
ShortMAC: Efficient Data-Plane Fault Localization∗

Xin Zhang, Zongwei Zhou, Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Adrian Perrig and Patrick Tague
CyLab / Carnegie Mellon University

Abstract

The rising demand for high-quality online services re-
quires reliable packet delivery at the network layer. Data-
plane fault localization is recognized as a promising means
to this end, since it enables a source node to localize faulty
links, find a fault-free path, and enforce contractual obli-
gations among network nodes. Existing fault localization
protocols cannot achieve a practical tradeoff between secu-
rity and efficiency and they require unacceptably long de-
tection delays, and require monitored flows to be imprac-
tically long-lived. In this paper, we propose an efficient
fault localization protocol calledShortMAC, which lever-
agesprobabilisticpacket authentication and achieves 100
– 10000 times lower detection delay and overhead than re-
lated work. We theoretically derive alower-bound guaran-
teeon data-plane packet delivery inShortMAC, implement
a ShortMAC prototype, and evaluate its effectiveness us-
ing the SSFNet simulator and Linux/Click routers. Our im-
plementation and evaluation results show thatShortMAC

causesnegligiblethroughput and latency costs while retain-
ing a high level of security.

1 Introduction

Performance-sensitive services, such as cloud comput-
ing, and mission-critical networks, such as the military and
ISP networks, require high assurance of network data deliv-
ery. However,real-world incidents [2, 7, 9, 23, 32, 52] and
studies [10,16,43,59] reveal the existence of compromised
routers in ISP and enterprise networks, and demonstrate that
current networks are surprisingly vulnerable to data-plane
attacks: a compromised router or a dishonest transit ISP can
easily drop, delay, inject or modify packets on the forward-

∗This research was supported by CyLab at Carnegie Mellon under
grants DAAD19-02-1-0389, W911NF-09-1-0273, and MURI W 911 NF
0710287 from the Army Research Office, and by support from NSF under
the TRUST STC award CCF-0424422, CNS-0831440, and CNS-1040801.
The views and conclusions contained here are those of the authors and
should not be interpreted as necessarily representing the official policies
or endorsements, either express or implied, of ARO, CMU, NSF orthe
U.S. Government or any of its agencies.

ing path to mount Denial-of-Service, surveillance, man-in-
the-middle attacks, etc. Unfortunately, current networksdo
not provide any assurance of data delivery inadversarial
environments, and lack a reliable way to identify misbehav-
ing routers that jeopardize packet delivery. For example, a
malicious or misconfigured router can “correctly” respond
to ping or traceroute probes while corrupting other
packets.

Though end-to-end path monitoring [13, 22] and multi-
path routing [20, 21, 31, 44, 54, 55, 57] can mitigate data-
plane attacks to some extent, they are proven to render poor
performance guarantees [47, 59]; without the exact knowl-
edge of which link is faulty, a source node would need to
explore anexponentialnumber of paths in the number of
faulty links in the worst case. As illustrated in Figure 1
where the default route fromS to D is path(1

′

, 2, 3
′

, 4),
end-to-end monitoring only indicates if the currentpath is
faulty without localizing a specific faulty link (if any) of a
compromised or misconfigured router on the path. In the
worst case,S needs to explore24 paths to find the path with
no faulty links, i.e., path(1, 2, 3, 4).

Therefore, data-planefault localizationhas been widely
recognized as a promising remedy for securing data deliv-
ery [10, 11, 16, 59]. In a nutshell, fault localization enables
a source to monitor data forwarding at each hop and local-
ize abnormally high packet loss, injection, and/or forgery
on a certainlink. Such information about link quality can
be utilized for two vital purposes. First, by excluding de-
tected poor links the source can select high-performance
routing paths to carry its traffic, thus eliminating the expo-

1’ 2 3’ 4

1 2’ 3 4’

S D

Figure 1. Exponential path exploration prob-
lem for end-to-end monitoring. Dotted links
are faulty links of malicious routers (black
nodes).

nential path exploration problem as depicted in Figure 1.
Second, fault localization providesforwarding account-
ability which proves to be anecessarycomponent for en-
forcing contractual obligations between participating nodes
in a contractual networking service such as the Internet or
wireless mesh networks, as demonstrated by Laskowski and
Chuang [33].

Unfortunately, existing fault localization protocols suf-
fer from security, efficiency, andagility challenges in the
presence of strong adversaries. (i)Security and efficiency:
Sophisticated attacks such as framing and collusion at-
tacks and natural packet loss tend to break fault localiza-
tion protocols (e.g., Fatih [43], ODSBR [14], Watchers [18],
AudIt [10], Network Confessional [11], etc) or lead to
heavy-weight protocols (to prevent sophisticated attacks).
(ii) Agility: In addition, recentsecureandrelatively light-
weight protocols [16, 59] leveragepacket samplingor flow
fingerprintingto prevent packet modification attacks while
reducing communication overhead. However, in addition to
high storage overhead, these techniques result in long de-
tection delays and require monitored paths to be long-lived
(e.g., after monitoring108 packets over the same path in
Statistical FLby Barak et al. [16]), which is impractical for
networks with short-lived flows and agile routing paths.

In this paper, we proposeShortMAC, an efficient fault
localization protocol to provide atheoretically provenguar-
antee on end-to-enddata-planepacket delivery even in the
presence of sophisticated adversaries. More specifically,we
aim to guarantee that,given a correct routing infrastructure,
a benign source node can quickly find a non-faulty path
along which a very high fraction of packets can be correctly
delivered. Our key insights are two-fold:

Insight 1. We first observe that localizing data-plane faults
along a communication path can be reduced to monitoring
packetcount(number of received packets) and packetcon-
tent (payload of received packets) at each router on that
path. Furthermore, if packets can beefficientlyauthenti-
cated, packet count also becomes a verifiable measure of
packet content, because forged packets (with invalid con-
tents) will be dropped by the routers and manifest an ob-
servable deviation in the packet count. Thus, routers can
dramatically reduce storage overhead by storing counters
instead of packet contents.

Insight 2. We also observe that we can achieve a high
packet delivery guarantee via fault localization bylimit-
ing the amount of malicious packet drops/modifications, in-
stead of perfectly detectingeach singlemalicious activity.
Furthermore, strongper-packetauthentication to achieve
perfect detection ofevery singlebogus packet is unnec-
essary forlimiting the adversary’s ability to modify/inject
bogus packets. Instead, the source can use much shorter
packet-dependent random integrity bits as a weak authen-
ticator for each packet such that each forged packet has a

i
i d-1 ddS 1

l1

DestinationSource

f f l
i-1 f f l f

Figure 2. An example path and notation.

non-trivial probabilityto be detected. In this way, if a mali-
cious node modifies or injects more than a threshold number
of (e.g., tens of) packets, the malicious activity will cause
a detectable deviation on the counter values maintained at
different routers. Essentially,ShortMAC traps an attacker
into a dilemma: if the attacker inflicts damage worse than
a threshold, it will be detected, which may lead to removal
from the network; otherwise, the damage is limited and thus
a guarantee on data-plane packet delivery is achieved.

Contributions. 1) We propose a data-plane fault localiza-
tion protocolShortMAC that achieves high security assur-
ance with 100 - 10000 times lower detection delay and stor-
age overhead than related work.
2) We derive a provable lower bound on successful end-to-
end packet forwarding rate, by limiting adversarial activities
instead of perfectly detecting every single malicious action
which would incur high protocol overhead.
3) We theoretically derive the performance bounds of
ShortMAC and evaluateShortMAC via SSFNet-based [6]
simulation and Linux/Click router implementation.

2 Problem Statement and Setting

We consider a general multi-hop network model where
routers relay packets betweensourcesand destinations,
such as the ISP and enterprise networks. Throughout the
paper, we follow the notation as illustrated in Figure 2. We
denote the routers in a path byf1, f2, . . . , fd−1, the desti-
nation byfd, and the link betweenfi−1 andfi by li.

2.1 Adversary Model

The goal of an adversary who controls malicious routers
is to sabotage data delivery at the forwarding path. In-
stead of considering an individual forwarding attack, we
seek a general way of defining malicious forwarding be-
havior. We identify packet dropping and packet injection
as the two fundamental data-plane threats, while other data-
plane attacks can be reduced to these two threats as follows:
(i) packet modification is equivalent to dropping the original
packet and injecting a fabricated packet, (ii) packet replay
can be regarded as repeated packet injection, (iii) packet de-
lay can be treated as dropping the original packet and later
injecting it, and (iv) packet misrouting can be regarded as
dropping packets along the original path and injecting them
to the new path. A formal definition follows:

Definition 1 An (x, y)−Malicious Router is a router that
intentionally dropsup toa fractionx of the legitimate data
packets from a sourceS to a destinationfd, and injectsup
to y spurious packets tofd, pretending that the packets orig-
inate fromS. Themisbehavior spaceof such a malicious
router comprises (i) dropping packets, (ii) injecting packets
on any of its adjacent links which we callmalicious links
(non-malicious links are calledbenign links), (iii) strategi-
cally claiming arbitrary local state (e.g., number of packets
received) to its own advantage, or (iv) colluding with other
malicious routers to perform the above attacks.

Such a strong attacker model is not merely out of theoret-
ical curiosities, but has been widely witnessed in practice.
For example, outsider attackers have leveraged social en-
gineering, phishing [7], and exploration of router software
vulnerabilities [2, 9] and weak passwords [23] to compro-
mise ISP and enterprise routers [52]. Also, in a 2010 world-
wide security survey [1], 61% of network operators ranked
infrastructure outages due to misconfigured routers, which
also fall under our attacker model, as the No. 2 security
threat.

Furthermore, we assume that an adversary knows the
cryptographic keys of controlled routers, and can eavesdrop
and perform traffic analysis anywhere in the network. The
protocol parameters are public; as a consequence, the adver-
sary may attempt to bias the measurement results to evade
detection or frame honest links. However, the adversary
cannot control the natural packet loss rate on the links in the
path, because this would constitute a physical-layer attack
which can be dealt with through physical-layer protections.
We consider attackers with polynomially bounded compu-
tational power which cannot break cryptographic schemes,
e.g., encryption or Message Authentication Codes (MAC).

2.2 Problem Statement

Our paper focuses on providing data-plane fault local-
ization for a lower-bound guarantee on data-plane packet
delivery. In this section, we define communication epochs,
detection thresholds, faulty links, and finally we formalize
fault localization.

