
Flooding-Resilient Broadcast Authentication for VANETs ∗

Hsu-Chun Hsiao, Ahren Studer,
Chen Chen, Adrian Perrig

CyLab/Carnegie Mellon University
{hsuchunh, astuder, chenche1,

adrian}@ece.cmu.edu

Fan Bai, Bhargav Bellur, Aravind Iyer
General Motors Research

{fan.bai, bhargav.bellur,
aravind.iyer}@gm.com

ABSTRACT
Digital signatures are one of the fundamental security primitives in
Vehicular Ad-Hoc Networks (VANETs) because they provide au-
thenticity and non-repudiation in broadcast communication. How-
ever, the current broadcast authentication standard in VANETs is
vulnerable to signature flooding: excessive signature verification
requests that exhaust the computational resources of victims. In this
paper, we propose two efficient broadcast authentication schemes,
Fast Authentication (FastAuth) and Selective Authentication (Sel-
Auth), as two countermeasures to signature flooding. FastAuth
secures periodic single-hop beacon messages. By exploiting the
sender’s ability to predict its own future beacons, FastAuth en-
ables 50 times faster verification than previous mechanisms using
the Elliptic Curve Digital Signature Algorithm. SelAuth secures
multi-hop applications in which a bogus signature may spread out
quickly and impact a significant number of vehicles. SelAuth pro-
vides fast isolation of malicious senders, even under a dynamic
topology, while consuming only 15%–30% of the computational
resources compared to other schemes. We provide both analytical
and experimental evaluations based on real traffic traces and NS-2
simulations. With the near-term deployment plans of VANET on
all vehicles, our approaches can make VANETs practical.

Categories and Subject Descriptors
C.2.0 [General]: Security and protection; C.2.1 [Network Archi-
tecture and Design]: Wireless communication

∗This research was supported in part by CyLab at Carnegie Mellon
under grants DAAD19-02-1-0389 and W911NF-09-1-0273, and
MURI W 911 NF 0710287 from the Army Research Office, grants
CNS-1040801 and CNS-1050224 from the National Science Foun-
dation, and by support from General Motors through the GM-CMU
Collaborative Research Laboratory. The views and conclusions
contained here are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorse-
ments, either express or implied, of ARO, CMU, GM, NSF, or the
U.S. Government or any of its agencies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiCom’11, September 19–23, 2011, Las Vegas, Nevada, USA.
Copyright 2011 ACM 978-1-4503-0492-4/11/09 ...$10.00.

General Terms
Algorithms, Design, Security

Keywords
Broadcast authentication, flooding resilience, signatures, VANETs

1. INTRODUCTION
Vehicular Ad-Hoc Networks (VANETs) enable inter-vehicle com-

munication to improve road safety and driving experience. For
example, in the Cooperative Collision Warning (CCW) applica-
tion, vehicles exchange their location and speed to avoid accidents
through periodic beacon messages. For efficiency, the Congested
Road Notification (CRN) application enables vehicles in a traffic
jam to alert approaching vehicles of the congestion [2]. VANET
applications rely on vehicles’ On-Board Units (OBUs) to broad-
cast outgoing messages and validate incoming messages. An OBU
should be able to verify a message before the vehicle needs to act
upon it (i.e., before the message’s deadline).
One of the biggest concerns for VANET deployment is secu-

rity. An attacker can not only cause financial loss but also threaten
drivers’ lives. The recent successes in attacking vehicular sys-
tems [8, 20, 35] have demonstrated the need to design vehicular
networks with security in mind. An indispensable security prim-
itive in securing vehicular networks is broadcast authentication,
because it ensures that vehicles only accept messages from legiti-
mate senders and the messages are unaltered during transmission.
In addition to authentication, non-repudiation is required to prevent
vehicles from denying the creation of sent messages and to enable
the report of malicious participants to the legal authorities. Non-
repudiation is especially important for resolving insurance cases
after accidents happened. Though the IEEE 1609.2 standard [15]
achieves both broadcast authentication and non-repudiation using
the Elliptic Curve Digital Signature Algorithm (ECDSA), verifying
every signature using ECDSA causes high computational overhead
on the standard OBU hardware, which has limited resources due
to manufacturers’ cost constraints. A typical OBU with a 400MHz
processor requires 20 milliseconds to verify one ECDSA signature.
Consequently, VANET authentication is vulnerable to signature

flooding, where a vehicle receiving many signed messages in a
short time period is unable to verify all of the messages before
their respective deadline given the vehicle’s constrained computa-
tional power. Despite the significant impact on availability, sig-
nature flooding can be triggered easily even without any malice.
For example, a vehicle having more than five vehicles within radio
range would be overwhelmed by its neighbors’ beacon messages,
sent 10 times per second as dictated by the current standard [15].

