate correctly even without a complete copy of
F .

A positive is when a flow is added to F , and a negative
is when a flow is not added to F . Hence, a False Positive
of small flow (FPs) occurs when the detection algorithm
wrongly adds a small flow, and a False Negative of large
flow (FNℓ) occurs when it fails to include a large flow.

The exact-outside-ambiguity-region large-flow problem is
reasonable for two reasons: (1) It confines the damage by
large flows and allows existing techniques (e.g., Sample and
Hold [17]) to handle the medium flows statistically. (2) Prior
work [17] [16] also involves a region similar to our ambiguity
region, but they only provide probabilistic bounds outside
the region.

2.3 Design Goals
Our main goals are as follows:

Exactness outside an ambiguity region. To achieve
exactness outside an ambiguity region in traffic monitoring,
we desire a deterministic monitor algorithm which identi-
fies every large flow including bursty flow (i.e., no FNℓ)and

3Instead of using leaky bucket descriptors, prior work in the
landmark window model often defines the high-bandwidth
threshold to be a fraction of the link bandwidth, e.g.,
γh = 0.01 and βh = 0. However, it is infeasible to adopt
this fraction-based definition when it comes to the arbitrary
window model because every flow will violate the threshold
over a sufficiently small time window (e.g., a window con-
taining only one packet).
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protects every small flow (i.e., no FPs) with no assump-
tion on the input traffic or attack pattern. Hence, the high-
bandwidth and low-bandwidth thresholds are also called the
no-FNℓ and no-FPs thresholds in this paper, respectively.

Scalability. Although using per-flow leaky buckets en-
ables exact and instantaneous detection of large flows, keep-
ing per-flow state is impractical due to the large number
of flows in the Internet. Hence, the algorithm should re-
quire few per-packet operations and maintain small router
state that fits in fast yet scarce storage devices (e.g., on-chip
SRAM or even registers) regardless of input traffic or attack
pattern, such that the detection algorithm can operate at
line rate.

Fast detection. Fast detection of large flows minimizes
collateral damage. Hence, for a large flow violating the high-
bandwidth threshold over [t1, t2), the algorithm should de-
tect the flow no later than t2 + tprocess, where tprocess is the
time it takes to process a packet.

3. ALGORITHM
In this section, we first investigate and prove the no-

FPs and no-FNℓ relationships between landmark and arbi-
trary window models because they are useful for construct-
ing large-flow algorithms over arbitrary windows. Based on
these relationships, we present EARDet, a streaming algo-
rithm that efficiently addresses the large-flow problem over
arbitrary windows (as defined in Definition 1) with exactness
outside an ambiguity region. Finally, we discuss the imple-
mentation and optimization techniques in detail, and numer-
ically demonstrate that EARDet can operate at high-speed
links while using only hundreds bytes of on-chip SRAM.
It is important to investigate the relationships between

landmark and arbitrary window models because they enable
us to draw on the rich experience of research on the large-
flow problem over landmark windows [10,14,17,18,23,29–31]
for designing arbitrary-window algorithms. Particularly, we
are interested in knowing whether and to what extent we
can leverage existing landmark-window algorithms to build
arbitrary-window ones. The technical contributions of this
paper include proving two theorems that shed light toward
a systematic approach applying existing landmark-window
algorithms to arbitrary-window algorithms.
EARDet leverages the Misra-Gries (MG) algorithm [31],

which finds all frequent items in a data stream in one pass
but may falsely include non-frequent items. The MG algo-
rithm works over landmark windows in the sense that the
landmark is at the beginning of the data stream. The re-
search challenges here include (1) how to preserve MG’s
no-FNℓ property (over landmark windows) when porting
it to the arbitrary window model, and (2) how to achieve
the no-FPs property when processing packets in one pass.
EARDet modifies the MG algorithm in several novel ways
to effectively address the above challenges. Interestingly,
despite these simple modifications, we prove that EARDet

achieves both no-FPs and no-FNℓ properties over arbitrary
windows, thereby providing strong guarantees regardless of
input traffic.

3.1 Relationships Between Landmark and
Arbitrary Windows

Here is a straightforward yet inefficient solution to the
exact-outside-ambiguity-region large-flow problem over arbi-

trary windows: the algorithm divides the problem into mul-
tiple sub-problems that each can be handled by a landmark-
window algorithm, L. More concretely, let Li be a copy
of L that monitors a time window starting from packet xi

and ending at the current time. For every newly arrived
packet xi, the algorithm initiates Li, and adds xi to the
new as well as all previous copies, L1, L2, · · · , Li. Then the
algorithm combines the answers returned by L1, L2, · · · , Li.
This straightforward solution is correct, but requires space
linear in the length of the traffic stream, which is pro-
hibitively expensive.

To make it more efficient, the key idea is to eliminate
redundant copies of L. To show why this is possible, we
formally state two relationships between landmark windows
and arbitrary windows.

No-FPs relationship. We observe that only one copy
of L is needed to achieve the no-FPs property over arbitrary
window. Specifically, Theorem 2 states that if an algorithm
ensures (L1) no FPs in the landmark window model, then
it also ensures (A1) no FPs in the arbitrary window model.

Theorem 2. If an algorithm satisfies
• L1: For all t, it never reports a flow whose volume is

below γ′
ℓt+ β′

ℓ over time interval [0, t).
then it must also satisfy
• A1: It never reports a flow whose volume is below

γℓ(t2−t1)+βℓ over time interval [t1, t2) for all t2 > t1.
when γ′

ℓ = γℓ and β′
ℓ = βℓ.

Proof sketch: L1 implies A1 because if a flow sends less
than γℓ(t2−t1)+βℓ for all intervals [t1, t2), it must also send
less than γ′

ℓt + β′
ℓ for all intervals [0, t) when γ′

ℓ = γℓ and
β′
ℓ = βℓ. �

No-FNℓ relationship. The no-FNℓ relationship is more
challenging to prove. We observe that only one copy of L is
needed to achieve the no-FNℓ property if L’s traffic synopsis
is “similar” to the initial state throughout the execution of
the algorithm, as checking such a synopsis is roughly equiv-
alent to checking all of L1, L2, · · · , Li. In other words, we
can keep only one synopsis which somehow approximates
the synopsis in each sub-problem.

Formally, we define a distance metric dis(S, S′) quantify-
ing the similarity between two synopses:

dis(S, S′) , min
X,S′=Update(S,X)

tspan(X)

where the time span of a packet sequence is defined as
tspan(X) = maxx∈X time(x)−minx∈X time(x). S is defined
as a snapshot of the algorithm’s internal state and thus does
not depend on time. The distance between two snapshots is
the shortest time it takes to convert one to the other given
a link capacity.

Theorem 3 states if an algorithm ensures (L2) no FNℓ

in the landmark window model and (L3) its synopsis is
bounded, it also ensures (A2) no FNℓ in the arbitrary win-
dow model.