Definition 2 An end-to-end communication is composed
of a set of consecutiveepochs. An epochfor an end-to-end
pathis defined as the duration of transmitting a sequence of
N data packets by a sourceS toward a destinationfd along
that path. The epochs areasynchronousamong different
paths.

The introduction of epochs facilitates detection and formal
analysis as we show later.

Definition 3 Given adrop detection threshold Tdr (i.e.,
fraction of dropped packets) and aninjection detection

threshold Tin (i.e., number of injected packets), a linkli
is defined asfaulty iff: (i) more thanTdr fraction of pack-
ets are dropped onli by fi in an epoch,or (ii) more thanTin

packets are injected byfi in an epoch,or (iii) the adjacent
routerfi or fi+1 makesli appear faulty in an epoch.

When Tdr and Tin are carefully set based on the prior
knowledge such that the natural packet loss and corruption
are belowTdr andTin, respectively, a faulty link must be a
malicious link.

Definition 4 (N, δ)−Data-plane Fault Localization is
achieved iff: given an end-to-end communication pathp, af-
ter adetection delayof sendingN packets, the source node
S of pathp can identify a specific faulty link along that path
(if any) with false positive or negative rate less thanδ.

Definition 5 (Ω, θ)−Guaranteed Forwarding Correct-
ness (Guaranteed Data-Plane Packet Delivery)is
achieved iff: after exploring at mostΩ paths, a source can
find anon-faulty path (if any) along which all routers have
correctly forwarded at leastθ fraction of the source’s data
packets sent along the path tofd.

To achieve a guaranteedθ, we need tobound(not neces-
sarily eliminate) the adversary’s ability to drop packets and
to inject packets so that if the adversary drops more thanα

percent of packets or injectsβ bogus packets, it will be de-
tected with a high probability. A formal definition follows.

Definition 6 For an epoch with a sufficiently large number
of data packets by a source,(α, β)δ−Forwarding Security
is achieved iff two conditions are simultaneously satisfied:

1. (Low False Negative Rate) When the adversary drops
more thanα percent of the data packets on a single link,
or injects more thanβ fake packets on a single link, the
source will detect at least one of the malicious links under
the adversary’s control with probability at least1 − δ;

2. (Low False Positive Rate) The probability of falsely in-
criminating at least one benign link is at mostδ.

2.3 Scope and Assumptions

Since we focus on data-plane security at the network
layer, we assume the following network control-plane and
link-layer mechanisms, each of which represents a separate
line of research orthogonal to ours. (i) We can borrow exist-
ing secure routing protocols [24,27,45,58] by which nodes
can learn the genuine network topology and the source can
know the outgoing path. (ii) We assume secure neighbor
identification so that a node upon receiving a packet knows
which neighbor sends that packet, which can be achieved
via link-layer authentication. (iii) In addition, when needed,

a source nodeS can set up a shared secret keyKsi with
routerfi using a well-studied key exchange protocol, e.g.,
Diffie-Hellman as in Passport [36]. This symmetric key
exchange happens very infrequently thus representing only
a one-time cost. Barak et al. [16] has proved that such a
shared secret isnecessaryfor any securefault localization
protocol via path monitoring.

3 ShortMAC Overview

We highlight the challenges of a secure fault localization
protocol design, and then present our key ideas.

Challenge 1: Sophisticated packet modification attacks.
In Fatih [43], WATCHERS [18, 25], and AudIt [10], each
router records atraffic summarybased on counters or
Bloom Filters [17], which are updated withno secret keys
for the packets the router forwards, and periodically ex-
changes local summaries with others for fault detection
based onflow reservation. Without any authentication of
the data packets, these schemes suffer from packet modifi-
cation attacks. For example in AudIt [10], each router sim-
ply counts the number of packets it received for a certain
path, and periodically sends the counter to the source node
of the path for packet loss detection. However, malicious
packet modification cannot be detected based only on the
packet counts. Even when Bloom Filters are used [43] to
reflect the packet contents, a malicious router can still tac-
tically modify packets without affecting the Bloom Filter
image (since Bloom Filters may not be collision-resistent).

Challenge 2: Colluding attacks.Routers in a path may
employ “hop-by-hop” monitoring to detect packet delivery
fault to reduce the communication overhead of sending the
traffic summaries back to the source. For example in Fig-
ure 2, each routerfi asks for the traffic summaries (e.g.,
aknowledgements)only fromthe 2-hop neighborfi+2 in the
path, and accusesli if fi does not receive the correct traf-
fic summaries. In this approach however, iffi is colluding
with fi+1 and does not accusefi+1 even iffi does not re-
ceive the correct traffic summaries fromfi+2, thenfi+1 can
safely drop packets without being detected. Watchdog [41],
Catch [40] and the proposal due to Liu et al. [34] are vul-
nerable to similar colluding attacks.

3.1 ShortMAC High-level Protocol Steps

To address the above challenges,ShortMAC monitors
both the packetcountandcontentat each hop. Specifically,
a router maintains per-path counters to record the number
of received data packets originated from the source in the
current epoch. To ensure that the packet count is a verifiable
measure of the desired monitoring task, we require that both
packet modification and injection by malicious (colluding)
routers affect counter values at benign nodes.

At the beginning of each epoch denoted byek, a source
nodeS selects a pathp and starts sending packets alongp,
with each packet carrying severalShortMAC authentica-
tion bits. The routers verify the authentication bits in each
received packet based on the symmetric key shared with the
source node, increment locally stored counters forp accord-
ingly, and forward only the authentic packets. Due to the
ShortMAC authentication bits, modified/injected packets
can result in an observable deviation in the counter values
which enable fault localization by the source at the end of
each epoch.

At the end of each epochek, the sourceS retrieves the
counter reports from all routers and the destination inp for
ek, via a secure channel as Section 4 will describe.S then
performs fault detection based on the retrieved counters,
and bypasses the detected faulty link (if any) by finding
another path excluding the identified faulty link (e.g., via
source routing, path splicing [44], pathlet routing [21], or
SCION routing [58]). The detection result is only used by
S itself for selecting its own routing paths, instead of be-
ing shared with other nodes which is susceptible to framing
attacks.

Although the high-levelepoch-basedprotocol flow
(nodes periodically send certain locally logged traffic sum-
maries to the source) bears great similarity with Fatih [43],
AudIt [10], and Statistical FL with sketch [16], both Fatih
and AudIt use simple counters or Bloom Filters without
keyedhash functions as the traffic summaries, thus remain-
ing vulnerable to packet modification/injection attacks. In
addition, the sketch-based packet fingerprints used in Statis-
tical FL consume several hundreds of bytesfor each path.
In contrast,ShortMAC efficiently tackles packet modifica-
tion attacks with only several-byte counters as shown below.

3.2 ShortMAC Packet Authentication

Our approach is to turn packet count into a reliable mea-
sure of packet content so that routers only need to store
space-efficient counters. To this end, the integrity of the
source’s data packets must be ensured in order to detect
malicious packet modification during the forwarding path;
otherwise, a malicious router can always perform packet
modification attacks without affecting the counter values,
or inject bogus packets on behalf of the source to manip-
ulate the counter values of the reporting routers. Hence,
we reduce the problem to how the source node can authen-
ticate its packets to all the routers in the path. However,
traditional broadcast authentication schemes provide high
authenticity for everysinglemessage, which is neither nec-
essary nor practical in our setting where the messages are
line-rate packets:
1) Not practical: On one hand, perfectly ensuring the
authenticity of every singledata packet introduces high

overhead in a high-speed network. For example, digital
signatures or one-time signatures for per-packet authenti-
cation is either computationally expensive or bandwidth-
exhaustive, and using amortized signatures would either fail
in the presence of packet loss or incur high communica-
tion overhead [38]. Attaching a Message Authentication
Code (MAC) for each node along the path (as is used by
Avramopoulos et al. [12]) is too bandwidth-expensive (e.g.,
reserving a 160-bit MAC space for each hop). In addition,
TESLA authentication [48] would require time synchro-
nization and routers to cache the received packets until the
authentication key is later disclosed (longer than the end-
to-end path latency). Finally, some recently proposed multi-
cast/broadcast authentication schemes still require consider-
able communication overhead (e.g., up to hundreds of bytes
per packet [39]) or multiple rounds for authenticating a mes-
sage [19].
2) Not necessary:On the other hand, as we aim tolimit the
damage the adversary can inflict for a lower-bound guar-
antee on data-plane packet delivery, perfect per-packet au-
thenticity is not necessary. Instead, our goal only requires
the authenticity of a large fraction of data packets.

ShortMAC approach. Based on these observations, we
proposeShortMAC, a light-weight scheme trading per-hop
overhead with the adversary’s ability to forge only a few
(e.g., tens of) packets. More specifically, inShortMAC, the
source attaches to each packet ak-bit random nonce, called
k-bit MAC, for each node on the path, where the parameter
k is significantly less than the length of a typical MAC (e.g.,
k = 2). To construct thek-bit MAC for fi, the sourceS uses
a Pseudo-Random Function (PRF) which constructs ak-bit
string as a function of the packetm and keyKsi shared
betweenS andfi. We rely on the result that the outputk-
bit MAC is indistinguishable from a randomk-bit string to
any observer without the secret keyKsi [42]. Each router
fi maintains two path-specific countersCgood

i and Cbad
i

to record the numbers of received packets along that path
with correct and incorrectk-bit MACs, respectively, in the
current epoch. Such a scheme considerably reduces com-
munication overhead compared to attaching entire MACs
while retaining high security assurance and communication
throughput, as shown later.

3.3 ShortMAC Example

We present a toy example in Figure 3 to provide intu-
ition on howShortMAC enables data-plane fault localiza-
tion. Suppose the source node sends out 1000 packets in a
certain epoch. The source uses a PRF taking a secret key
as input which can map a packet into two bits (called 2-
bit MAC) uniformly at random to anyone without knowl-
edge of the secret key. The source computes the PRF four
times for each packet, taking as input the epoch symmetric

key shared withf1, f2, f3, and the destination, respectively.
Then the source attaches the resulting four 2-bit MACs to
each packet.