193

Such a flooding problem is exacerbated under the presence of at-
tackers and/or multi-hop communication.
In this work, we observe that signature flooding can be miti-

gated by broadcast authentication schemes whose overheads match
the entropy of the broadcast messages. We study this approach in
the context of VANETs and propose two flooding-resilient broad-
cast authentication schemes, FastAuth and SelAuth, for different
VANET applications. Our schemes are based on digital signatures
thus providing non-repudiation. To the best of our knowledge,
prior work on lightweight broadcast authentication either lacks the
non-repudiation property or fails to operate efficiently in dynamic
VANET environments. We briefly summarize our schemes.
Fast Authentication (FastAuth) enables real-time, lightweight au-
thentication by exploiting the predictability of future beacon mes-
sages. In FastAuth, the lower the entropy of a future beacon (from
the sender’s point of view), the smaller the beacon message is. We
design a new structure called chained Huffman hash trees, which
supports a one-time signature scheme whose verification is 50 times
faster and whose generation is 20 times faster than ECDSA. Also,
FastAuth reduces the communication overhead to half.
Selective Authentication (SelAuth) provides fast isolation of ma-
licious senders. As a result, invalid signatures are contained to a
small area, without impacting the rest of the network. SelAuth en-
joys a short convergence time because vehicles intelligently select
which signed messages to verify before forwarding. This selection
is performed in a way that signatures with an unknown state (low
certainty on the validity, or high “entropy”) are more likely to be
checked. Specifically, we propose warning pushback to share in-
formation about flooding vehicles, and forwarder identification to
distinguish benign neighbors from misbehaving ones. The evalu-
ation shows SelAuth imposes 10%–35% computational overhead
compared to other closely related schemes while containing 99%
of invalid signatures to one hop.

Contributions. The main contributions of this work are:
•We identify that the current broadcast authentication standard for
VANETs fails to operate under signature flooding, which occurs
frequently even in benign settings.
•We propose two novel flooding-resilient schemes enabling timely
and efficient signature verification; FastAuth leverages beacon pre-
dictability to secure safety beacons, and SelAuth utilizes neighbor
information to secure multi-hop messages.
• Analytical and experimental results show that VANETs can be
made practical with our schemes, which provide substantial perfor-
mance advantages over prior work.

Organization. Section 2 provides background on VANET settings
and cryptographic primitives. Section 3 presents the problem def-
inition and the threat model. We introduce FastAuth and SelAuth
schemes in Sections 4 and 5, respectively. We then evaluate Fast-
Auth and SelAuth in Sections 6 and 7. Section 8 summarizes the
prior work on broadcast authentication. We conclude in Section 9.

2. BACKGROUND
Before describing our proposed broadcast authentication schemes,

we give an overview of the VANET setting as dictated by the IEEE
1609.2 standard [15] and provide background on basic cryptographic
primitives we use.

2.1 VANET Standard
Public key infrastructure. As proposed by the IEEE 1609.2 stan-
dard, VANETs are required to have a Public Key Infrastructure
(PKI) for key management. Each vehicle has a pair of ECDSA

keys: a private signing key and a public verification key. The
verification key is certified by a certificate authority (CA). Auto
manufacturers or regional Department of Transportation agencies
can act as CAs. Each key pair will then be stored in the vehicle’s
OBU, with tamper-resistant protection to protect the private key
from compromise. To protect privacy and prevent location track-
ing, a VANET-enabled vehicle can obtain multiple certified key
pairs with non-overlapping periods of validity and change its public
key periodically (e.g., every five minutes) [32].
VANET message format. A VANET message contains a times-
tamped message body m, the sender’s signature S(m) on m, and the
sender’s public key certificate.

〈m,S(m),cert〉 (1)

The timestamp states the creation time of this message, which helps
the receiver determine this message’s deadline. A vehicle should
act upon a received message before the message’s deadline. The
signature ensures that the sender is accountable for sending this
message, and thus deters selfish drivers from broadcasting bogus
information for self-interest.
Application types. VANET applications can be classified into two
types based on how frequent messages are sent and the distance
these messages need to be propagated [12]. In single-hop relevant
applications, vehicles periodically exchange beacons with nearby
vehicles that are one hop away from each other. Beacons contain
the sender vehicle’s kinematics information such as position and
velocity to enable timely reaction to unsafe conditions. The IEEE
1609.2 standard instructs vehicles to broadcast beacons 10 times
per second. Message information is obtained from on-board de-
vices such as GPS. Commodity GPS devices can provide meter-
level positioning accuracy and nanosecond-level timing accuracy [1].
Many VANET applications rely on the information embedded in
beacons. For example, in the Cooperative CollisionWarning (CCW)
application, vehicles continuously monitor their neighbors’ current
position and speed to warn the driver of potential accidents. In
this paper, we denote Bt(x) as a beacon sent by vehicle x at time
t. When there is no ambiguity in terms of the sender’s identity or
time, Bt or B is used for brevity. In contrast to the single-hop rele-
vant applications, in multi-hop relevant applications, messages are
sent on demand and to vehicles that are potentially multiple hops
away. For example, when sensing congestion, the Congestion Road
Notification (CRN) application will create a message indicating the
location, time, and congestion level to warn distant vehicles of the
jammed segment.