Theorem 3. If an algorithm satisfies
• L2: For all t, it reports all flows whose volume exceed

γ′
ht+ β′

h over time interval [0, t).

• L3: Throughout the execution of L, dis(S0, Si) ≤
∆, where ∆ is a small constant and Si =
Update(S0, 〈x1, · · · , xi〉).
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then it must also satisfy
• A2: It always reports a flow whose volume exceeds

γh(t2 − t1) + βh over time interval [t1, t2) for some
t2 > t1.

when γh(t2 − t1) + βh ≥ γ′
h(t2 − t1 +∆) + β′

h.

Proof sketch: Let L be an algorithm satisfying L2 and L3.
Let f be a flow that sends more than γh(t2 − t1) + βh over
some time interval [t1, t2), and t2 is the smallest among all
possible values if the flow f violates the spec multiple times.
To prove this No-FNℓ relationship, in the following we show
that L can catch any f when γh = γ′

h and βh ≥ β′
h + γh∆,

thus satisfying A2 as well.
For convenience, we denote by Xb

a the incoming packet
stream between time interval [a, b). Since L satisfies L3 (i.e.,
the synopsis state of L is always bounded), dis(S0, S

t1) ≤ ∆
where St1 is its synopsis state at t1.
Based on the definition of the distance function, there

exists a packet sequenceX ′ with a time span less than ∆ and
Update(S0, X

′) = St1 . In other words, from the algorithm’s
perspective, Update(S0, X

t2
0 ) = Update(S0,X

′‖Xt2
t1
),4 i.e.,

the two packet sequences produce identical synopses. As a
result, if the algorithm L can detect f in X ′‖Xt2

t1
then it

can also detect f in Xt2
0 because the output of the detection

function, Detect, solely depends on the synopsis.
Moreover, by construction, f sends more than γh(t2 −

t1) + βh in the new sequence X ′‖Xt2
t1
, whose time span is

t2 − t1 +∆. Therefore, L can detect f in the new sequence
because γh(t2 − t1) + βh ≥ γ′

h(t2 − t1 +∆)+ β′
h holds when

γh = γ′
h and βh ≥ β′

h + γh∆. Hence, L can also detect f in
the original stream, Xt2

0 . �
We note that L1 and A2 contradict each other for any

parameter selection: for any γ′
ℓ, β

′
ℓ, γh, and βh, consider an

interval [t1, t2) satisfying t1 = t2 − ǫ and t2 >
βh−β′

ℓ+γhǫ+1

γ′

ℓ
.

Then a flow sending γh(t2 − t1) + βh + 1 over [t1, t2) will
violate the high bandwidth threshold over [t1, t2) but comply
with γ′

ℓt2 + β′
ℓ over [0, t2). That is, no algorithm can satisfy

(A2, L2, L3) and (A1, L1) at the same time.
The above two theorems can be viewed as guidelines for

designing new arbitrary-window algorithms based on exist-
ing landmark-window algorithms.

3.2 Algorithm Construction
Several existing landmark-window approaches [10, 14, 17,

23, 29–31] satisfy L2 when β′
h is set to zero. Among these

approaches, we observe that the MG algorithm [31] can be
made to satisfy L2 in a general setting (i.e., β′

h can be
non-zero) as well as L3 with slight modifications. As a re-
sult, we choose to leverage the MG algorithm for designing
EARDet.
We prove in the next section that EARDet’s design en-

sures L2 and L3, and therefore achieves the no-FNℓ prop-
erty (i.e., catching every large flow) based on Theorem 3.
We also prove that EARDet achieves the no-FPs property
(i.e., protecting every small flow), whereas the MG algo-
rithm requires a second pass to remove false positives in the
landmark window model.

Background of the MG algorithm. We briefly review
the MG algorithm, which inspires our design. The MG algo-
rithm finds the exact set of frequent items (defined as items

4‖ denotes concatenating two packet sequences into one se-
quence.

Is x blacklisted?
Counter update

for virtual !ows

No
packet x

Blacklist

counter > 

threshold?
Blacklist

Update

Yes

Counter update

for x

Figure 3: EARDet’s decision diagram.

that appear in a stream of m items for more than m
n+1

times)
in two passes with only n counters. This algorithm gener-
alizes the Majority algorithm [6, 20], which focuses on the
case when n = 2. The same generalization was rediscovered
by Demaine et al. [14] and Karp et al. [23].

The MG algorithm assumes an associative array of coun-
ters indexed by items. Counters are initialized to zeros. We
say that an item is stored if its counter is above zero. For
each incoming item e, the MG algorithm works as follows:
(1) If e is stored (i.e., ctr[e] > 0), increase ctr[e] by 1; (2) Else
if the number of non-zero counters is less than n, ctr[e] = 1;
and (3) Otherwise, decrease all non-zero counters by 1.

Since there are at most n non-zero counters kept at any
time, the storage overhead is O(n). This can be easily ex-
tended to items with positive weights. After the first pass,
the MG algorithm guarantees that every frequent item is as-
sociated with a non-zero count, and a second pass is required
to remove falsely included infrequent items.

The correctness of this algorithm can be shown intuitively
as follows: Suppose an item e appears more than m

n+1
times,

but is not stored at the end. The total count would have
been reduced by more than m

n+1
· (n+1) = m counts during

the execution, which is impossible since it is more than the
total number of items.

EARDet Overview. Figure 3 illustrates EARDet’s de-
cision diagram for each incoming packet. At a high level,
EARDet works similarly to the MG algorithm except three
crucial distinctions:
• Blacklist: EARDet keeps a local blacklist L that

stores recently identified large flows. Counters are up-
dated only if the flow ID of the packet is not black-
listed. The main purpose of keeping the blacklist is
to avoid increasing a flow’s counter when the counter
value has already exceeded a counter threshold, βTH .
Additionally, we can avoid spending unnecessary re-
sources on accounting blacklisted flows. We bound the
blacklist’s size in Section 3.3.

• Counter threshold: A flow is added to the blacklist
if its associated counter value exceeds a threshold βTH .
Setting a counter threshold together with blacklisting
ensures that counter values are always confined, i.e.,
≤ βTH + α, where α is the maximum packet size.

• Virtual traffic: In contrast to the frequent-item
problem, the large-flow problem has to take the idle
time between two consecutive packets into account so
as to accurately detect large flows with respect to the
link capacity. EARDet handles this by virtually fill-
ing the unused bandwidth with virtual traffic. Virtual
traffic consists of multiple virtual flows, each of which
is crafted purposely to comply with the low-bandwidth
threshold, thus avoiding unnecessary alarms.