Among the 1000 packets, suppose three packets are
spontaneously dropped on the first link, and routerf1 re-
ceives the remaining 997 packets.f1 computes the PRF
on each of the received packets taking as input the epoch
symmetric key shared with the source, and compares the re-
sulting 2-bit MACs with the one embedded in each packet.
All verifications are successful, sof1 hasC

good
1 = 997

and Cbad
1 = 0. Suppose the malicious routerf2 drops

100 good packets and injects 100 malicious packets. For
each injected packet,f2 needs to forge 2-bit MACs for
both f3 and the destination that “authenticate” the fabri-
cated data content. However, sincef2 does not know the
corresponding epoch symmetric keys off3 and the des-
tination, f2 can only guess the 2-bit MACs for its in-
jected packets. Since the 2-bit MACs produced by the
PRF are indistinguishable from random bits,f2 can cor-
rectly guess each 2-bit MAC with probability14 . Since
f2 must guess two correct MACs, each forged packet will
be accepted by the destination with probability116 . Sup-
pose next that 26 of the 100 2-bit MACs thatf2 forged
for f3 happen to be valid with respect to the the malicious
data content.f3 thus computesCbad

3 = 100 − 26 = 74

and C
good
3 = 997 − 100 (dropped legitimate packets)+

26 (bogus but undetected packets)= 923. Similarly, we
can analyze the counters for the destination in Figure 3, as-
suming 7 out of the 26 received bogus packets happen to be
consistent with their 2-bit MACs at the destination.

3.4 Fault Localization and Guaranteedθ

At the end of each epoch, routers and the destination re-
port their counter values to the source using a secure trans-
mission approach (detailed in Section 4). The source can
identify excessive packet drops betweenfm and fm+1 if
the C

good
m+1 value offm+1 is abnormally lower than that of

fm based on the drop detection thresholdTdr that is care-
fully set based on the customized acceptable per-link drop
rate. Moreover, this scheme can successfully bound the to-
tal number of spurious packets with fabricatedk-bit MACs

drop 100 pkts

inject 100 pkts

naturally

drop 3 pkts

naturally

drop 2 pkts

send

1000 pkts

Source Destinationf1 f2 f3

C
good
1 = 997
Cbad

1 = 0
C

good
2 = ∗

Cbad
2 = ∗

C
good
3 = 923
Cbad

3 = 74
C

good

d
= 904

Cbad
d = 19

Figure 3. Fault localization example with
ShortMAC using 2-bit MAC. f2 is malicious.

that the adversary can inject, because at least one of the
downstream recipient routers will detect the inconsistency
of thek-bit MACs with a non-trivial probability, thus hav-
ing a non-zeroCbad value. For example in Figure 3, al-
thoughf2 can claim any values for its own counters, no
matter what valuesf2 claims, the source can notice exces-
sive packet loss and a large number of fake packets either
betweenf1 andf2, or f2 andf3. Hence one off2’s mali-
cious links will be detected by the source.

Once the sourceS bypasses all malicious links identified
byShortMAC, S can find a working path with no excessive
packet corruption at any link, thus achieving a guaranteed
successful forwarding rateθ. With secure fault localization,
a source can find a working path after exploring at most
Ω paths, whereΩ is the number of malicious links in the
network. In contrast, with only end-to-end path monitoring,
a source may explore a number of paths exponential toΩ as
we showed in Section 1.

4 ShortMAC Details

In this section we describe theShortMAC protocol in
detail, where the source can either guarantee that a high
fractionθ of its data has been correctly forwarded if no ma-
licious activities are detected, or can bypass the faulty links
and find a working path after exploring a number of paths
linear to the number of faulty links.1 In the following, we
first formalize theShortMAC packet format and then detail
the protocol.

4.1 ShortMAC Packet Format

A source nodeS adds a trailer to each data packet it
sends:

trailer = 〈SN,M1, . . . ,Md〉, (1)

whereSN is a per-pathsequence number to make each
packet unique along the same path to prevent packet replay
attacks, andMi denotes thek-bit MAC computed forfi,
which is constructed in a recursive way starting fromfd:

Md ← PRFKsd
(IPinvar||SN ||TTLd)

Md−1 ← PRFKs(d−1)
(IPinvar||SN ||TTLd−1||Md)

.

Mi ← PRFKsi(IPinvar||SN ||TTLi||Mi+1|| . . . ||Md)

(2)

where “||” denotes concatenation andPRFKsi
(·) denotes

a PRF keyed by the symmetric keyKsi shared betweenS
andfi. As previously discussed, the output of this PRF can

1It has been proved that forwarding fault localization protocols proto-
cols can only identify faulty links, rather than identifying the nodes [16].
However, given that a malicious node has a limited degree, after bypassing
all its malicious links the source can eventually bypass thatnode.

drop due to

TTL=0

Source Destinationf1 f2 f3

TTL = 64
to TTL =2

TTL = 2
to TTL = 1

TTL = 1
to TTL =0

maliciously
modifiesM3

detects badM3

increasesCbad
3

Figure 4. Illustration of framing attacks. f1 is
malicious.

be guessed correctly with probability no larger than1
2k by

anyone without the secret keyKsi [42]. In addition,

1) IPinvar denotes the invariant portion of the original IP
packet that should not be changed at each router during for-
warding, including the packet payload and IP headers ex-
cluding variable fields such asTTL, RecordRoute IP op-
tion, Timestamp IP option etc. If these invariant fields
are unexpectedly changed during forwarding, each down-
stream router can detect inconsistency between the (mod-
ified) packet and embeddedk-bit MAC with a non-trivial
probability1 − 1

2k and thus increase itsCbad counter.

2) TTLi denotes the expected TTL value at routeri. With-
out authenticating this field in thek-bit MAC, a malicious
router can strategically lower the TTL field to cause packet
drop at a remote downstream router due to zero TTL value,
thus performing framing attacks. For example in Figure 4,
if Mi in Eq.(2) had not authenticated the TTL field,f1 can
maliciously change the TTL value in the packets to 2, in-
stead of decrementing it by 1. This causes the packets to be
dropped atf3, thus framing the link betweenf2 andf3.

3) Mi also authenticates the downstreamMi+1, . . . ,Md,
so that if a malicious routerfm changes any of these down-
streamk-bit MACs,fi can observe the inconsistency inMi

with a probability1 − 1
2k and increase itsCbad

i value. Oth-
erwise, the protocol is vulnerable to framing attacks. For
example in Figure 4, ifMi in Eq.(2) had not authenticated
the downstreamk−bit MAC field, f1 can maliciously mod-
ify M3 in the packets which causesf3 to detect inconsistent
M3 with a non-trivial probability and increaseCbad

3 , thus
framing the link betweenf2 andf3.

4.2 Protocol Details

Formally,ShortMAC consists of Request, Report, Iden-
tify, Bypass and Send stages, described as follows.

Stage 1: Request with hop-by-hop reliable transmission
At the end of each epochek (i.e., after sending everyN data
packets), the sourceS will send a request packet, denoted
by request= (S, p), along the pathp = (f1, . . . , fd)
used in epochek. Thisrequest asks each routerfi and
the destinationfd to report their counter values (Cbad

i and

C
good
i) along the reverse of pathp. ThenS expects these

counter reports in Acknowledgment (ACK) packets from all
the nodes inp containing the requested information authen-
ticated with each node’sKsi.

Note that a spontaneous loss ofrequest or ACK pack-
ets will preventS from learning the counter values by cer-
tain routers in the previous epoch. To preclude such dam-
age, we use the followinghop-by-hop reliable transmis-
sion approach: whenfi forwards either arequest or an
ACK packet to its neighbor,fi tries up tor times (e.g.,
r = 5) until it gets a confirmation from the neighbor. In
this way, the failure of receiving arequest orACK packet
can only indicate malicious drops – more precisely, with the
probability of1 − ρr, whereρ is the natural loss rate of a
link. Then thanks to the Onion ACK approach presented
below, the source can immediately identify a malicious link
that drops or modifiesrequest orACK packets; hence the
request packets do not need to be authenticated by the
source as we show below.

Stage 2: Report with Onion ACK
Upon receiving arequest, fi starts a timer whose value
is the maximum round trip time fromfi to the destination.2

At the same time,fi constructs its local reportRi:

Ri =
(

fi, p, C
good
i , C

bad
i

)

(3)

wherefi is the node id,p is the requested path, andCgood
i

andCbad
i are the counter values from the previous epoch.

Each router findsCgood
i andCbad

i corresponding to pathp
based on the source and destination IDs inp (assuming sin-
gle path routing). Once the report is constructed:

Case 1If fi receives anACK Ai+1 from neighborfi+1 be-
fore the timer expires,fi further commitsRi into a new
ACKAi by combining the receivedAi+1 via anOnion ACK
approach:

Ai =
(

Ri,Ai+1, HKsi(Ri||Ai+1)
)

, (4)

HKsi
(·) denotes a message authentication code computed

with Ksi. Then,fi forwardsAi to fi−1 towardS.

Case 2If fi receives noACK packet fromfi+1 before the
timer expires,fi will initiate a newACKwith its local report
and send it tofi−1.

The OnionACK prevents the adversary fromselectively
dropping therequest or the reports of a certain routerfi

and framing a benign linkli [59]. In OnionACK, all the
reports arecombinedandauthenticatedin oneACK packet
at each hop so that a malicious node can only drop or mod-
ify the onion report from itsimmediateneighbors. Intu-
itively, if fm drops or modifies the receivedrequest or

2We can expect a reasonable upper bound of link latency in benign
cases, which can be used to compute the maximum round trip time accord-
ing to the hop count fromfi to the destination. Avramopolous et al. [12]
first introduced the use of such a timer.

OnionACK, the source can receive the correct reports from
f1, . . . , fm−1 but not fromfm, . . . , fd; hence one offm’s
links will be pinpointed by the source node, in the identify
stage described below.

After sending the local reports, each routerfi resets
C

good
i andCbad

i to zero, to be used for the next epoch along
pathp (if p is still used).

Stage 3: Identify
Upon receiving an OnionACKA1 fromf1, S first iteratively
retrievesA1,A2, . . . in order, until it either completes at
d or fails at j (j 6= d).3 When the check fails atj (j 6=
d), S will immediately identify lj as faulty due to the use
of reliable hop-by-hop transmission and Onion ACK. For
example, ifS receives no report it will identifyl1 as faulty
(j = 1).