2.2 Cryptographic Primitives
In the remainder of this section, we provide background on One-

Time Signatures (OTS) and an OTS scheme called Merkle tree sig-
natures. The core ideas of applying OTS to VANET authentication
are detailed in Section 4.
One-Time Signature (OTS). A One-Time Signature [21,27,30] is
a special type of public key cryptosystem whose signature genera-
tion and verification are thousands of times faster than other signa-
ture schemes like ECDSA. However, OTS suffer from longer keys
and signatures (thus higher communication overhead) and their sign-
ing key can only be used once to sign a single message.
For example, to sign a 1-bit messagem, the OTS signer generates

two key pairs: {pk0, sk0} and {pk1, sk1}, where the private keys
sk0 and sk1 are chosen at random, and the public keys are com-
puted as pk0 =H(sk0) and pk1 =H(sk1), where H(·) is a one-way
function without trapdoors, and thus it is computationally infeasi-
ble to recover skb from H(skb). If the message to be signed is 0, the
signer publishes its signature S= sk0. If the message to be signed is

194

h0 h1 h2 h3

h0−1 h2−3

PK h0 = H(v0||r0)
h1 = H(v1||r1)
h2 = H(v2||r2)
h3 = H(v3||r3)
h0−1 = H(h0||h1)
h2−3 = H(h2||h3)
PK = H(h0−1||h2−3)

Figure 1: Example of a Merkle signature tree. The signature of
m= v1 is {h2−3,h0,r1}.

1, then S= sk1. Hence when receiving a signature S on a 1-bit mes-
sage m, the receiver can verify whether H(S) = pkm. In practice,
we can use cryptographic hash functions, such as SHA-1, to imple-
ment such one-way functions. For convenience, in the rest of this
paper, we use the term hash to represent the process as well as the
output of such a one-way function. Signing an x-bit message can be
accomplished by signing each of these x bits separately, resulting
in an overhead linear to the size of the message.
Merkle tree signatures. An alternative to processing each bit sep-
arately is to create a common public key over all possible message
values using a Merkle hash tree, as shown in Fig. 1. The hash tree
root is the public key PK and each leaf is the hash of the concate-
nation of one of the possible message values and a random value.
Each inner vertex represents the hash of the concatenation of its
children. After constructing this Merkle hash tree, the signer can
obtain a signature as follows: the signature of a message vx con-
sists of the corresponding random value rx and all off-path vertices
from the leaf node to the root. Off-path vertices are the siblings
to the ancestors of hx. Merkle signatures provide non-repudiation
because of the computational infeasibility of finding another mes-
sage with the same off-path values. Fig. 1 illustrates the Merkle
hash tree construction representing an OTS to sign a 2-bit mes-
sage, which has four possible values: v0 = 00, v1 = 01, v2 = 10,
and v3 = 11. r0,r1,r2,r3 are random values, and the arrows indi-
cate inputs to the hash function H. Hence the signature of m = v2
is S = {h0−1,h3,r2}. To validate this signature, the receiver re-
computes the root of the hash tree from the received signature S
and the message m. Then the receiver verifies whether the root
equals PK, announced previously by the signer. In this paper, we
use this Merkle signature scheme as a cryptographic primitive to
construct one of our flooding-resilient signature schemes.
Tradeoffs in broadcast authentication. Table 1 shows the over-
head of OTS and ECDSA signatures, which represent two extreme
designs in broadcast authentication: OTS enables fast verification
with expanded signatures, whereas ECDSA signatures are short but
require long verification time. Hence, the challenge is to enable fast
authentication with short signatures.

3. PROBLEM DEFINITION
Our goal is to design signature schemes with fast verification

to mitigate signature flooding in the context of VANETs. Signa-
ture flooding describes a scenario where a large number of signa-
ture verification requests overwhelm the receiver’s computational
resources. We consider signature-based broadcast authentication
schemes that guarantee message authenticity and non-repudiation.
Threat Model. We consider signature flooding caused by “flash
crowds” [16] (i.e., a large number of benign vehicles broadcasting
valid signatures within the victim’s radio range) and by one or more

Per-signature overhead ECDSA-256 OTS
Generation 7 ms 320µs
Verification 22 ms 160µs
Public key size 256 bits 320 hashes (1 hash)
Signature size 512 bits 160 hashes (160 hashes)

Table 1: Signature generation and verification time reported
in VAST [37], assuming signing the SHA-1 hash of a message.
Numbers in parentheses represent the overheads of the Merkle
signature scheme, where the size of one hash is 160 bits in case
of the SHA-1 hash function.

colluding attackers sending invalid signatures. We do not consider
attackers flooding other vehicles with a high volume of valid signa-
tures since the receivers can quickly identify the attackers and then
blacklist them. For a given authentication scheme, the attackers
may also trigger unnecessary message verification by performing
scheme-specific actions. A vehicle under signature flooding may
be unable to verify every received signature before the message’s
deadline due to limited computational resources. Jamming attacks
can also prevent VANET participants from communicating but can
be addressed by jamming defenses [7, 23].
Desired properties. VANET broadcast authentication has two de-
sired properties: non-repudiation and timely verification. With the
non-repudiation property, the recipient can prove to a third party
who is accountable for creating a message. Non-repudiation also
implies authentication, such that the recipient can identify the sender
and detect malicious injection or manipulation of packets. Timely
signature verification is required as well because each VANETmes-
sage has an expiration time (or deadline) by which it should be ver-
ified. Single-hop applications often have a shorter deadline than
multi-hop applications.