Algorithm description. Algorithm 1 describes how
EARDet works. As the MG algorithm, EARDet keeps
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Figure 4: Example of EARDet’s counter update.

n counters, each initialized to zero. Counters are stored in
an associative array indexed by flow IDs, and the number of
non-zero counters never exceeds n. EARDet counters are
increased and decreased by the size of the packets, since a
packet of size w can be viewed as w uni-sized items. We
denote by C the set of non-zero counters. We discuss how
to implement EARDet efficiently in Section 3.3.

Algorithm 1 EARDet

1: Initialization (S ← Init(n), Line 8-9)
2: for each packet x in the stream do

3: if x’s FID f is not blacklisted (f /∈ L) then

4: Update counters for virtual traffic (Line 18-22)
5: Update counters for x (S ← Update(S, x), Line 10-17)
6: if detect violation (Detect(S, x) == 1, Line 21-22) then
7: Add f to blacklist (L ← L ∪ {f})
8: Initialization, Init(n)
9: initialize all counters to zeros, L ← ∅, C ← ∅
10: Update counters for packet x, Update(S, x)
11: if x’s FID f is kept (f ∈ C) then

12: Update f ’s counter by the packet size w (cf ← cf + w)
13: else if less than n counters are kept (|C| < n) then

14: Set f ’s counter to w (cf ← w, C ← C ∪ {f})
15: else

16: Decrease all counters by d = min{w,minj∈C cj}
17: Set cf to w − d, and ∀j remove j from C if cj = 0

18: Update counters for virtual traffic between xi and

xi−1

19: Compute the virtual traffic size, v (v = ρtidle − size(xi−1),
and tidle = time(xi)− time(xi−1))

20: For each unit u in the virtual traffic, update counters as if u
belongs to a new flow (e.g., unit is 1 byte)

21: Detect violation, Detect(S, x)
22: Return whether x’s flow counter exceeds threshold (cf >

βTH)

Figure 4 gives an example showing how to update counters
when n = 3, βTH = 10, and α = 3, where α is the maximum
packet size. First, since there is an empty counter, flow g is
added and its counter value becomes 2, the size of the new
packet. Then, since flow b is stored already, its counter is
increased by 3. The new value of ctr[b] exceeds βTH , and
thus flow b is blacklisted. The next flow, e, is not stored yet
and there is no empty counter, so all counters are decreased
by the packet size. Finally, the virtual traffic is divided into
single-unit packets with new flow IDs, resulting in the final
state.5

Despite EARDet’s simple operations, work remains to
prove the no-FPs and no-FNℓ properties and to devise prac-
tical parameters. We answer these in Section 4.

5Conceptually, the counter values are updated as follows:
[3, 9, 0] → [3, 9, 1] → [2, 8, 0] → [2, 8, 1] → [1, 7, 0] →
[1, 7, 1] → [0, 6, 0]. Section 3.3 discusses techniques to ac-
celerate this process.

3.3 Data Structure and Optimization
While EARDet requires very little memory state, its pro-

cessing delay may be high in a naive implementation where
EARDet accesses every counter for each decrement opera-
tion (i.e., Line 16 in Algorithm 1). We now present several
optimization techniques to reduce the number of memory
accesses and the processing time.

Reducing number of memory accesses. Weminimize
the number of memory accesses per packet via the following
technique. First, we keep counters in a data structure that
allows insertion, deletion, and finding the minimum in loga-
rithmic time. Data structures such as balanced search trees
and heaps can satisfy our requirements. Moreover, counter
values are not absolute but relative to a floating ground,
cground. Hence, the decrement operation, which requires
decreasing all counters previously, can now be achieved by
elevating the floating ground. The detection function be-
comes cf − cground > βBF .

The increment operation on Line 12 takes O(1) time using
an associative array. Adding a value to an empty counter as
described on Line 14 takes O(log n) time because we have to
insert the counter to the data structure. To prevent counter
overflow, EARDet periodically resets the floating ground
to zero and deducts all counters accordingly.

Efficient counter update for virtual traffic. Virtual
traffic ensures accurate accounting of unused bandwidth, but
efficient implementation is needed to handle virtual traffic
at line speed. We now discuss how to efficiently update
EARDet’s counters for virtual traffic. Particularly, we aim
to divide virtual traffic into multiple virtual flows in a way
to minimize the time to process such virtual flows. The only
constraint is that each virtual flow should comply with the
low-bandwidth threshold to avoid triggering false alarms.

As Line 20 of Algorithm 1 shows, for each unit u of
the virtual traffic, EARDet updates its counters (i.e.,
Update(S, u)) as if the traffic unit belongs to a new flow.
We can minimize the number of updates by maximizing the
unit size. To avoid false detection, the maximum size per
unit is βTH bytes. As βTH must be larger than the minimum
packet size (i.e., 40 bytes) for practical use, the overhead of
using βTH -byte virtual flows is bounded by the worst-case
scenario where the link is congested by minimum-sized pack-
ets.

We can further optimize this task based on the following
observation: Once all counters become empty, they should
stay empty until the next real packet comes. Furthermore,
since the maximum counter value is βBF + α, counters will
all be empty if the size of the virtual flow ≥ (βBF + α) · n.
(A tighter condition is if the virtual traffic size ≥ (maxj cj)∗
n−

∑
j cj , but this requires keeping track of the sum of all

counters.) In other words, EARDet can simply reset all
counters to zeros and avoid any update if the virtual traffic
size exceeds a certain threshold.

Counter implementation. For efficiency, counters are
implemented as integers (e.g., in bytes) rather than non-
integer numbers. While packet sizes are always multiples of
bytes, the size of virtual traffic may be non-integer, which
introduces biases on EARDet’s guarantees. For example,
given a 800Mbps link and a nanosecond time precision at
the router, the size of a 1-ns virtual traffic is 0.1 bytes.
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We bound such biases with a slightly modified algorithm
that adjusts virtual traffic. Let us denote by {v1, v2, · · · } the
sizes of a sequence of virtual traffic and by {v′1, v

′
2, · · · } the

adjusted sizes. We maintain an extra field called“carryover”,
co, which keeps the amount of uncounted virtual traffic. co
is initialized to zero, and we ensure that −0.5 ≤ co < 0.5 for
all time. Virtual flows are adjusted such that v′i ← [vi + coi]
and coi+1 ← coi + vi − v′i where coi is the value of co before
proceeding vi. By construction, v′is are all integers, and for
any a, b, |

∑b
a vi −

∑b
a v

′
i| = |cob+1 − coa| ≤ 1. In other

words, the adjusted virtual traffic differs from the original
one by at most 1 unit for any time interval. Consequently,
the modified algorithm guarantees to catch flows violating
THh(t) = γht + (βh + 1) and guarantees not to catch any
flow conforming to THℓ(t) = γℓt+ (βh − 1).