In addition,S extractsR1, . . . ,Rj in turn which include
the Cbad

i andC
good
i values. A non-zeroCbad

i implies the
existence of malicious packet injection betweenfi andS.
However,S cannot blameli simply wheneverCbad

i > 0,
say,Cbad

i = 1. A possible scenario is that a malicious node
fi−2 injects a fake packet, but thek-bit MAC intended for
fi−1 “happens” to be consistent with the fake packet at be-
nign nodefi−1 (e.g., whenk = 2, this can happen with
probability 0.25). In this case,fi−1 will forward the fake
packet whichfi may detect and thus increaseCbad

i . Sim-
ilarly, due to natural packet loss,S cannot simply accuse
link li whenC

good
i < C

good
i−1 . Therefore, we leverage two

detection thresholdsTin andTdr, whereTin is the injec-
tion detection threshold for the number of injected packets
on each link, andTdr is the drop detection threshold for
the fraction of dropped packets on each link. As we will
show in Section 6, these thresholds reduce false positives
while limiting the adversary’s ability to corrupt packets and
ensuring a lower bound on the successful packet forward-
ing rate. The detection thresholds are used in two detection
procedures:

1) check-injection: S checks the extractedCbad
1 , Cbad

2 , . . .,
Cbad

j values in order. If Cbad
i ≥ Tin for somei, then

S identifiesli as faulty and thecheck-injection procedure
stops.

2) check-dropping: If no fault is detected bycheck-
injection, S further checks the extractedCgood

1 , C
good
2 , . . .,

C
good
j valuesin order. If C

good
i < (1 − Tdr) · C

good
i−1 (with

C
good
0 = N) holds for certaini, thenS identifiesli as faulty

and thecheck-dropping procedure terminates.

Stage 4: Bypass and Send
If Stage 2 outputs any malicious linklm, S selects a new
path excluding the previously detected malicious links and
sends its packets withShortMAC authentication shown

3S can verify if a certain retrieved reportRi is valid by checking the
embedded message integrity codeHKsi

(Ri||Ai+1).

in Eq.(2). Each nodefi examines its correspondingk-bit
MAC Mi in each packet to increaseCgood

i or Cbad
i accord-

ingly. In addition, each router remembers the last seenper-
pathSN embedded in the packets as shown in Eq.(1), and
discards packets with olderSN in that path.

5 Security Analysis

This section discussesShortMAC’s security against
data-plane attacks by malicious routers. Section 6 pro-
vides theoretical proofs onShortMAC’s security. In our
adversary model, a malicious router can drop and inject
data packets,requests andACKs, and can send arbitrary
counter values in its reports. We show thatShortMAC is
secure against a single malicious router (say,fm) as well as
multiple colluding nodes.
Corrupting data packets. Dropping legitimate data pack-
ets byfm will cause a discrepancy of the counter values
betweenfm and its neighbors. For example, iffm correctly
reportsCgood

m , thenCgood
m − C

good
m+1 will exhibit a large dis-

crepancy; iffm reports a lowerCgood
m , thenC

good
m−1 −Cgood

m

will exhibit a large discrepancy. Hence, eitherlm−1 or lm
will become suspicious. Moreover, iffm injects/modifies
packets,Mm+1 will be inconsistent atfm+1 with high
probability and cause a non-zeroCbad

m+1. Hence, both drop-
ping and injection attacks can be detected as long as the
source can learn the correct counter values in theACK pack-
ets sent by the nodes betweenfm and the destination, which
is described next.
Corrupting ACKs or requests. Since therequests
are not authenticated byS, fm can modify the content of
requests (such as the source ID and the path); however,
this will result inS failing to receive the correct counter re-
ports fromfm+1 (or fm) , . . . , fd in p, thus causinglm+1

or lm to be detected.fm cannot selectively drop theACK
reports due to the use of OnionACK. Instead,fm can only
drop theACKs orrequests from itsimmediateneighbors,
which will again harm its incident links.
Replay, reorder, and traffic analysis attacks.To prevent
replay and reorder attacks, each packet contains a per-path
sequence numberSN in Eq.(1) and each router discards
packets with olderSNs. Hence, the replayed and reordered
packets will be dropped at the next-hop benign node with-
out influencing the counter values of benign nodes. Note
that becauseShortMAC runs on a per-path basis and aSN

is a per-pathsequence number providing natural isolation
across different paths, packetsalong the same pathare ex-
pected to maintain the same order during forwarding as they
were sent by the source in benign cases. On the other hand,
if fm falsely reports a largeSN , fm+1 will drop the sub-
sequent packets andlm will be identified as malicious due
to its high packet drop rate. Moreover, the per-pathSN can

preventShortMAC from traffic analysis attacks, wherefm

attempts to find out the correctk-bit MAC of a packetm
by re-sendingm with differentk-bit MACs and observing
whether the next-hopfm+1 forwards the packet. Such traf-
fic analysis is ineffective becausefm+1 can detect packets
with the sameSN and each packet is unique due to the
use of the per-pathSN , and thusfm cannot send the same
packetm with only thek-bit MAC changed.

DoS attacks.A malicious routerfm may launch bandwidth
Denial-of-Service (DoS) attacks by generating an excessive
amount of packets. However, this attack can be reduced
to a packet injection attack and will be reflected byCbad

m+1.
A malicious router may also attempt to open many bogus
flows with spoofed sources to exhaust other routers’ state.
We can borrow existing work to provide source accountabil-
ity and reliable flow/path identification [8, 56]. Also note
that in our adversary model we consider maliciousrouters
which threaten the communication between benign hosts.
We do not consider DDoS attacks launched by malicious
hosts (botnets), which other researchers have strived to de-
fend against [35, 37, 56]. Hence in our problem setting, a
link under DDoS attacks thus exhibiting high loss rate is
simply considered a faulty link under our adversary model.
Meanwhile, the path setup phase inShortMAC can be nat-
urally integrated with capability schemes [56] for DDoS
limiting, and the per-path counters may also be used for per-
path rate limiting.

Collusion attacks.Each of the colluding routers can com-
mit any of the misbehavior discussed above. We can prove
by induction that in any case, one of the malicious links of
one of the colluding nodes is guaranteed to be detected. A
proof sketch is given below.

Consider the base case where two nodesfm and fm′

(m < m′) collude. Without loss of generality:

1) Whenfm andfm′ are not adjacent (i.e.,m′ > m + 1),
the security analysis in Section 5 applies tofm and one of
fm’s malicious links will become suspicious iffm misbe-
haves. This is because iffm commits the above attacks,
such misbehavior will be reflected in the benign neighbor
fm+1’s counters which cannot be biased byfm′ .

m
m+1 m+2 dS m-1

lm-1

DestinationSource

f f l
m f fl fm+1m

m+1f l
mff fm

mF

Figure 5. Security against colluding nodes –
one base case with two adjacent colluding
nodes fm and fm+1 forming a virtual mali-
cious node Fm.

2) When fm and fm′ are adjacent (m′ = m + 1), these
two nodes can be regarded as one single “virtual” malicious
nodeFm with neighborsfm−1 andfm+2, as shown in Fig-
ure 5. (i) If fm or fm+1 drops packets, a discrepancy will
exist betweenCgood

m−1 andC
good
m+2, no matter what values of

Cgood
m and C

good
m+1 Fm claims. (ii) If fm or fm+1 injects

packets,Cbad
m+2 will become non-zero and makelm+1 sus-

picious. In any case, an adjacent link ofFm (a malicious
link) will become suspicious.

In the general case withn colluding nodes, we can first
group adjacent colluding nodes into virtual malicious nodes
as in Figure 5, resulting in non-adjacent malicious nodes
(including virtual malicious nodes). Then we can show
non-adjacent malicious nodes can be detected based on the
above analysis.

Despite colluding attackers cannot corrupt packets more
than the same thresholds as an individual attacker on any
single link, they can choose to distribute packet dropping
across multiple links. In this case, the total packet drop rate
by colluding attackers increases (and is still bounded) lin-
early to the number of malicious links in the same path, as
analyzed in Section 6.

6 Theoretical Results and Comparison

We prove the(N, δ)−data-plane fault localization (Def-
inition 4) and(α, β)δ−forwarding security ofShortMAC
(Definition 6), which in turn yield theθ−guaranteed for-
warding correctness (Definition 5). Proofs of the lemmas
and theorems are provided in Appendix A.

Comparison of theoretical results.Before presenting the
theorems, we first summarize and compareShortMAC the-
oretical results with two recent proposals, PAAI-1 [59] and
Stat. FL [16] (including two approaches denoted bySSSand
sketch). Table 1 presents the numeric figures using an exam-
ple parameter setting for intuitive illustration, whileShort-
MAC presents similarly distinct advantages in other param-
eter settings. In this example scenario shown in the table,
the guaranteed data-plane packet delivery ratio isθ = 92%.
The communication overhead for a router inShortMAC is
1 extraACK for every3.8 × 104 data packets in an epoch;
the marking cost is 10 bits for the 2-bit MACs in a path
with 5 hops, and the per-path state at each router is 21 bytes
(16-byte symmetric key, 2-byteCgood, 1-byteCbad, and 2-
byte per-pathSN). Though Barak et al. proved the ne-
cessityof per-path state for asecurefault localization pro-
tocol [16], such aminimal per-path state inShortMAC is
viable for both intra-domain networks with tens of thou-
sands of routers and the Internet AS-level routing among
currently tens of thousands of ASes.

We provide the intuition forShortMAC’s distinct ad-
vantages. PAAI-1 or Stat. FL used either low-rate packet

sampling or approximation techniques for packet finger-
printing, both of which waste entropy contained in cer-
tain packet transmissions, thus resulting in long detection
delay (e.g., the transmission results of non-sampled pack-
ets will not contribute to the detection phase). In con-
trast, ShortMAC counts every packet transmission thus
achieving much faster detection rate. In addition,secure
packet sampling requires additional packet buffering [59],
and packet fingerprint takes considerable memory [16].

Lemma 1 Injection Detection: Given the boundδ on de-
tection false negative and false positive rates, the injection

detection thresholdTin can be set toTin =
2 ln 2d

δ

q4 , where

d is the path length andq = 2k
−1

2k is the probability that
a fake packet will be inconsistent with the associatedk-bit
MAC. The number of fake packetsβ an adversary can in-
ject on one of its malicious links without being detected is

limited to: β = Tin

q
+

r

(

ln 2
δ

)2
+8qTin ln 2

δ
+ln 2

δ

4q2 .

In Lemma 2, we deriveN , the number of data packets
a source needs to send in one epoch to bound the detection
false positive and false negative rates belowδ. Due to natu-
ral packet loss, a network operator first sets an expectation
based on her domain knowledge such that any benign link
in normal condition should spontaneously drop less thanρ

fraction of packets. We first describe how the drop detection
thresholdTdr is set whenN andδ are given. Intuitively,
by sending more data packets (largerN), theobservedper-
link drop rate can approach more closely itsexpectedvalue,
which is less thanρ; otherwise, with a smallerN , the ob-
served per-link drop rate can deviate further away fromρ,
and the drop detection thresholdTdr has to tolerate a larger
deviation (thus being very loose) in order to limit the false
positive rate below the givenδ. On the other hand, a small
N is desired forfast fault localization. We defineDetection
Delay to be the minimum value ofN given the requiredδ.