4. FAST AUTHENTICATION (FastAuth)
This section presents FastAuth, an efficient One-Time Signature

(OTS) scheme to authenticate beacon messages. The novelty in
FastAuth is the design of a Chained Huffman Hash Tree (CHT),
which leverages the predictability in vehicle mobility to generate
small signatures.
As introduced in Section 2.1, a VANET-enabled vehicle broad-

casts beacon messages at a rate of 10Hz to inform nearby vehicles
of its position and velocity, enabling safety applications to alert
drivers of potential accidents. Every beacon has to be verified upon
its reception because the beacon may contain decisive and urgent
safety information. However, the current VANET signature stan-
dard [15] (i.e., signing every beacon using ECDSA) is computa-
tionally expensive, whereas conventional OTS enables instant veri-
fication with increased communication overhead. Motivated by this
unique challenge, the goal of FastAuth is to achieve fast authenti-
cation with short signatures.

4.1 Insights to Generate Short OTS Signatures
The intuition on how predictability in vehicle movements helps

shorten OTS signatures is as follows. We observe that the entropy
of a beacon is relatively low from the sender’s point of view. In
other words, the sender can predict what will be sent in subsequent
beacons with high probability. For example, the timestamp can be
pre-determined given that beacons are sent regularly (every 0.1 sec-
ond), and the velocity is largely deterministic given the trajectory.
However, predicting the trajectory is non-trivial. It is difficult

to determine a definite future position due to a vehicle’s degrees
of freedom. Fortunately, a prediction is possible because of the

195

following reasons: 1) The laws of physics and road topology re-
strict the possible future locations. For example, a vehicle traveling
slower than 80 miles per hour can move at most 3.3 meters in 0.1s.
2) Most of the time the vehicle is likely to move forward along the
road rather than backward or sideway. 3) Due to the inherent posi-
tioning inaccuracy introduced by positioning devices (e.g., 2 meters
inaccuracy in commodity GPS devices), we can round a location
to a coarser-grained numerical representation to further reduce the
number of candidate locations. For example, rounding location to
meters only inflates the positioning inaccuracy from 2 meters to
2.5 meters, which is still acceptable for safety applications. Con-
sequently, a small number of positions will occur with high prob-
ability and other positions are unlikely. Taking such a probability
distribution into account, we are able to construct a one-time sig-
nature scheme using coding theory to shorten the signatures. Par-
ticularly, FastAuth adopts Huffman coding [14], an encoding algo-
rithm minimizing the expected length of encoded messages. That
is, FastAuth explores a new trade-off point in the design space of
broadcast authentication: the size of a FastAuth signature depends
on how well the signer can predict its own message content.

4.2 Protocol Overview
At a high level, each vehicle in FastAuth divides its timeline into

a sequence of prediction intervals. In each prediction interval, a
vehicle performs three steps: Beacon Prediction, Key Pair Con-
struction, and Signature Broadcast. We provide an overview of
these steps as follows.
Beacon Prediction (Sec. 4.3) At the beginning of a prediction in-
terval, each vehicle predicts its beacon messages for the next I bea-
cons. To do so, vehicles model the probability distribution of the
distance vector between two consecutive beacons based on infor-
mation of the past trajectory. For example, in Fig. 2(a), the vehicle
predicts that it will move forward (Df) with probability 0.5.
Key Pair Construction (Sec. 4.4) Before sending any beacon mes-
sage in this interval, the vehicle needs to construct an OTS public
key and one interval worth of OTS private keys. We propose a
chained Huffman hash tree (CHT), which ties these pre-computed
keys together in a fashion that minimizes the size of signatures and
generates a single public key, as shown in Fig. 2(b).
Signature Broadcast (Sec. 4.5) After beacon prediction and key
construction, a vehicle signs its OTS public key using ECDSA sig-
natures and then broadcasts this ECDSA signed public key PKots
along with the first beacon in this prediction interval. When a ve-
hicle moves to a position Li at time Ti, it sends out a beacon Bi
with this time and position information. Moreover, to maintain a
high beacon update frequency during severe packet loss, we inte-
grate Forward Error Correction [25, 33] into FastAuth to recover
lost beacons.