Bounding the blacklist. EARDet keeps in memory
not only counters but also a local blacklist storing recently
detected large flows.
We propose a simple mechanism to bound |L| and thus

prevent algorithmic complexity attacks to overflow the
blacklist as follows. Since the blacklist’s main purpose is to
avoid increasing a flow’s counter when the counter value has
already exceeded a counter threshold, once a counter value
has dropped below the threshold, the flow can be removed
from the blacklist. In this way, the size of L will always be
bounded by n because only flows that are currently stored
can be blacklisted.
The key observation here is that flows that are not cur-

rently stored can be removed from the blacklist because such
removal will not affect EARDet’s no-FNℓ and no-FPs guar-
antees, as in EARDet whether a flow will be caught or not
does not depend on other flows’ behavior. The detector can
periodically report the current blacklist to a remote admin-
istrator, such that the administrator keeps a complete list
of detected large flows, while the detector maintains a small
blacklist that helps avoid increasing a flow’s counter when
the counter value has already exceeded βTH . The only trade-
off of this mechanism is that EARDet may spend unneces-
sary resources on accounting flows that have been identified
as large flows.

Parallelizing EARDet. A common way to reduce pro-
cessing time is parallelization. EARDet can be parallelized
at both the algorithm and instruction levels. At the al-
gorithm level, we can randomly distribute the flows (thus
the workload) among multiple copies of EARDet. At the
instruction level, we can access and update multiple coun-
ters in parallel using multi-port SRAM when the operations
are order insensitive. We note that special-purpose SRAMs
(i.e., multi-port SRAMs) can support multiple read/write
simultaneously [38].

3.4 Storage and Computational Complexity
Given the above optimization techniques, we analyze

EARDet’s storage and computational overhead.
To operate at line rate on OC-768 (40 Gbps) high-speed

links, a typical 3.2 GHz processor has to process 40 million
medium-sized (1000 bits) packets per second, which means
the per-packet processing time should be at most 32 ns or
76 CPU cycles. In this analysis, we consider the following
memory model for commodity routers: CPU has 32 KB L1
cache, 256 KB L2 cache, 20 MB L3 cache, and gigabytes
main DRAM memory. Accessing L1, L2, and L3 caches

takes 4, 12, and 30 CPU cycles, respectively; accessing the
main memory is as slow as 300 cycles.

Storage complexity. EARDet keeps an extremely
small traffic synopsis, a blacklist of detected flows, and stor-
age of flow ID keys (i.e. unique keys consist of IP address
and port number) for flow identifier. The synopsis consists
of n counters and a constant number of additional variables
for optimization such as the floating ground. In IPv4, a
flow ID key is 48 bits, and for IPv6, it is 144 bits. By imple-
menting the tree map using a red-black tree [8], each counter
needs store only one flow ID key. In most applications the
synopsis and flow ID keys will be small enough to fit en-
tirely in the router’s L1 cache. For instance, in IPv4, using
100 32-bit counters and 100 48-bit key variables requires
only 960 bytes; even in IPv6, the same case requires only
2200 bytes, which can fit in the L1 cache. (Guided by our
analysis in Appendix A, we use 100 counters as a represen-
tative example.) If the number of counters is much larger
than 100 in some configuration, we can also use L2 cache
with some performance cost. In practice, a special-purpose
device with more fast memory can also be installed for large
flow detection. Moreover, we can flexibly tune the counter
size to further reduce the memory requirement at the cost of
a wider ambiguity region between the no-FPs and no-FNℓ

thresholds.

Computational complexity. For each packet,
EARDet looks up and updates one or more counters, and
adjusts the internal data structure (e.g., a heap) of counters.
In EARDet, locating and updating a counter requires an
average of O(1) memory access in a hash-map-based asso-
ciative memory. Adjusting the data structure of n counters
requires O(log n) memory accesses.

Since EARDet’s state is small enough to fit into the L1
cache as we discussed, the per-packet processing time can
be as low as tens of nanoseconds, which is suitable for pro-
cessing packets at 40Gbps high-speed links. Even when all
of EARDet’s data is in the L2 cache, EARDet can still
process packets at line speed on 13Gbps.

4. ANALYSIS
In this section, we prove the no-FPs and no-FNℓ proper-

ties. Furthermore, we analyze the incubation period of large
flows, discuss EARDet’s tradeoffs, and present practical
guidelines for EARDet configuration. Finally, we compare
EARDet with closely related proposals [16, 17] to demon-
strate that it outperforms prior work in terms of both effi-
ciency and detection accuracy.

We consider a network link with a capacity of ρ, and a
EARDet detector with n counters. The counter thresh-
old is βTH . Once the value of a counter exceeds βTH , the
associated flow will be judged as a large flow and cut off
immediately. Hence, the maximum value of each counter is
βTH +α, where α is the maximum packet size. Table 1 sum-
marizes the notations used in this section. We will discuss
the relationship among parameters and how to set them in
the Section 4.6.

4.1 Large-Flow False-Negative Analysis

Theorem 4. No-FNℓ property. EARDet detects ev-
ery flow violating the high-bandwidth threshold THh(t) =
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Table 1: Table of Notations.
Network management parameters:

ρ , Rate of link capacity

α , Maximum packet size

tupincb , Upper bound of tincb for any large flows

THℓ , Low-bandwidth threshold

THh , High-bandwidth threshold

γℓ, βℓ , Rate and burst for low-bandwidth threshold

γh , Rate for high-bandwidth threshold
Tunable parameters:

n , Number of counters in EARDet

βTH , Threshold of counters(> βℓ)
Parameters that depend on tunable parameters:

βh , Burst for high-bandwidth threshold

β∆ , βTH − βℓ

Other notation:

R(t1, t2) , Average flow rate in [t1, t2)

tincb , Incubation period of large flows

RNFN , No-FNℓ rate

RNFP , No-FPs rate

γht+βh over a time window of length t, when γh ≥ RNFN =
ρ

n+1
and βh ≥ α+ 2βTH .