Lemma 2 Dropping Detection and (N, δ)- Fault Local-
ization: Given the boundδ on detection false positive and
negative rates and drop detection thresholdTdr, the detec-

tion delayN is given by:N =
ln(2d

δ
)

2
(

Tdr−ρ
)2(

1−Tdr

)d , where

d is the path length. Correspondingly, the fraction of pack-
etsα an adversary can drop on one of its malicious links
without being detected is limited to:α = 1 − (1 − Tdr)

2 +
β

N(1−Tdr)d .

In practice,Tdr can be chosen according to the expected
upper boundρ of a “reasonable” normal link loss rate such
that a drop rate aboveTdr is regarded as “excessively lossy”.

Theorem 1 Forwarding Security and Correctness:
Given Tdr, δ, and path lengthd, we can achieve

Protocol ShortMAC PAAI-1 SSS Sketch

Detect. Delay(pkt) 3.8 × 104 7.1 × 105 1.6 × 108 ≈ 106

Comm.(extra %) < 10−5 1 1 < 10−5

Marking Cost(bytes) 2 0 0 0
Per-path State(bytes) 21 2×105 4 × 103 ≈ 500

Table 1. Theoretical comparison with PAAI-1 [59] and Stat. F L [16] (including two approaches SSS
and sketch). Note that the details of sketchare not provided in the published paper [16], and the full
version of [16] does not present the explicit bounds on detec tion delay. The above figures for sketch
are estimated from their earlier work [?]. In this example sc enario, d = 5, δ = 1%, ρ = 0.5%, Tdr = 1.5%,
a symmetric key is 16 bytes, and ShortMAC uses 2-bit MACs. PAAI-1 specific parameters include the
“packet sampling rate” set to 0.01, the end-to-end latency s et to 25 ms, the source’s sending rate set
to 106 packets per second, each packet hash is 128 bits.

(α, β)δ−forwarding security whereα is given by Lemma 2
and β is given by Lemma 1. We also achieve(Ω, θ)-
Guaranteed forwarding correctness withΩ equal to
the number of malicious links in the network, and
θ = (1 − Tdr)

d − β
N

. whereN is derived from Lemma 2

In Theorem 2, we analyze the protocol overhead with the
following three metrics (we further analyze thethroughput
andlatencyin Section 8 via real-field testing):

1) The communication overhead is the fraction of extra
packets each router needs to transmit.

2) The marking cost is the number of extra bits a source
needs to embed into each data packet.

3) The per-path state is defined as the per-path extra bits
that a router stores for the security protocol infast memory
needed forper-packetprocessing.4

Theorem 2 Overhead: For each router, the communica-
tion overhead is one packet for each epoch ofN data pack-
ets. The marking cost isk ·d bits for thek-bit MACs whered
is the path length. The per-path state comprises onelg N -
bit Cgood counter, onelg β-bit Cbad counter, onelg N -bit
last-seen per-pathSN , and one epoch symmetric key.

7 SSFNet-based Evaluation

In addition to analyzing the theoretical performance,
we implementShortMAC prototype on the SSFNet sim-
ulator [6] to study the detection delay and security of
ShortMAC. Section 8 further investigatesShortMAC’s
throughput and latency. These experimental results provide
average-caseperformance with various attack strategies to

4The buffering space needed for the Onion-ACK construction of
report messages inShortMAC is not a major concern, as the Onion-
ACK is computed only once every epoch, which can be buffered inoff-chip
storage.

complement the theoretical results derived in theworst case
scenario (due to multiple mathematical relaxations such as
Hoeffding inequality) and constant dropping/injection rates.

Evaluation scenario and attack pattern. SinceShort-
MAC provides a natural isolation across paths due to
its per-path state, our evaluation focuses on a single
path. Specifically, we present the result of a 6-hop path
(routersf1, f2, f3, f4, f5 and the destinationf6) since our
experiment yields the same observation with other path
lengths. We simulate both an (i)independent packet cor-
ruption pattern where a malicious node drops/injects each
packet independently with a certain drop/injection rate, and
(ii) random-period packet corruptionpattern where the be-
nign (non-attack) periodTb and attack periodTa (when the
malicious node drops/modifiesall legitimate packets) are
activated in turns. The durations for both periods are ran-
domly generated. For both attack patterns, we control the
averagepacket drop/injection rates and observe that both
attack patterns yield similar observations. Hence, in the fol-
lowing experiment, we only show the results for the inde-
pendent packet corruption pattern. Also, we infuse natural
packet loss rateρ for each link to simulate natural packet
loss, which is not provided by SSFNet. As Section 5 elab-
oratesShortMAC security against colluding attacks, we
only show the representative results for a single malicious
nodef3. For each simulation setting, we run the simulation
1000 times and present the average results.

Against various dropping attacks.Figure 6(a) depicts the
detection delayN and error ratesδ with per-link natural
loss rateρ as 0.5%, drop detection thresholdTdr as 1%,
and a stealthy malicious drop rate as2%. We see that even
against stealthy dropping attacks with a dropping rate as low
as 2%,ShortMAC can successfully localize a faulty link in
< 2000 packets with an error rateδ < 1%, which is orders
of magnitudes faster than the worst-case theoretical bound
(Lemma2). Figure 6(b) depicts different detection delays

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

fr
ac

tio
n

-
lo

g
sc

al
e

detection delay (N) - log scale

fp
fn

(a) Natural loss.

 0.001

 0.01

 0.1

 1

 100 500 2000fa
ls

e
ne

ga
tiv

e
ra

te
s

(lo
g

sc
al

e)

detection delay (N) - log scale

ρ 0.1%
ρ 0.3%
ρ 0.6%

(b) Dropping attacks

 0.001

 0.01

 0.1

 1

 1 10 100 1000

fn
 r

at
es

 -
 lo

g
sc

al
e

detection delay (N) - log scale

fp
fn

(c) Injection attacks.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 200 300 400 500
fn

 r
at

es
 -

 li
ne

ar
 s

ca
le

detection delay (N) - linear scale

drop 2 inject 2
drop 5 inject 5
drop 5 inject 2

(d) Combined attacks.

Figure 6. In this set of simulations, f3 is the malicious router performing attacks. The parameter a re
set as follows: (a) The malicious drop rate is 2%, Tdr = 1%, and natural drop rate ρ = 0.5%. (b) The
malicious drop rate is 2%, and Tdr = 1%. (c) The malicious injection rate is 2% using 2-bit MACs,
natural loss rate ρ = 0.5%, and Tdr = 1%. (d) “drop p inject q” denotes the use of p% dropping rate
and q% injection rate at f3.

with different natural packet loss rates, demonstrating that
larger|Tdr − ρ| yields higher detection accuracy and lower
detection delay.

Against various injection attacks.Figure 6(c) shows the
results whenf3 injects packets at a2% rate (relative to
the legitimate packet sending rate). It shows that the error
rates stay below 1% in a few hundred packets, indicating
that even with 2-bit MACs, an adversary can only inject up
to around ten packets without being detected. We further
investigate the effects of using different lengths ofk−bit
MACs, and Figure 7 shows that the detection delay and er-
ror rate dramatically diminish ask increases.

Against combined attacks.Figure 6(d) shows how the
combinations of dropping and injection attack strategies (in
our setting, dropping/injection rates are chosen between2%
– 5%) influence the protocol. We observe that the detection
delay is mainly determined by the dropping detection pro-
cess, which is much slower than the injection detection pro-
cess. This also indicates that a malicious node cannot gain

any advantage (and actually can only harm itself) by inject-
ing bogus packets in attempt to bias the counter values.

Variance due to different malicious node positions.To in-
vestigate the influence of the position of the malicious node,
we consider a path with 6 forwarding nodesf1, f2, . . . , f6

and place the malicious node at each position (1 to 6) in
turn. We limit the error rate< 1% and obtain the corre-
sponding detection delays. Figure 8 shows one represen-
tative scenario where both dropping and injection rates are
5%. We can see that (i) the dropping detection delay in-
creases linearly when the malicious node is farther away
from the source. This is because in theShortMAC detec-
tion process, the source always inspects the closer links first
and stops once the first “faulty” link is detected. The FP rate
thus increases when more links exist between the source and
the malicious node due to natural packet loss on each link.
(ii) In contrast, the injection detection delay exhibits little
variance (cannot be seen from the figure as the detection
delay is determined by the dropping detection), which can

 0.001

 0.01

 0.1

 1

 1 10 100 1000

fn
 r

at
es

 -
 lo

g
sc

al
e

detection delay (N) - log scale

1 bit
2 bits
4 bits

Figure 7. Effects of different
k-bit MAC lengths on detec-
tion delay N and false nega-
tive rate δ. The malicious in-
jection rate is 2%, ρ = 0.5%,
and Tdr = 1%.

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6

de
te

ct
io

n
de

la
y

(N
)

malicious node position

fp
fn

Figure 8. Variance on detec-
tion delay N in dropping at-
tacks. δ < 1%, Tdr = 1%,
ρ = 0.5%, and both malicious
dropping and injection rates
set to 5%.

 0.5

 0.6

 0.7

 0.8

 0.9

 0.99

 500 2000 10000 50000su
cc

es
sf

ul
 r

at
e

-
lin

ea
r

sc
al

e

detection delay (N) - log scale

FullACK
PAAI-1

ShortMAC

Figure 9. Comparison with
PAAI-1 and FullACK [59].
The natural packet loss rate
ρ = 0.5% and drop detection
threshold Tdr = 1%.

ShortMAC FullACK PAAI-1

Detect. delay 20 sec 20 sec 8.3 min
Communication 0.01% 100% 5.6%

Table 2. Comparison of ShortMAC, FullACK,
and PAAI-1 with a source send rate of 100
packets per second.

also be theoretically proved.