4.3 Beacon Prediction
Since position is the main source of uncertainty in beacon mes-

sage contents, we discuss how the beacon sender can predict and
encode its own future positions. Specifically, FastAuth requires the
sender to model the probability distribution of themovement (or the
distance vector) between every two consecutive beacons, Bi−1 and
Bi. The output of this step is a prediction table Gi in which each
entry represents one possible movement between time Ti−1 and Ti
and the probability of making this movement.
Representing positions using a local coordinate. To compress
the amount of information, the sender expresses its future positions
using a coarse-grained local coordinate. The origin of this local
coordinate is placed at the beginning position of the current predic-
tion interval (i.e., L0). Then every future position Li in this interval

Prediction table
movement
Df = (1,0)
Dl = (1,1)
Dr = (1,−1)

probability
0.5
0.25
0.25past trajectory

Dl
Df

Dr

!Δy
!Δx

(a) Determine the prediction table.

h1,l h1,r

h1, f

h2,l h2,r

h2, f

PKots ht,d = H(Tt ||Dd ||Rt,d)

Rt,d are random numbers

(b) Construct a chained Huffman hash tree. Each tree corre-
sponds to one future beacon, and each leaf node in a tree cor-
responds to one entry in the prediction table. In this example,
the signer constructs the OTS keys for the next two beacons.

h1,l

h1,l

h1,l

h1,r

h1,r

h1,r

h1, f

h1, f

h1, f

h2,l

h2,l

h2,l

h2,r

h2,r

h2,r

h2, f

h2, f

h2, f

PKots

Broadcast B0 at T0. In B0, m= {T0,L0,PKots,!Δx,!Δy}, S= ECDSA(m)

Broadcast B1 at T1. In B1, m= {T1,L1,R1,r}, S= !

Broadcast B2 at T2. In B2, m= {T2,L2,R2, f }, S= !

Dr

Df

(c) Beacon broadcast. To verify B2, the receiver reconstructs the
tree root for T1 using the information in B1 and B2, and checks if
the root matches the one signed in B1.

Figure 2: Example of FastAuth.

can be approximated by

Li ! L0+ xi!Δx+ yi!Δy,where

•!Δx is a vector parallel with the instant velocity at T0,
•!Δy is perpendicular to!Δx,
• xi and yi are rounded to integers,
• and the scalar of each vector (i.e., |!Δx| and |!Δy|) is chosen by the
vehicle to achieve a desired level of positioning accuracy.
For example, |!Δx| and |!Δy| can be set to 2 meters, which is the

accuracy of commodity GPS devices, because a finer representation
would contain more noise than useful information. Hence, each
movement from time Ti−1 to Ti

Di = Li−Li−1 = (xi− xi−1)!Δx+(yi− yi−1)!Δy

can be encoded as a pair of integers (xi− xi−1,yi− yi−1).
Constructing prediction tables. A prediction table Gi maps a
movementDi in the new coordinate to a probability of making such
a movement. For example in Fig. 2(a), an entry [(1,1),0.25] in the
prediction table means that the probability of moving one unit along

196

!Δx and one unit along!Δy is 0.25. A vehicle may have different pre-
diction tables from other vehicles. The prediction tables can also
vary with time, location, and speed. However, accurately modeling
a vehicle’s mobility is outside the scope of this paper; our focus is
to design a broadcast signature scheme that performs better as the
prediction accuracy increases. For illustration purposes, we discuss
two possible approaches to generate a prediction table in Section 6.
Efficient Probabilistic modeling of future positions. A predic-
tion table models a vehicle’s movement in one beacon interval. By
combining several prediction tables, we are able to model the vehi-
cle’s position not only in the next beacon but in many succeeding
beacons. Let a prediction table Gi be a random variable represent-
ing the distance vector from Li−1 to Li, and thus ∑i=Ii=1Gi is the
random variable representing the movement from L0 to LI .
To see the advantage of encoding movements in a local coor-

dinate, consider a simple scenario where a vehicle either moves
forward 1 unit or stays at the same location during each beacon
interval. In FastAuth, only 1-bit information (moving or staying)
needs to be announced in each beacon. However, without consid-
ering the dependency between beacons, the vehicle has to encode i
possible positions for beacon Bi at T = i, because the vehicle can
be anywhere between position 0 and i.

4.4 OTS Key Construction
Before sending any beacons, a vehicle needs to generate OTS

private keys for signing and the public verification key. Given the
estimated future locations obtained in the previous step, our pro-
posed Chained Huffman Hash Trees (CHT) structure minimizes the
signature size by leveraging Huffman coding.
Combining Merkle and Huffman trees. A Merkle hash tree is a
binary tree in which each leaf is assigned a value and the value for
an inner node is the hash of its children. As discussed in Sec. 2.2,
we can construct an OTS scheme using Merkle trees. Similarly, a
Huffman tree is a binary tree data structure. In contrast to having
values at leaves, each leaf node in a Huffman tree is associated with
a probability. The sum of all leaves’ probabilities adds up to one.
For any pair of leaves in a Huffman tree, the leaf with a higher prob-
ability is never located deeper than the other leaf associated with a
lower probability. Huffman trees provide the property of minimal
expected depth of leaves. Hence, we can integrate these two trees
into one Huffman hash tree, in which each leaf is assigned a proba-
bility p and a value h, since Huffman coding determines the organi-
zation of a tree and Merkle hash construction determines the value
of tree vertices. The tree organization follows the rules of building
Huffman trees and the value of each inner node is determined as in
Merkle trees. In the VANET context, for each entry [Dd , p] in the
prediction table Gt (which means that from Tt−1 to Tt , the vehicle
will move to location Lt−1+Dd with probability p), there is a leaf
in the Huffman hash tree labeled with (p, H(Tt ||Dd ||Rt,d)), where
Rt,d is a random value to prevent signature forgery.
Chaining Huffman hash trees. A CHT contains I Huffman hash
trees linked together to further reduce the computational overhead
in verifying signed beacons. The roots of these trees are chained
together chronologically and the anchor of the chain is the public
key PKots for the current prediction interval. Fig. 2(b) illustrates
the resulting chained tree structure. While the root of a single hash
tree is computed by hashing the concatenation of its two children
lct and rct (roott = H(lct ||rct)), in the chained structure