Proof sketch: Firstly, we prove that EARDet satisfies
L3 in Theorem 3. According to Algorithm 1, the maximum
value of each counter ci is βTH +α, and there are at most n
non-zero counters at any time. Also, given any valid synopsis
S = {ci} we can construct a packet stream X consisting of
ci bytes for flow i and no space between packets, and by
construction S = Update(S0, X). Combining the above two
arguments and the definition of the distance function, we

conclude that dis(S0, S) ≤
size(X )

ρ
≤ (βTH+α)n

ρ
. That is,

setting ∆ = (βTH+α)n
ρ

satisfies L3.
Next we prove that EARDet satisfies L2 in Theorem 3

as well when setting γ′
h = RNFN = ρ

n+1
and β′

h = βTH .
We prove by contradiction and assume there were a flow f
violating γ′

h + β′
h in the landmark window model at time t

but not being detected (i.e., cf < βTH). This assumption
implies that more than γ′

ht + β′
h − βTH amount of flow f

would have been canceled out6 during the decrement step,
or equivalently, more than (γ′

ht + β′
h − βTH) · (n + 1) =

γ′
ht · (n+1) = ρt amount of traffic would have been canceled

out. This statement, however, contradicts the setting where
the maximum traffic for t units of time is ρt. Thus, f cannot
escape from EARDet, and L2 is satisfied by EARDet.
Based on Theorem 3, we conclude that EARDet satis-

fies A2 when γh = γ′
h = ρ

n+1
and βh ≥ β′

h + γh∆ =

βTH + ρ
n+1

(βTH+α)n
ρ

= βTH + n
n+1

(βTH + α). In partic-
ular, EARDet catches every flow violating the threshold
THh(t) = γht+ βh when γh ≥ RNFN and βh ≥ α+ 2βTH .
That is, EARDet catches all large flows in the arbitrary
window model. �

4.2 Small-Flow False-Positive Analysis
As discussed in Section 3.1, no algorithm can satisfy A2 in

Theorem 3 and L1 in Theorem 2 at the same time. Hence,
rather than applying Theorem 2, we have to take a different
approach in proving the no-FPs property.

6A packet byte is canceled out if it does not contribute to
the corresponding counter.

To analyze EARDet’s no-FPs property, we consider how
EARDet increases and decreases its counter values. Firstly,
let us examine all cases based on the types of incoming flows.
We say a flow is old if it is stored in the counters currently;
otherwise the flow is new.

1. When the incoming flows are virtual flows and there
are l empty counters, in a time window t, the decre-
ment is ρ

l+1
t on all counters, and the increment is 0.

(l = 0, 1, 2, 3, ..., n)

2. When the incoming flows are new real flows and there
is no empty counter, in a time window t, the decrement
is ρt on all counters and the increment is 0 (which is
the same as the first case when l = 0).

3. When the incoming flows are old real flows, or new
real flows and there are some empty counters, in time
interval t, the decrement is 0 and the increment is ρ t
on one counter.

Thus, in the first and second cases, when there are l empty
counters in the detector, the decrement is always ρ

l+1
t in the

interval of t; and in the third case, the increment is always
ρ t on one counter in the interval of t. Finally, the increment
and decrement cannot happen at the same time.

Lemma 5. For any small flow f that complies with the
low-bandwidth threshold (i.e., THℓ(t) = γℓ t+ βℓ), once the
flow f is associated to a counter at t1, this counter will be
always lower than βTH after time t1 + tβℓ

, if the counter
is occupied by the same flow as the flow f , where tβℓ

=
(n−1)α+(n+1)βℓ

[1−(n+1)γℓ/ρ]ρ
.

Due to space limitations, the detailed proofs are in our
technical report [37].

Theorem 6. No-FPs property. EARDet will not
catch any flow complying with the low-bandwidth thresh-
old THℓ(t) = γt + βℓ for all time windows of length t,
when 0 < βℓ < βTH , γℓ < RNFP , where RNFP =

β∆

(n−1)α+(n+1)βℓ+(n+1)β∆
· ρ.

Proof sketch: According to Lemma 5, to avoid catching
a small flow f , the counter should be smaller than βTH be-
fore tβℓ

. Hence, we choose a γℓ to achieve γℓ tβℓ
+βℓ < βTH .

Then, (n−1)α+(n+1)βℓ

[1−(n+1)γℓ/ρ]ρ
< βTH−βℓ

γℓ
,

⇔ γℓ <
β∆

(n− 1)α+ (n+ 1)βℓ + (n+ 1)β∆
· ρ (1)

The theorem is proved. �
Interestingly, Theorem 6 shows that γℓ approaches

ρ
n+1

as
β∆ increases, but cannot go beyond ρ

n+1
.

4.3 Relationship between Low-Bandwidth
and High-Bandwidth Thresholds

Before the discussion, let us define two concepts:
Rate Gap: The ratio between γh and γℓ (i.e. γh/γℓ);
Burst Gap: The ratio between βh and βℓ (i.e. βh/βℓ).

Based on Theorems 4 and 6, the minimum rate gap is:

(γh/γℓ)min = RNFN

RNFP
= (n−1)α+(n+1)(βℓ+β∆)

β∆(n+1)

Given β∆ = βTH − βℓ and n+ 1
.
= n

.
= n− 1, we get

(γh/γℓ)min
.
= 1 +

2α/β + 2

βh/βℓ − (α/βℓ + 2)
(2)
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Thus, the minimum possible rate gap (γh/γℓ)min is mainly
influenced by the burst gap βh/βℓ. Equation (2) tells us a)
βh/βℓ cannot be lower than α/βℓ + 2. b) EARDet only
needs a low βh/βℓ to achieve small enough (γh/γℓ)min. For
example, to achieve (γh/γℓ)min = 10, we only need βh/βℓ =
2.53. c) (γh/γℓ)min cannot be lower than 1. (γh/γℓ)min

approaches to 1 as βh/βℓ grows.

4.4 Incubation Period of Large Flows
To define the incubation period, we first consider a large

flow that violates the high-bandwidth threshold over [t1, t2),
and the packet at ta triggers the detection. Because of
EARDet’s no-FNℓ property, ta ≤ t2. The incubation pe-
riod is defined as ta − t1, representing the time duration for
which the large flow remains under the radar. We bound
the incubation period as follows.

Theorem 7. For the flow f which violates THh(t) over
some time window [t1, t2), if its average rate R(t1, ta) is
larger than Ratk in time interval of [t1, ta) (Ratk is a con-
stant rate larger than RNFN = ρ

n+1
), then f ’s incubation

period is bounded by

tincb <
α+ 2βTH

Ratk − ρ
n+1

. (3)

Proof sketch: Because R(t1, ta) > Ratk, intuitively the
tincb of flow with average rate of R(t1, ta) must be shorter
than the t′incb of flow with rate of Ratk. That is, tincb < t′incb.
Assume a flow f ′ with rate Ratk will violate THh(t) over

time window [t′1, t
′
2), then

Ratk(t
′
2 − t′1) =

ρ

n+ 1
(t′2 − t′1) + α+ 2βTH

⇒ tincb < t′incb = t′a − t′1 ≤ t′2 − t′1 =
α+ 2βTH

Ratk − ρ
n+1

(4)

Thus, the theorem is proved. �
From Theorem 7, the bound of the incubation period de-

creases as Ratk increases. In other words, if Ratk is fixed, the
bound of the incubation period decreases with increasing n,
which implies we can reduce the upper bound by adding ex-
tra counters. To guarantee detection of flows whose rate is
over Ratk (Ratk > ρ

n+1
), the minimum number of counters

is ρ
Ratk

− 1, and the upper bound on the incubation period

can be lowered significantly by adding a few counters. The
details will be discussed in Section 4.6.