Comparison with recently proposed protocols.For com-
parison, we simulate the recently proposed FullACK and
PAAI-1 [59] schemes presenting the lowest detection delays
to date. FullACK is a heavy-weight fault localization proto-
col requiring an Onion ACK packet fromeveryforwarding
node foreverypacket the source sent. In contrast, PAAI-
1 employs packet sampling and only requires acknowledg-
ments for the securely sampled packets to reduce commu-
nication overhead while retaining desired detection delay.
Since both FullACK and PAAI-1 only consider packet drop-
ping attacks, we compare their dropping detection delays
along a path with 6 hops andf3 as the malicious node. Fig-
ure 9 shows the results when per-link natural packet loss
rate ρ = 0.5% and drop detection thresholdTdr = 1%.
To make the comparison clear, we use a metric ofsuccess-
ful rate, which equals to 1 -max{FP rate, FN rate}. The
results show that the detection delays to achieve a success-
ful rate> 99% for ShortMAC, FullACK, and PAAI-1 are
2000, 2000, and5 × 104, respectively. Table 2 shows their
detection delays in seconds/minutes and compares the ex-
tra communication overhead, based on the results from Fig-
ure 9 and withδ < 1%.

8 Linux Prototype and Evaluation

We implementShortMAC source and destination nodes
as user-space processes running on Ubuntu 10.04 32-bit
Desktop OS. Even implemented in user-space on a standard
desktop OS, our result shows that the cryptographic opera-
tions ofShortMAC incur little communication degradation
and negligible additional latency at gigabit line rate. It has
also been demonstrated that using modern hardware imple-
mentation and acceleration the speed of PRF functions can
be fundamentally improved [29].

Implementation details. Our ShortMAC processes listen
to application packets via TUN/TAP virtual interfaces and
appendingk-bit MACs to the packets. We also implement
ShortMAC routers using the Click Modular Router [28]
running on Ubuntu 10.04 32-bit Desktop OS, which verify
the k-bit MACs in each packet at each hop. To approach
the realistic performance of commercial-grade routers, we
implement the above elements on off-the-shelf servers with
an Intel Xeon E5640 CPU (four 2.66 GHz cores with 5.86
GT/s QuickPath Interconnect, 256KB L1 cache, 1MB L2
cache, 12MB L3 cache, and 25.6 GB/s memory band-
width) and 12G DDR3 RAM. The servers are equipped with
Broadcom NetXtreme II BCM5709 Gigabit Ethernet Inter-
face Cards.

Evaluation methodology. We evaluateShortMAC’s ef-
fects on communication throughput and computational
overhead, especially due to the generation and verification
of k-bit MAC using PRF operations. We utilize the widely
used Netperf benchmark [4] for theShortMAC through-
put evaluation, and write our own micro-benchmark for ac-
curate latency evaluation. We evaluateShortMAC with
varying packet sizes by configuring the interface Maximum
Transmission Unit (MTU) sizes. We evaluate the through-

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 100 300 800 1000 1500

th
ro

ug
hp

ut
 (

M
b/

s)

packet size (bytes)

baseline
HMAC
UMAC
CMAC

Figure 10. Router through-
put.

 500

 600

 700

 800

 900

 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t (

M
b/

s)

path length

baseline
no parallel

internal
external

Figure 11. Source through-
put.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 2 8 16 24 32 40 48 56 64

la
te

nc
y

(µ
s)

path length

MTU 100
MTU 500

MTU 1000
MTU 1500

Figure 12. Source latency.

put of aShortMAC router and aShortMAC source sepa-
rately to better illustrate the throughput of each component,
while the end-to-end path throughput can be easily derived
by taking the minimum throughput of the two evaluation
results. Then we evaluate the end-to-end latency with dif-
ferent path lengths ranging from 2 to 64. We also exploit
the multi-core parallel processing at the source node via
OpenMP API [5].

Summary of evaluation results. The evaluation results
of our Linux software prototype demonstrate that both a
ShortMAC router and source node can retain more than
92% of thebaseline throughput(noShortMAC operations
are employed). Furthermore, the additional latency due to
ShortMAC operations is negligible (tens of microseconds)
even with a path length of 64 hops. The results further in-
dicate theShortMAC scheme is fully scalable as the num-
ber of processing cores increases in a software-based imple-
mentation, while we anticipate hardware implementation of
the MAC operations inShortMAC can further boost the
protocol throughput. Details of the evaluation results areas
follows.

Router throughput with different PRF implemen-
tations. We first evaluate the throughput of a user-
level ShortMAC router with different PRF implemen-
tations (i.e.,UMAC [51], HMAC-SHA1 [30], and AES-
CMAC [50]) with the support of the new Intel AES-NI in-
structions [26]. TheShortMAC router connects a source
machine and a destination machine, with the source sending
TCP packets via Netperf as fast as possible to the destina-
tion to stress-test the router. For comparison, we use the
Linux kernel forwarding throughputwithout ShortMAC
operations as the base line. TheShortMAC router runs as
a single user-spaceprocess without exploring parallelism,
which already matches up the base line speed as shown be-
low.

Figure 10 depicts the results with packet sizes from 100
to 1500 bytes, showing that UMAC-based PRF implemen-
tation yields the highest throughput, which retains more

than 90% of the baseline throughput (e.g., 92% with 1.5KB
packet size and 96% with 1KB packet size). With a small
packet size of 100 bytes, both the baseline andShortMAC
throughput dropped substantially (similar to other public
testing results [3]), because the network drivers used in
our experiments are running under interrupt-driven mode,
which hampers throughput when packet receiving rate is
high. However, UMAC-based PRF still retains53.84

57.52=94%
of the baseline throughput.

Source node throughput.We further evaluate the through-
put of aShortMAC source node with different path length
d, where for each path length the source needs to per-
form d − 1 UMAC-based PRF operations. Originally, it
might seem that theShortMAC source node represents the
throughput bottleneck as the source needs to compute mul-
tiple k-bit MACs. However by parallelizing theShort-
MAC operations on readily-available multi-processor sys-
tems, the throughput of aShortMAC source node canfully
cope with the base line rate even with a path length of 8.
For comparison, we use the source node throughputwith-
outShortMAC operations as the baseline. We evaluate two
different parallelizations based on widely used OpenMP [5]
API. Our first implementation (internal parallelism in short)
uses multiple OpenMP threads to parallelize the computa-
tion of multiplek-bit MACs per packet. Our second imple-
mentation (external parallelism in short) assigns different
packets to different OpenMP threads.

We evaluate theShortMAC source throughput with var-
ious packet sizes, and observe that in all casesShortMAC
incurs negligible throughput degradation. Hence we only
show the results with packet size set to 1500 bytes in Fig-
ure 11. We can see that external parallelism yields the best
performance, which matches the baseline case where the
source performs noShortMAC operations.

ShortMAC latency. We also evaluate the additional la-
tency incurred by aShortMAC source node for computing
thek-bit MICs with different path lengths and packet sizes;
while the end-to-end latency can be derived base on our re-

Path Length Checksum (µs)
UMAC (µs)

100 500 1000 1500
2 0.0374 0.1771 0.4760 0.8892 1.4047
3 0.0378 0.3691 0.9557 1.7635 3.3025
4 0.0442 0.5239 1.4273 2.6357 4.0944
5 0.0415 0.7080 1.9018 3.5059 5.4566
6 0.0437 0.8723 2.3758 4.3839 6.8307
7 0.0445 1.0467 2.8530 5.2617 8.2019
8 0.0474 1.2206 3.3274 6.1285 9.5483

Table 3. ShortMAC source node latency breakdown (checksum updates and UMAC co mputation). All
the data represent the average time of processing 50000 pack ets.

sults. This additional latency inShortMAC includes PRF
computation,k-bit MICs appending, and TCP/IP checksum
updating. We write our micro-benchmark to derive the ad-
ditional time delay for the source to send each packet com-
pared to the baseline case where the source does not com-
pute anyk-bit MIC nor updates the checksums.

Figure 12 and Table 3 show the results. We can see that
the latency incurred by the checksum computation is sta-
ble. It does not increase with the packet size because in our
implementation we employ incremental checksum update
for the short MIC appended to the packet, instead of re-
computing the checksum over the entire packet. We do not
observe sharp increase of checksum latency with increasing
path length either due toShortMAC’s efficientk-bit MIC
authentication. In addition, the latency caused by the check-
sum computation is small compared to the latency intro-
duced by UMAC-based PRF computation. The additional
latency due to UMAC computation increases linearly to the
path length under the same packet size, and also increases
linearly to the packet size with a fixed path length due to
the property of the UMAC algorithm. Finally, compared
to the average end-to-end network latency which is on the
order of milliseconds, the additional latency introduced by
ShortMAC is negligible.

9 Discussion and Limitations

Incremental deployment. Although we argue it is fea-
sible to upgrade all routers withShortMAC within
ISP/enterprise networks, we observe that partial deploy-
ment ofShortMAC can still provide benefits and thus en-
ables incremental deployment. Specifically, theShortMAC
routers form anoverlay networkon top of the physical net-
work. In the overlay network, a “logical link” consists of
the physical links between twoShortMAC routers. The
fault localization protocol runs only on theShortMAC
routers and a data delivery fault will be localized to a log-

ical link. Although in such settings the source node can-
not exactly identify a faulty physical link, it can neverthe-
less localize the fault to a network area (a set of links be-
tween twoShortMAC routers) to facilitate further inves-
tigation. Furthermore, the more densely theShortMAC
routers are deployed, the more accurate the fault localiza-
tion can be, which incentivizes incrementally deploying
ShortMAC. However, one caveat for incremental deploy-
ment is that a discovery protocol for determining which
routers supportShortMAC is needed, possibly through the
use of explorer packets.

Interdomain deployment.ThoughShortMAC mainly tar-
gets at intra-domain networks such as ISP and enterprise
networks,ShortMAC may also be deployed in interdo-
main networks such as the Internet. In the interdomain set-
ting, each Autonomous System (AS) can represent a node
in ShortMAC; the fault localization runs at the AS level
and localizes any data delivery fault between two ASes.
To makeShortMAC applicable, different ASes need to es-
tablish secret keys (e.g., via Passport [36]), and the egress
router of an AS needs to set the TTL value of each packet to
the TTL value at the ingress routerminus oneto enablek-bit
MAC verification (Section 4.1). Finally, a source AS needs
to know the downstream AS path (which is readily avail-
able in BGP) which may dynamically change in the current
Internet; however, the majority of AS paths are stable over
minutes [49] thus facilitatingShortMAC fault localization.
If an adversary were to constantly alter paths, it would es-
sentially raise suspicion to itself, since path information is
visible and the adversary needs to remain on the path to re-
main effective.