roott = H(lct ||rct ||roott+1) (2)

for all 1≤ t ≤ I−1. Then the public key PKots, or the hash anchor,
is PKots = root1.

4.5 Signature Broadcast
After constructing the prediction table using a local coordinate

and generating the OTS public key PKots, the vehicle broadcasts
its first beacon containing its public key and the parameters of its
local coordinate system, i.e., the first beacon in a prediction inter-
val is B0 = {m0,S(m0),cert}, where m0 = {T0,L0,PKots,!Δx,!Δy} is
signed using ECDSA.
To sign a beacon for position Li and time Ti, the vehicle locates

the leaf node corresponding to Li and Ti, and broadcasts the off-
path hash values of this leaf as the signature. Off-path nodes are
defined as the siblings of nodes on the path from this leaf to rooti.
Fig. 2(c) illustrates which hashes should be selected as the signature
at each time. The car indicates the leaf associated with the current
time and location. The nodes labeled with “!” are the off-path
nodes that “sign” the current message. In this example, at T1 the
signer has moved to L1 = L0 +Dr, associated with h1,r. Hence,
B1’s signature includes the off-path hashes: h1,l , h1, f , and the root
of the next hash tree, root2. To verify the signature, a receiver of B1
reconstructs h1,r from the message and computes the current hash
tree root, rooti, from the off-path hashes. If the root matches PKots,
the receiver is convinced that the sender moves Dr distance from
T0 to T1 thus being located at position L0 +Dr. Similarly, B2’s
signature is the sibling node of h2, f . Generally to verify signed
Bi, the receiver reconstructs the current tree root, rooti, and checks
whether Equation (2) holds given the hash values in the previous
hash tree.
Dealing with packet loss. One drawback of the CHT structure is
that once the receiver misses a beacon, it cannot verify any subse-
quent beacons in the current prediction interval, because the ver-
ification of the current beacon relies on the root of the previous
beacon. Hence on average missing one beacon prevents verifica-
tion of I/2 beacons. In contrast, when using ECDSA missing one
beacon has no impact on verifying the future beacons. Unfortu-
nately, packet loss is common in wireless networks. Especially in
VANETs, the loss rate can be up to 30% in a benign environment,
and up to 60% in a congested environment [3]. Hence it is impor-
tant to deal with packet loss to reduce the number of unverifiable
beacons. To mitigate the impact of packet loss, FastAuth adds re-
dundancy into beacons using Reed-Solomon coding [33] such that
when a beacon Bi is missing, the reception of u out of the suc-
ceeding w beacons (i.e., Bi+1, Bi+2 ..., Bi+w) can help reconstruct
Bi. Let RS(w,u) be the Reed-Solomon coding process, e.g., encod-
ing Bi using RS(3,2) generates three codeblocks, r1,r2,r3, and any
two of them together can reconstruct Bi. The size of a codeblock is
|Bi|/2. To enable error correction, the vehicle broadcasts r1 along
with Bi+1, r2 with Bi+2, and so on. The higher the loss rate is,
the more redundancy should be added into beacons, which can be
achieved by increasing w/u at the cost of higher communication
overhead. Hence, vehicles can adjust the RS code parameters to
achieve a desired level of performance given an estimated packet
loss rate.
Public key rebinding. PKots is only sent at the beginning of a pre-
diction interval. If a vehicle X encounters vehicle Y after Y broad-
casts its current OTS public key, X will be unable to verify Y ’s bea-
con until the next interval, which may take several seconds and X
could already physically encounter Y . To overcome this drawback,
every IE beacons vehicle Y signs its beacon by ECDSA in addition
to OTS. Hence, the receiver can initiate authentication from this
additional trust anchor. Moreover, this mechanism can bound the
beacon update frequency in face of high loss rate.
Dynamic interval. If a vehicle moves outside the area covered
by its prediction table, the corresponding OTS will not exist in the
CHT. For example, in Fig. 2(c), if the vehicle remains stationary

197

between T1 and T2, no OTS signature exists for B2 due to the ab-
sence of the corresponding entry (i.e., (0,0)) in the prediction ta-
ble. Hence, instead of having a fixed interval, we allow vehicles
to evoke a new predication process whenever the current position
deviates outside the coverage of the prediction table. Terminating
the current prediction interval and restarting a new one greatly in-
creases the computational overhead. Fortunately, early termination
of an interval is unlikely to occur when the prediction table cov-
ers most of the possible displacements in one beacon interval, as
designed in Fig. 4.