4.5 Tradeoff Analysis
We discuss three tradeoffs in EARDet: (1) memory con-

sumption (i.e., the number of counters) vs. the rate gap, (2)
the rate gap and burst gap, and (3) the rate gap and the
upper bound on the incubation time.
First, since the rate gap can be expressed as γh/γℓ >

RNFN/γℓ = ρ/γℓ

n+1
, we can see that the rate gap decreases

with increasing n. Second, Equation (2) shows that the min-
imum rate gap γh/γℓ is mainly influenced by βh/βℓ, namely
the burst gap, and the minimum rate gap decreases as the
burst gap increases. Finally, Theorem 7 shows that a large
burst gap results in a long incubation period. Hence, a small
rate gap results in a big burst gap, and a high incubation
period.

4.6 How To Engineer The Detector
To engineer our detector, we first identify parameters

that are often known or given in a priori. Usually, users
want a detector for a specific link capacity, ρ, to protect
small flows which comply with the low-bandwidth threshold:
THℓ(t) = γℓ t + βℓ, and to detect attack flows that violate
the high-bandwidth threshold: THh(t) = γht + βh. How-
ever, as discussed in Section 4.5, there is a tradeoff between
the rate gap and burst gap, so their requirements cannot be
both fulfilled. Thus, we choose to satisfy the rate require-
ment of γh, and then set βh according to γh because it is
more important to limit the flow rate than the burst size.
Furthermore, since we want to minimize the incubation pe-
riod of large flows, there is an upper bound of the incubation
period, tupincb.

We set βh = α + 2βTH and γh > ρ
n+1

to guarantee no
FNℓ according to Theorem 4. Since βTH = βℓ+β∆, we only
need to decide the number of counters n and β∆. Hence, the
problem can be simplified as follows. Given ρ, γℓ, βℓ, γh,
α, and tupincb, we aim to calculate n and β∆ such that the
parameters satisfy the constraints in Theorems 4, 6 and 7.
The detailed solution and analysis are in Appendix A. The
detailed analysis shows that the tunable parameters depend
on only the thresholds and are independent of the input
traffic.

5. EVALUATION
To evaluate EARDet, we compare EARDet with two

closely related proposals, which we refer to as FMF [17] and
AMF [16]. Both of our theoretical comparison and trace-
based simulations demonstrate that EARDet performs bet-
ter than prior work in terms of both exactness7 outside an
ambiguity region and efficiency. The simulation results us-
ing real and synthetic traffic traces are consistent with the
analysis in the theoretical evaluation.

5.1 Theoretical Comparison

Multistage filters. Fixed-window-based Multistage Fil-
ters (FMF) identify large flows in a fixed measurement in-
terval. A FMF consists of parallel stages, each of which
is an array of counters initialized to zeros at the beginning
of a measurement interval. Each stage is assigned a hash
function that maps a packet’s flow identifier to a counter in
the stage. For each incoming packet, its flow identifier is
hashed to one counter in each hash stage, and the counter
value increments by the size of the packet. A flow is consid-
ered a large flow if all of its corresponding counters exceed
a pre-specified threshold.

Arbitrary-window-based Multistage Filters (AMF) identify
large flows over arbitrary windows. To work in the arbitrary
window model, AMF replaces each counter in FMF with a
leaky bucket of a bucket size u and a drain rate r. A flow
is considered a large flow if the corresponding leaky buckets
are all violated.

Performance Comparison. Table 2 presents a numer-
ical comparison of EARDet, FMF and AMF, where the
high-bandwidth rate is 1% of the link capacity, and the low-
bandwidth rate is 0.1% of link capacity. The results of FMF
and AMF are derived based on the authors’ original analysis

7The comparison in this section uses our definition of exact-
ness.
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Table 2: A numerical example given the require-
ments in Section 4.6. γh is 1% of the link capacity,
and γℓ is 0.1% of link capacity.

Scheme # of counters FPs rate FNℓ rate
EARDet 101 0 0
FMF 101/1000 no guarantee / ≤ 0.04∗ 0∗

AMF 101/2000 no guarantee / ≤ 0.04 0
∗FMF’s results are derived in the landmark window model, and

thus FMF’s FPs and FNℓ rates may be higher in the arbitrary

window model.

Table 3: Summary of comparison of three schemes.

Scheme FPs FNℓ Memory Input Traffic
EARDet no no low independent
FMF yes yes high dependent
AMF yes no high dependent

that assumes a specific number of active flows for the input
traffic.
EARDet outperforms the other two approaches in sev-

eral aspects: 1) EARDet guarantees no false detection of
small flows, whereas it is unclear how FMF and AMF can
achieve this property. Even with ten times or more extra
storage, FMF and AMF still have error rates as high as
0.04. 2) Both EARDet and AMF can detect all large flows.
However, FMF has FNℓ on bursty flows. 3) EARDet re-
quires much less memory compared with multistage filters.
4) EARDet’s performance is independent of the input traf-
fic, because the error rate is always zero. On the contrary, to
keep the same false positive rate, multistage filters require
more stages as the number of active flows increases. Table 3
summarizes the comparison, which suggests that EARDet

is exact outside an ambiguity region and more efficient than
prior works.
Although EARDet presents several advantages compared

with multistage filters, EARDet cannot estimate the size of
a detected flow, which multistage filters achieve.

5.2 Experiment Settings

Datasets. Table 4 summarizes the characteristics of
the two datasets used in the experiments. The Federico
II dataset contains traces collected at the TCP port 80 of
a 200 Mbps link [3, 12, 13]. The CAIDA dataset contains
anonymized passive traffic traces from CAIDA’s equinix-
sanjose monitors on 10 Gbps backbone links [2]. For each
dataset, we use the first 30 seconds for the experiments.
We define flows based on the source and destination IP ad-
dresses.

Table 4: Dataset Information.
Dataset Link ca-

pacity
Avg link
rate

# of
flows

Avg flow
size

Federico II 200Mbps 1.85MB/s 2911 19.9KB
CAIDA 10Gbps 279.65MB/s 2517099 3.3KB

Attack scenarios. As stated in the theoretical analysis
in Section 5.1, EARDet is exact outside an ambiguity region
and efficient comparing to prior algorithms. The theoretical
analysis focuses on the worst-case behaviors. To investigate
how EARDet performs in reality, we conduct experiments

and compare EARDet with FMF and AMF in the face of
common attacks.