Topology changes and short-lived flows.Fault localiza-
tion protocols inevitably require at least a threshold num-
ber of packets to be sent along the monitored path to ob-
tain a statistically accurate detection in the presence of nat-
ural packet loss. Hence, monitored paths need to be sta-
ble over an epoch. SinceShortMAC incurs several or-

ders of magnitude lower detection delay compared to re-
lated work [16, 59],ShortMAC can support topology or
path changes and short-lived flows much better than previ-
ous work. For example, as long as the path remains stable
for transmitting around 2000 packets, the source can make
an accurate fault localization. While path changes do hap-
pen during an epoch (e.g., due to link failures), the source
will detect the old link where the path is switched away
as faulty. At the same time, the source can also learn the
routing updates about the path change, and by correlating
the detection results with routing updates, the source may
distinguish a benign path change and a malicious packet
misrouting attack (in which case no corresponding routing
updates will be received). However, the fault localization
accuracy ofShortMAC decreases for dynamic paths that
transmit far fewer than 2000 packets before path changes
occur.

10 Related Work

Perlman described the idea of acknowledgment-based
approaches to detect data-plane adversaries and achieve ro-
bust routing in the presence of Byzantine failures [47].
In Sprout [20], a source node monitors the end-to-end
path performance and uses probabilistic route selection to
find a working path if the current path is faulty. How-
ever, without secure fault localization, both schemes suffer
from the exponential path exploration problem as Figure 1
shows. Given the importance of fault localization, several
approaches have been proposed, which unfortunately suffer
from the following limitations.

Security vulnerabilities. In ODSBR [14, 15] and Secure
Traceroute [46], the source node monitors the end-to-end
loss rate of the path; and only when the observed loss rate
exceeds a certain threshold, the source starts probing spe-
cific nodes in the path soliciting acknowledgments for the
subsequentpackets the source sends. However, a malicious
node can safely drop packets when the probing is not acti-
vated, while behaving “normally” when probing is invoked.
Hence, the source can never catch the malicious nodes nor
bound the malicious dropping rate, unless the probing is al-
ways activated which incurs high overhead. In addition,
ODSBR employs binary search in the probing phase for
dropping localization, until the algorithm converges to a
specific link. Since the binary search algorithm proceeds
on each packet lost (possibly due to natural loss), in the
presence of natural packet loss the algorithm either does
not converge or incurs high false positives by incriminat-
ing benign links. The security vulnerabilities of Watch-
ers [18, 25], AudIt [10], Fatih [43], and the proposal by
Liu et al. [34] were summarized at the beginning of Sec-
tion 3. The recently proposed Network Confessional [11]
also fails to prevent packet modification attacks due to the

lack of efficient packet authentication.

High protocol overhead. Among the known secure pro-
posals, the protocol due to Avramopoulos et al. [12] incurs
high overhead due to the acknowledgments from all routers
in the path and multiple digital signature generation and
verification operations foreachdata packet. Both Statisti-
cal FL [16] and PAAI-1 [59] achieve small communication
overhead, but at the cost of high storage overhead and un-
acceptably long detection delays (Sections 6 and 7).

Applicability constraints (and security vulnerabilities).
A recent proposal due to Wang et al. [53] for forwarding
fault localization in sensor networks requires a special tree-
like routing infrastructure where the communications take
place only between a sensor node and the same trusted base
station. Both Watchdog [41] and Catch [40] can identify
and isolate malicious routers for wireless ad hoc networks,
where a senderS verifies if the next-hop nodefi indeed for-
wardsS’s packets bypromiscuouslylistening tofi’s trans-
mission. Both approaches rely on the wireless broadcast
medium and are thus inapplicable to wired networks. Fur-
thermore, both Watchdog and Catch are vulnerable to col-
lusion attacks, where a malicious nodefm drops the pack-
ets of a remote senderS which is out of the promiscu-
ous listening range offm while the colluding neighbors
in the promiscuous listening range offm intentionally do
not report the packet dropping behavior offm. Finally,
TrueNet [60] utilizes trusted computing technologies thus
requiring the existence of TPM chips, and is vulnerable to
hardware attacks against the TPM chips.

11 Conclusion

In this paper, we design, analyze, implement, and eval-
uateShortMAC, an efficient data-plane fault localization
protocol, which enables atheoretically provenguarantee on
data-plane packet delivery and substantially outperformsre-
lated protocols in the following aspects. First,ShortMAC
achieves high security assurance even in the presence of
strong adversaries in control of colluding malicious routers
that can drop, modify, inject, and misroute packets at the
forwarding paths; whereas a majority of existing fault local-
ization protocols exhibit security vulnerabilities undersuch
a strong adversary model. Second, compared to existingse-
cureprotocols,ShortMAC achieves several orders of mag-
nitude lower detection delay and protocol overhead, which
facilitates its practical deployment. Finally, we demonstrate
that ShortMAC’s efficient cryptographic operations, even
if implemented in software, have negligible effects on the
communication throughput via realistic testing on Gigabit
Ethernet links. We anticipate thatShortMAC probabilistic
authentication and efficient fault localization can becomea
basic building blocks for the construction of highly secure
and efficient network protocols.

References

[1] Arbor networks: Infrastructure security survey
2010. http://www.arbornetworks.com/
sp_security_report.php.

[2] Cisco security hole a whopper. http:
//www.wired.com/politics/security/
news/2005/07/68328.

[3] Linux as IP router. http://freedomhec.
pbworks.com/f/linux_ip_routers.pdf.

[4] Netperf benchmark. http://www.netperf.
org/netperf/.

[5] The OpenMP API specification for parallel program-
ming. http://openmp.org/wp/.

[6] Scalable simulation framework. http://www.
ssfnet.org/.

[7] Symantec warns of router compromise.
http://www.routersusa.com/
symantec-warns-of-router-compromise-2.
html.

[8] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Ko-
ponen, D. Moon, and S. Shenker. Accountable Inter-
net Protocol (AIP). InProc. ACM SIGCOMM, Seattle,
WA, Aug. 2008.

[9] X. Ao. Report on dimacs workshop on large-
scale internet attacks. http://dimacs.
rutgers.edu/Workshops/Attacks/
internet-attack-9-03.pdf.

[10] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and
S. Shenker. Loss and delay accountability for the In-
ternet. InIEEE ICNP, 2007.

[11] K. Argyraki, P. Maniatis, and A. Singla. Verifi-
able network-performance measurements. InACM
CoNext, 2010.

[12] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Kr-
ishnamurthy. Highly secure and efficient routing. In
IEEE Infocom, 2004.

[13] I. Avramopoulos and J. Rexford. Stealth probing: Ef-
ficient data-plane security for IP routing. InUSENIX,
2006.

[14] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-
Rotaru, and H. Rubens. ODSBR: An on-demand se-
cure byzantine resilient routing protocol for wireless
ad hoc networks. ACM Trans Inform. Syst. Secur,
2008.

[15] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and
H. Rubens. An on-demand secure routing protocol
resilient to byzantine failures. InACM WiSe, 2002.

[16] B. Barak, S. Goldberg, and D. Xiao. Protocols and
lower bounds for failure localization in the Internet.
In EUROCRYPT, 2008.

[17] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–

426, 1970.
[18] K. A. Bradley, S. Cheung, N. Puketza, B. Mukherjee,

and R. A. Olsson. Detecting disruptive routers: A dis-
tributed network monitoring approach. InIEEE Sym-
posium on Security and Privacy, May 1998.

[19] H. Chan and A. Perrig. Round-effcient broadcast au-
thentication protocols for fixed topology classes. In
IEEE Symposium on Security and Privacy, May 2010.

[20] J. Eriksson, M. Faloutsos, and S. V. Krishnamurthy.
Routing amid colluding attackers. InIEEE ICNP,
2007.

[21] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Sto-
ica. Pathlet routing. InProceedings of the ACM SIG-
COMM, 2009.

[22] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rex-
ford. Path-quality monitoring in the presence of adver-
saries. InProceedings of SIGMETRICS, 2008.

[23] K. J. Houle, G. M. Weaver, N. Long, and R. Thomas.
Trends in denial of service attack technology. Techni-
cal report, CERT Coordination Center.

[24] Y.-C. Hu, A. Perrig, and M. Sirbu. SPV: Secure path
vector routing for securing BGP. InProceedings of
ACM SIGCOMM, Sept. 2004.

[25] J. R. Hughes, T. Aura, and M. Bishop. Using con-
servation of flow as a security mechanism in network
protocols. InIEEE Symposium on Security and Pri-
vacy, 2000.

[26] Intel Mobility Group, Israel Development Center,
Israel. Intel advanced encryption standard (AES) in-
structions set, Jan. 2010. http://software.intel.com/en-
us/articles/intel-advanced-encryption-standard-aes-
instructions-set/.

[27] S. Kent, C. Lynn, J. Mikkelson, and K. Seo. Secure
border gateway protocol (S-BGP) — real world per-
formance and deployment issues. InNDSS, 2000.

[28] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router.ACM Transac-
tions on Computer Systems, 2000.

[29] M. E. Kounavis, X. Kang, K. Grewal, M. Eszenyi,
S. Gueron, and D. Durham. Encrypting the Internet.
In ACM SIGCOMM, 2010.

[30] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication. RFC
2104 (Informational), Feb. 1997.

[31] N. Kushman, S. Kandula, D. Katabi, and B. M.
Maggs. R-BGP: Staying Connected In a Connected
World. In USENIX NSDI, 2007.

[32] C. Labovitz, A. Ahuja, and M. Bailey. Shining light on
dark address space. Technical report, Arbor Networks.

[33] P. Laskowski and J. Chuang. Network monitors and
contracting systems: competition and innovation. In
Proceedings of ACM SIGCOMM, 2006.

[34] K. Liu, J. Deng, P. K. Varshney, and K. Balakrishnan.

An acknowledgement-based approach for the detec-
tion of routing misbehavior in MANETs.IEEE Trans-
actions on Mobile Computing, 2007.

[35] X. Liu, X. Yang, and Y. Lu. To filter or to authorize:
Network-layer dos defense against multimillion-node
botnets. InProceedings of ACM SIGCOMM, 2008.

[36] X. Liu, X. Yang, D. Wetherall, and T. Anderson. Ef-
ficient and secure source authentication with packet
passports. InUSENIX SRUTI, 2006.

[37] X. Liu, X. Yang, and Y. Xia. NetFence: Preventing
Internet Denial of Service from Inside Out. InACM
SIGCOMM, 2010.

[38] M. Luk, A. Perrig, and B. Whillock. Seven cardinal
properties of sensor network broadcast authentication.
In Fourth ACM Workshop on Security of Ad Hoc and
Sensor Networks (SASN 2006), Oct. 2006.