4.6 Preliminary Analysis
The bandwidth saving in FastAuth depends on the accuracy of

the location prediction. Hence in the rest of this section we dis-
cuss and quantify how the position prediction accuracy affects Fast-
Auth’s signature size. In section 6 we perform an evaluation using
real traffic traces.
We denote by Φ the trajectory prediction function used by a ve-

hicle, and byLi the actual position of a vehicle at time Ti. Φ(Ti,x)
returns the probability that the vehicle will be at position x at time
Ti. On one extreme, when Φ is a prefect prediction function (i.e.,
Φ(Ti,Li) = 1) the vehicle consumes the minimum possible band-
width because for each beacon the vehicle only needs to send one
hash to acknowledge that it is still moving along the estimated
trajectory. On the other extreme, when Φ outputs a completely
wrong prediction (i.e., Φ(Ti,Li) = 0), the vehicle has to perform
re-prediction and send an ECDSA signed beacon every time.
Nowwe consider a general case whereΦ(Ti,Li) = p (0< p< 1)

with n non-zero values in the prediction function’s input domain
(i.e., n possible movements). An accurate prediction function has
a high p and a small n. To simplify the analysis, we assume ex-
cept Li, every position is associated with the same probability
1−p
n−1 . Also let SΦ(Ti) be the signature sent at Ti and |SΦ(Ti)| be the
size of the signature (in number of hashes). Hence (by Huffman
coding), when p > 1−p

n−1 , |SΦ(Ti)| ! log2 n− log2(pn/(1− p)) !

log2((1− p)/p). On the other hand, if p≤ 1−p
n−1 , |SΦ(Ti)| ! log2 n.

Taken together, we can conclude that an inaccurate prediction func-
tion (i.e., a low p or a large n) results in longer signatures.

5. Selective Authentication (SelAuth)
In Section 4, we presented FastAuth, a signature scheme sup-

porting instant verification of single-hop messages (beacons) by ex-
ploiting the low entropy of beacons. In this section, we switch our
focus to multi-hop VANET applications, in which messages often
traverse multiple hops before expiration. In multi-hop applications,
vehicles only need to check a signature when the message needs to
be acted on (verify on demand). Hence for most messages vehi-
cles can forward them without verification to preserve their lim-
ited computational resources. However, such a verify-on-demand
approach is vulnerable to communication-based denial of service
attacks where the attacker sends a large number of bogus signa-
tures to exhaust the available bandwidth, because a single invalid
signature is likely to be relayed and duplicated many times before
being detected at the destination(s). On the other hand, checking
every signature (Verify-All) blocks invalid signatures as close to
the source as possible but is computationally expensive.
In response to the challenge for designing an efficient verification

scheme for multi-hop applications, we present SelAuth, a signature
verification protocol that can quickly block the spread of invalid
signatures without checking all incoming signatures at every hop.
In essence, we observe that when the receiver knows more about
a received signature, i.e., high certainty (low entropy) on the sig-

nature’s validity, the signature can be checked with a lower proba-
bility. In particular, SelAuth uses neighbor identification to avoid
impersonation and per-neighbor verification probability, adjusted
dynamically as wrong signatures are received, to achieve isolation.
Neighbors of a vehicle can directly communicate with the vehicle.
Let pxy denote the probability that vehicle y checks a packet for-
warded by vehicle x. x and y are neighbors. The goal is to update
pxy so that pxy → 0 for legitimate x, and pxy → 1 for malicious x.
After a short period of time the network should converge to a state
where neighbors of malicious vehicles check everything whereas
others check nothing. SelAuth also uses warning pushback to ac-
celerate the isolation of malicious vehicles.
As in many other probabilistic verification schemes [10, 19, 34,

38], vehicles running SelAuth verify an incoming message with a
certain probability in order to help detect invalid signatures. How-
ever, an important difference is that in prior work such a probability
depends solely on the local status of the receiver, regardless where
this message is from or whether other vehicles have verified this
message. In contrast to having the vehicle at each hop making its
authentication decision independently, SelAuth leverages auxiliary
information shared between neighbors to facilitate the probability
adjustment for fast and efficient isolation.