In particular, we generate attack flows using two simple
strategies—flooding attacks and Shrew DoS attacks [22,25]—
and then mix real traces with artificially generated attack
flows to simulate an attack environment. In a flooding at-
tack, the adversary sends high-rate flows with a specified
rate γlarge (e.g. γh). Each high-rate flow is generated as fol-
lows. We randomly choose a 1-second time slot within the
30-second stream as the first second of the flow. Starting
from that second, we randomly generate γlarge/packetSize
packets in each 1-second interval to make the flow size in
each interval equal to that specified rate. In this experi-
ment, we set the packet size to 1518 bytes, the maximum
packet size. In a Shrew attack, the attacker sends periodic
bursts in an attempt to cut off TCP traffic by exploiting
TCP’s congestion control mechanism. To generate a bursty
flow with a period T , burst duration L, and bursty flow rate
γburst, we randomly choose a time point from [0, 29) sec-
ond as the start time, and then randomly generate γburst ·L
packets in each L-length burst that occurs every T seconds.
We then evaluate (1) how many malicious large flows can
evade detection, and (2) how many small benign flows are
falsely caught because of these coexisting attack flows.

We configure EARDet based on the guidelines in Section
4.6, such that it can detect large flows violating THh(t) =
γh t+ βh, where γh = 0.01ρ, and βh = 2βTH + α. βTH will
be calculated according to our technical report [37]. We also
consider small flows that comply with THℓ(t) = γℓ t + βℓ,
where βℓ = 6072 bytes and γℓ = 0.01ρ. Also, we require
tupincb to be smaller than 1 second. Table 5 summarizes
the value of each parameter used in our experiments. In a
“non-congested link” setting, a fixed number of attack flows
are mixed with the real trace. We also consider a “congested
link” setting, where we fill the link with attack flows, for the
small dataset (i.e., the Federico II dataset) only. We leave
it as future work to scale our attack flow generation tool to
work for larger datasets.

To configure the two multistage filters (FMF and AMF),
we set FMF’s window size to 1 second, number of stages
d = 2, number of counters in each stage b = 250, thresh-
old of FMF T = γh · 1 second, threshold of AMF u = βh,
and drain rate r = γh. We are also interested in the perfor-
mance of FMF and AMF when their memory is as small as
EARDet’s. Hence, we run additional experiments in which
the number of counters in each stage is 55. The details of
these values are shown in the Table 6.

For each experiment environment, we design two sets of
experiments to test the performance of these three filters
in the presence of flooding attacks and Shrew attacks. We
repeat each experiment for 10 times and present the aver-
age. In the case of flooding attacks, we randomly generate
k1 attack flows for each attack rate. In the case of Shrew
attacks, we randomly generate k2 bursty flows with 1.2 ∗ γh
burst rate and 1-second period for each burst duration L.
We set k1 = k2 = 50 for the non-congested link setting, and
set the k1 and k2 as large as possible to congest the link in
the congested-link setting.

Table 6: Multistage Filter Parameters.

Dataset b ∗ d T u r
Federico II 55 ∗ 2, 250 ∗ 2 250KB 15.5KB 250KB/s
CAIDA 55 ∗ 2, 250 ∗ 2 12.5MB 15.4KB 12.5MB/s
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Table 5: Parameters of Experiment Environment.

Dataset γh βh γℓ βℓ ρ α link status βTH n tupincb

Federico II 250KB/s 15.5KB 25KB/s 6072B 25MB/s 1518B congested/non-congested 6991B 107 0.8370s
CAIDA 12.5MB/s 15.4KB 1.25MB/s 6072B 1.25GB/s 1518B non-congested 6925B 100 0.1242s
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Figure 5: Detection Probability in Experiment with 55*2 counters in Multistage Filter.

Evaluation metrics. We consider three evaluation met-
rics: detection probability, false positive probability on small
flows, and incubation period. Detection probability is the
probability to successfully detect a generated attack flow.
False positive probability on small flows is the probability
to wrongly catch a small flow when the link is attacked by
attack flows of a certain rate. Incubation period represents
the time needed to catch a generated attack flow since it is
generated.

5.3 Experimental Comparison
Since the results for the two datasets are similar, we omit

CAIDA’s results due to space constraints.
Figure 5(a) and 5(b) shows the detection probability in

the face of different types of attack flows. We focus on the
scenario of using 55 ∗ 2 counters in FMF and AMF, as the
results of 250 ∗ 2 counters are similar. In Figure 5(b), the
THh line indicates whether a bursty flow exceeds the high-
bandwidth threshold. The results show that EARDet de-
tects attack flows with a 100% detection probability, which
confirms Theorem 4. On the contrary, Figure 5(b) shows
that FMF cannot catch most of the Shrew flows. Moreover,
EARDet can catch most of the attack flows in the ambigu-
ity region (between THℓ(t) and THh(t)).
Figure 6(a) to Figure 6(h) show the results of FPs rates.

While EARDet has zero FPs in any case as expected, Fig-
ure 6(a) to Figure 6(d) shows that both FMF and AMF
have high FPs rates in both attack scenarios when using
very limited memory as EARDet. That is, the attacker
can successfully incriminate benign small flows. Worst yet,
when the link is congested by attack flows, the FPs rate can
be as high as 4% for FMF and 1% for AMF under flooding
attacks, and for FMF, the FPs rate is also extremely high
under Shrew attacks. An interesting observation is that, in
Figure 6(a), both FMF and AMF have a higher FPs rate
when the link is congested by malicious small flows. As Fig-
ure 6(e) to 6(h) show, using more counters in FMF and AMF

can reduce, but not eliminate, the FPs rates. The results of
the CAIDA dataset exhibit similar trends.

Also, in our experiments, EARDet always produces sim-
ilar results no matter whether the link is congested. In con-
trast, the results of AMF and FMF are much different be-
tween the congested-link version and non-congested-link ver-
sion. This supports the conclusion in Section 5.1 that AMF
and FMF rely on the number of active flows but EARDet

does not. This advantage makes EARDet stable in any
networking environment.
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Figure 7: Incubation Period.

Figure 7 describes the maximum and average incubation
period of high-rate flows with different rates in flooding at-
tacks. We can find that the maximum incubation period for
flows whose rate is over γh is always below the theoretical
upper bound for the incubation period, tupincb, which sup-
ports Theorem 7. Moreover, the average incubation period
is much lower than the theoretical upper bound, which shows
EARDet’s incubation period is much shorter in practice.

6. RELATED WORK
Section 2.1 classifies prior work on detecting large flows

and its closely related problem of finding frequent items
based on the types of monitoring windows. Cormode and
Hadjieleftheriou [9] present a thorough survey and compari-
son of algorithms for finding frequent items. This section re-
views prior approaches based on the techniques used. Most
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Figure 6: False Positive on Small Flows.

of the prior work does not consider the arbitrary window
model.