[39] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos.
Multicast authentication in fully adversarial networks.
In In IEEE Symposium on Security and Privacy, pages
241–255, 2004.

[40] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahor-
jan. Sustaining cooperation in multi-hop wireless net-
works. InUsenix NSDI, 2005.

[41] S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating
routing misbehavior in mobile ad hoc networks. In
ACM Mobicom, 2000.

[42] M.Bellare, R.Canetti, and H.Krawczyk. Pseudoran-
dom functions revisited: the cascade construction and
its concrete security. InIEEE FOCS, 1996.

[43] A. T. Mizrak, Y. chung Cheng, K. Marzullo, and
S. Savage. Fatih: Detecting and isolating malicious
routers. InIEEE Transactions on Dependable and Se-
cure Computing, 2005.

[44] M. Motiwala, M. Elmore, N. Feamster, and S. Vem-
pala. Path splicing. InACM SIGCOMM, 2008.

[45] S. L. Murphy and M. R. Badger. Digital signature
protection of the OSPF routing protocol. InNDSS,
1996.

[46] V. N. Padmanabhan and D. R. Simon. Secure tracer-
oute to detect faulty or malicious routing.SIGCOMM
Computer Communication Review (CCR), 33(1):77–
82, 2003.

[47] R. Perlman.Network Layer Protocol with Byzantine
Agreement. PhD thesis, The MIT Press, Oct. 1988.
LCS TR-429.

[48] A. Perrig, R. Canetti, D. Song, and D. Tygar. The
TESLA broadcast authentication protocol.RSA Cryp-
tobytes, 2002.

[49] H. Pucha, Y. Zhang, Z. M. Mao, and Y. C. Hu. Un-
derstanding network delay changes caused by routing
events. InProceedings of ACM SIGMETRICS, 2007.

[50] J. Song, R. Poovendran, J. Lee, and T. Iwata. The
AES-CMAC Algorithm. RFC 4493 (Informational),

June 2006.
[51] E. T. Krovetz. UMAC: Message Authentication Code

using Universal Hashing. RFC 4418, 2006.
[52] R. Thomas. ISP security BOF, nanog 28.

http://www.nanog.org/mtg-0306/pdf/
thomas.pdf.

[53] C. Wang, T. Feng, J. Kim, G. Wang, and W. Zhang.
Catching packet droppers and modifiers in wireless
sensor networks. InIEEE SECON, 2009.

[54] D. Wendlandt, I. Avramopoulos, D. Andersen, and
J. Rexford. Don’t secure routing protocols, secure data
delivery. InProc. of ACM Workshop on Hot Topics in
Networks (Hotnets-V), Nov. 2006.

[55] W. Xu and J. Rexford. MIRO: Multi-path Interdomain
Routing. InACM SIGCOMM, 2006.

[56] A. Yaar, A. Perrig, and D. Song. SIFF: A stateless
Internet flow filter to mitigate DDoS flooding attacks.
In IEEE Symposium on Security and Privacy, 2004.

[57] X. Yang and D. Wetherall. Source selectable path di-
versity via routing deflections. InProceedings of ACM
SIGCOMM, 2006.

[58] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig,
and D. G. Andersen. SCION: Scalability, control, and
isolation on next-generation networks. InProceedings
of the IEEE Symposium on Security and Privacy, May
2011.

[59] X. Zhang, A. Jain, and A. Perrig. Packet-dropping ad-
versary identification for data plane security. InACM
CoNext, 2008.

[60] X. Zhang, Z. Zhou, G. Hasker, A. Perrig, and
V. Gligor. Network fault localization with small TCB.
In Proceedings of the IEEE International Conference
on Network Protocols (ICNP), 2011.

A Proofs for Section 6

A.1 Proof of Lemma 1

Recall from Section 4 that inShortMAC, the source
finds the firstCbad

i such thatCbad
i > Tin, and identifies

link li as malicious. In this proof, we first derive the upper
boundβ of malicious packet injection (which is based on
Tin) according to the upper boundδ of false negative rate.
Then we calculate the injection thresholdTin given the false
positive upper boundδ.

With k-bit MACs, whenfi−1 receives a fake packet, the
probability thatCbad

i−1 will be increased isq = 2k
−1

2k , since
the adversary can only randomly generate ak-bit string for
the fake packet without knowledge of the secret keys of
other (benign) routers. The probability thatCbad

i will be
increased isq(1 − q).

Malicious Injection Bound. WLOG, supposefm is a ma-
licious router andfm+1 is benign (there can be other mali-

cious routers between the source andfm). Suppose the ma-
licious routers between the source andfm (including fm)
inject y packets on linklm+1. Then whetherlm+1 will be
detected depends on the value ofCbad

m+1, and the false nega-
tive ratePfn is given by:

Pfn = P(Cbad
m+1 < Tin)

= P
(

(q − ǫ)y < Tin

)

≤ 2e−2y
(

q−
Tin

y

)2

(Hoeffding’s inequality),

(5)

whereǫ is the deviation and0 ≤ ǫ ≤ q. To achieve the
desired upper boundPfn ≤ δ, we set the thresholdβ such
that

2e−2β(q−
Tin

β
)2 = δ. (6)

Solving forβ gives:

β =
Tin

q
+

√

(

ln 2
δ

)2
+ 8qTin ln 2

δ
+ ln 2

δ

4q2
. (7)

(7) implies that if the adversary injects more thanβ pack-
ets on a single linklm+1, Cbad

m+1 will exceedTin andlm+1

will be detected with a high probability≥ 1 − δ (or a false
negative rate lower thanδ).

Injection Detection Threshold. WLOG, supposefm is a
malicious router andfm+1 is benign (there can be other
malicious routers between the source andfm). Suppose
the malicious routers between the source andfm (includ-
ing fm) injecty packets on linklm+1. False positives occur
whenCbad

m+1 < Tin but Cbad
i ≥ Tin (wherei ≥ m + 2).

(WLOG, supposefi−1 andfi are honest.) Hence, a benign
link li is falsely accused, and the false positive ratePfp is:

Pfp :=
d

∑

i=m+2

P(Cbad
m+1 < Tin, Cbad

i ≥ Tin|li benign)

≤ d · P(Cbad
m+1 < Cbad

m+2).

(8)

The actualCbad
m+1 andCbad

m+2 values can be represented by:

Cbad
m+1 = (q − ǫ1) · y

Cbad
m+2 =

(

q(1 − q) + ǫ2
)

· y.
(9)

If we can bound

ǫ1 = ǫ2 = ǫ ≤
p2

2
, (10)

then we can guarantee thatCbad
m+1 > Cbad

m+2. Therefore, we
have:

Pfp ≤ 1 − P(ǫ ≤
q2

2
)

= P(ǫ >
q2

2
)

≤ 2e−2y(q2

2)2 .

(11)

Note that in (11), we leverage Hoeffding’s inequality and
the facty ≥ Tin in the false positive cases.

To achieve the desired upper boundPfp ≤ δ, we set the
thresholdTin such that

2e−2Tin(q2

2)2 = δ. (12)

Solving forTin gives

Tin =
2 ln 2d

δ

q4
. (13)

A.2 Proof of Lemma 2

Drop Detection Threshold and Detection Space.False
positives arise when theobserveddrop rate of a benign link
li, denoted byρ∗i , exceeds the drop detection thresholdTdr.
To bound the total false positive rate belowδ, it is sufficient
to ensure that eachρ∗i may exceedTdr with a probability
δi = δ

d
(since we need to ensure the overall false positive

rate
∑

i δi ≤ δ), i.e.,P(ρ∗i > Tdr) < δ
d
, which is equivalent

to:

P(ρ∗i − ρ > Tdr − ρ) <
δ

d
. (14)

By using Hoeffding’s inequality, we have:

P

(

ρ∗i − ρ > Tdr − ρ

)

< 2e−2C
good
i−1 (Tdr−ρ)2

⇒ C
good
i−1 ≥

ln(2d
δ

)

2(Tdr − ρ)2
.

(15)

Recall that thecheck-dropping procedure will detect the
malicious link with excessive drop rate closest to the source,

denoted bylm. So we need to guaranteeC
good
i ≥

ln(2d
δ

)

2(Tdr−ρ)2

for anyi < m. Since we also have

C
good
i ≥ N(1 − Tdr)

i for i < m, (16)

we get:

N =
ln(2d

δ
)

2(Tdr − ρ)2(1 − Tdr)d
. (17)

Analogously, we can also calculate the false negative rate,
which yields the same result.

Malicious Dropping Bound. Suppose a malicious nodefm

closest to the source receivesCrecv
m data packets, but claims

that it receivesCgood
m data packets, and dropsx fraction of

the receivedCgood
m data packets onlm+1. We first have the

following facts:

Crecv
m ≤ C

good
m−1

C
good
m+1 = (1 − x)Crecv

m + β.
(18)

To make neither of its incident links undetected,fm must
manage to satisfy:

Cgood
m

C
good
m−1

≥ 1 − Tdr

C
good
m+1

C
good
m

≥ 1 − Tdr,

(19)

which yields

C
good
m−1 ≥ (1 − Tdr)

m−1N

≥ (1 − Tdr)
dN.

(20)

Solving (18), (19) and (20), we have

x ≤ 1 − (1 − Tdr)
2 +

β

N(1 − Tdr)d

= α.

(21)

A.3 Proof of Theorem 1

(α, β)δ−Statistical Security can directly follow
Lemma 1 and Lemma 2. In the following, we will prove
(Ω, θ)−Guaranteed Forwarding Correctness.

Given N and δ, we can set the drop detection thresh-
old Tdr from Lemma 2 and the injection boundβ from
Lemma 1. Letηfake denote the fake data packets the des-
tination has received but not detected yet, andηleg denote
the legitimate data packets the destination has received out
of N data packets from the source. Then we have:

θ =
ηleg

N

=
C

good
d+1 − ηfake

N
.

(22)

When no fault is detected in the identify stage, it satisfies:

C
good
d+1 ≥ (1 − Tdr)

dN

ηfake ≤ β.
(23)

By (22) and (23), we have

θ = (1 − Tdr)
d −

β

N
. (24)

Finally, we can integrateShortMAC with routing as fol-
lows. The control plane first provides a routing pathp for
the sourceS, and then avoids faulty links using feedback
(fault localization results) from the data plane. In this way,
ShortMAC enables the source to identify the malicious
links that reside in previously explored paths. In a network
with Ω malicious links, the source can bypassat least one
of the malicious links after each epoch until a working path
is found, resulting in an exploration of at mostΩ epochs to
find a working path.