Counter-based techniques. Counter-based techniques
maintain a small number of counters, each of which asso-
ciated with a flow or an item. Manku and Motwani [29]
present another well-known counter-based technique called
Lossy Counting. For each stored item, Lossy Counting main-
tains and updates the upper bound and lower bound on the
count of the item. The algorithm stores every new item
and periodically removes items whose upper bound is less
than the threshold. Similar to the MG algorithm discussed
in Section 3.2, the Space Saving algorithm [30] proposed by
Metwally et al. maintains k (item, counter) pairs and in-
creases the corresponding counter of each incoming item.
If the new item e is not stored currently, the stored item
with the lowest count is replaced by the new item, and the
counter increases accordingly.

Sketch-based techniques. Multistage filters identify
large flows over fixed time windows [17] and over arbitrary
windows [16]. Fang et al. [18] propose a similar mul-
tistage algorithm but their algorithm requires more than

one pass over the input stream. Cormode and Muthukr-
ishnan [10] present a novel data structure called count-min
sketch, which summarizes an input stream and can answer
several queries including finding frequent items. As pointed
out in their paper, despite the fact that the construction
is similar to that of multistage filters, count-min sketches
can flexibly support negative weights and require only pair-
wise independence hash functions rather than fully indepen-
dent ones. In general, sketches can support a richer set
of queries with a higher memory overhead compared with
counter-based techniques.

Sampling-based techniques. Sampled NetFlow [1]
maintains a generic traffic summary of sampled packets.
With a sampling rate 1/r, the frequency estimate is derived
by multiplying the count by r. To improve the accuracy
of the estimates, both Sticky sampling [29] and Sample and
Hold [17] examine every incoming item and increase the cor-
responding count if the item is being monitored. If the new
item is not being monitored, it is sampled and added to the
monitoring list with a certain probability. Sampling-based
techniques in general cannot achieve high accuracy due to
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the lack of per-packet information. Duffield [15] studies how
to perform fair sampling in traffic flow measurements.
Calders et al. [7] define a new frequency measure as the

maximum frequency over all possible windows ending at the
current time. Although their core idea is the same as the
arbitrary window model, their algorithm focuses on accu-
rately estimating the frequency based on the new frequency
measure, whereas we seek to accurately identify large flows.

7. CONCLUSION
EARDet is a deterministic streaming algorithm that ro-

bustly catches all large flows and protects all small flows
regardless of the traffic distribution. The core ideas differen-
tiating EARDet from prior work are that it monitors flows
over arbitrary windows and provides exactness outside an
ambiguity region. We believe that EARDet can aid emerg-
ing applications such as detecting DoS attacks by bursty
flows [25] and enforcing QoS-based SLA compliance [35],
which require robust monitoring for high assurance. One
future direction is to explore the design space of large-flow
algorithms in the arbitrary window model by applying the
no-FP and no-FN theorems to existing landmark-window-
based algorithms. Another interesting future work is to for-
mally examine the robustness of EARDet and prior algo-
rithms against malicious inputs.
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[14] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Frequency
Estimation of Internet Packet Streams with Limited Space.
In Proceedings of ESA, 2002.

[15] N. Duffield. Fair Sampling Across Network Flow
Measurements. In Proceedings of ACM SIGMETRICS,
2012.

[16] C. Estan. Internet Traffic Measurement: What’s Going on
in my Network? PhD thesis, 2003.

[17] C. Estan and G. Varghese. New Directions in Traffic
Measurement and Accounting: Focusing on the Elephants,
Ignoring the Mice. ACM Transactions on Computer
Systems (TOCS), 21(3):270–313, 2003.

[18] M. Fang and N. Shivakumar. Computing Iceberg Queries
Efficiently. In Proceedings of VLDB, 1999.

[19] P. Ferguson and D. Senie. Network Ingress Filtering:
Defeating Denial of Service Attacks which employ IP
Source Address Spoofing. RFC 2827 (Best Current
Practice), May 2000. Updated by RFC 3704.

[20] M. Fischer and S. Salzberg. Finding a Majority Among N
Votes: Solution to Problem 81-5. Journal of Algorithms -
JAL, 3(4):362–380, 1982.

[21] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz, and
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APPENDIX

A. ENGINEERING THE DETECTOR: SO-

LUTION AND ANALYSIS
We give a detailed solution and analysis to the problem

defined in Section 4.6. The problem can be expressed by the
inequality set (5):
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We can assert that there must exist a solution pair of (n, β∆)
which fulfills the inequality set (7), if and only if there is a
n satisfying nmin ≤ n ≤ nmax, where
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(9)

Figure 8 illustrates the solution space. In this figure, the
(n, β∆) solution pairs are in the space between the two lines
of the lower bound curve and the upper bound curve. Note

that the inequality sets (5) and (7) are not totally equal, so
there may be additional solutions outside this space.
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Figure 8: Curve of the lower bound of βℓ.
(γℓ = 100, 000 byte/s γh = 1, 000, 000 byte/s, ρ =
100, 000, 000 byte/s, α = 1518 bytes, βℓ = 6072 bytes,
tupincb = 1 second.)

According to the inequality set (7), the lower bound of β∆

is β∆min = γℓ(α+βℓ)
ρ

n+1
−γℓ

. We can see β∆min increases with n, as

Figure 8 shows. Since we can reduce memory consumption
and the burst gap by using a smaller n and β∆, we choose
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γℓ(α+ βℓ)

ρ
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(10)

as our final answer to the design problem.
We give a numerical example showing how to configure

EARDet based on the result above. Suppose the adminis-
trator of the detector chooses γℓ = 100KB/s, γh = 1MB/s,
ρ = 100MB/s, α = 1518 bytes, βℓ = 6072 bytes, tupincb =
1 second. Then using Equation (10), we choose n = 101 and
β∆ = 863 bytes. With these two parameters, the incubation
period is 0.7848 seconds which is smaller than tupincb = 1
second, and the no false positive rate is 100450 byte/s which
is larger than γℓ = 100000. The ratio between no false
negative rate ρ

n+1
and low-bandwidth threshold rate γℓ is

ρ
n+1

/γℓ = 9.80. The results show that to achieve quick re-
action to large flows and a small rate gap, the detector only
needs a small number of extra counters compared with the
minimum number of required counters (i.e. ρ

γh
− 1 = 99)

and a low burst gap.
We obtain this particular solution by choosing the mini-

mum n and minimum β∆. We can also solve the inequality
set (5) for different requirements, such as minimizing the

rate gap between ρ
n+1

and β∆

α(n−1)+(n+1)β+(n+1)β∆
· ρ.

However, the inequality set (7) may be unsolvable for some
ρ, γℓ, βℓ, γh, α, tupincb. To make it solvable, we need to make
sure M2 − 8γhγℓ and M are not negative in the inequality
set (9). Namely,

γh + γℓ −
2(α+ βℓ)

tupincb
≥

√

4γhγℓ (11)

⇐ tupincb ≥
2(α+ βℓ)

γh + γℓ − 2
√
γhγℓ

(12)

Moreover, according to Section 4.3, γh > γℓ is necessary
to make the inequality set (7) solvable.
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