5.1 Protocol Overview
The core components of SelAuth are forwarder identification and

warning pushback, enabling SelAuth to converge faster than other
probabilistic verification schemes and be more resource-efficient
than the Verify-All approach.
Forwarder identification. Forwarder (or neighbor) identification
enables the receiver of a message to efficiently identify which of its
neighbors sent or forwarded this message. Digital signatures pro-
vide this property but are computationally expensive. As a result,
we achieve forwarder identification using symmetric cryptographic
operations, as described in Section 5.2. Moreover, forwarder iden-
tification holds vehicles accountable for their forwarding behavior
and enables a deployment of per-forwarder verification proba-
bility. For example, if A receives mb forwarded by B and mc for-
warded by C, A will verify mb with probability pba and mc with
probability pca. These probabilities get updated over time; eventu-
ally the links incident to malicious nodes have a high verification
probability, and a bad node that has forwarded too many invalid
signatures is punished by being blocked from communication.
Warning pushback. In SelAuth, vehicles detecting an invalid sig-
nature will initiate a Complaint message to warn vehicles at the
previous hop. If a vehicle at the previous hop agrees, it will issue
a Complaint as well. As a Complaint propagates back to the origi-
nator of the invalid signature, every vehicle that had forwarded this
signature can be warned and then increases its verification proba-
bility accordingly. Hence, it is also called a Pushback message as
it is pushed towards the originator.
Protocol flow. Fig. 3 shows SelAuth’s protocol flow when y re-
ceives a message from a neighbor x. Let pxy be vehicle y’s verifica-
tion probability on messages forwarded by x. WLOG, we assume
y is legitimate and x may be either legitimate or malicious. pxy
is undefined when y is malicious because y can behave arbitrar-
ily. Let [M]x denote a message forwarded by x. [M, IDR]x, where
M = {m,S(m),cert} is a standard VANET message and IDR repre-
sents the one-hop receiver(s): IDR is the target ID for pushback and
IDR = ∗ otherwise for broadcast. y first checks whetherM has been
received before (e.g., sent by another neighbor) and identifies the
forwarder. If M is new and sent by a known neighbor, y checks the
signature S(m) with probability pxy. If S(m) is valid or the check is
bypassed, y rebroadcasts the message and decreases pxy; otherwise

198

y← [M, IDR]x

is M new?

x = known?

x = known?

finish / wait for next incoming message

IDR == ∗?

check(S, pxy)

increase pxy
check(S, 1)

send [M,x]y

send [M,∗]y

increase pay if
a forwarded M

send [M,a]y

decrease pxy

valid
valid

unverified or

invalid

invalid

no

no

nono

yes

yes

yes yes

Figure 3: Flowchart of SelAuth. We discuss how probabilities
are initialized and adjusted in Sec. 5.2.

pxy increases. We discuss the details of probability initialization
and adjustment in Sec. 5.2. If M is a pushback from a known for-
warder complaining about an old message, y checks whether the
complaint is true: if S(m) is really invalid, y finds out who had for-
wardedM to it and increases the probability accordingly; if S(m) is
in fact valid, y increases pxy to punish x for lying.

5.2 Realizing Forwarder Identification
Forwarder identification can be achieved using authentication.

At first glance, this sounds like a circular problem: our SelAuth
authentication scheme relies on forwarder identification, which re-
quires authentication as well. However, the difference is that Sel-
Auth is a signature mechanism for multi-hop applications, whereas
forwarder identification requires only single-hop authentication with-
out non-repudiation, because for forwarder identification, a vehicle
only needs to prove its identity to its one-hop neighbors rather than
a third party.
For such single-hop authentication, a digital signature is too ex-

pensive to generate and verify. Also, FastAuth is inapplicable to
be applied directly because messages in multi-hop relevant appli-
cations are infrequent and hard to predict. Fortunately, we ob-
serve that the TESLA authentication scheme [31] can be applied
here with few modifications. TESLA requires loose time synchro-
nization, which is naturally supported in VANETs where messages
are timestamped with nanosecond accuracy by GPS-equipped ve-
hicles. TESLA constructs self-authenticating one-way hash chains,
in which each value can be authenticated efficiently using the pre-
vious value in its hash chain. The anchor of a hash chain is dig-
itally signed as a root of trust for bootstrapping. Specifically, in
SelAuth, we leverage FastAuth to sign trust anchors, since these
anchors can be pre-computed thus known to the sender before con-
structing beacons. For simplicity, in the following we assume the
hash values are revealed in sequence in beacons, i.e., Bi contains
ai−1 and ai−1 = f (ai), where f is a one-way function. One benefit
of including each hash-chain value in beacons is that a vehicle can
start the forwarder identification process even if the vehicle misses
the initial trust anchor of the hash chain. In practice, hash-chain

values can be sent independently from beacons. A vehicle uses ai
to derived a cryptographic forwarder ID for each packet it sends
between Bi−1 and Bi. A cryptographic ID for a message M sent
between Bi−1 and Bi is MAC f ′(ai)(M), where MAC is a Message
Authentication Code and f ′ is a one-way function different from
f . A cryptographic forwarder ID is appended to its associated mes-
sage to make the message’s forwarder identifiable. After receiving
MAC f ′(ai−1)(M) and Bi, the receiver can be convinced that M for-
warded by the sender of and Bi. Using TESLA for forwarder iden-
tification, SelAuth introduces verification delay because a receiver
has to wait for the disclosure of hash-chain values for verification.
However, a small delay is acceptable in flooding-based multi-hop
communication where timing is not critical.

5.3 Implementation Decisions
Memory-efficient message status checking. To identify previ-
ously forwarded messages, each vehicle maintains one Bloom Fil-
ter [4] for valid messages and one for invalid messages, and keeps
per-neighbor Bloom Filters for unverified messages from each of
the neighbors. Hence when getting a Complaint about a previ-
ously received but unverified message M, the vehicle can identify
the forwarder ofM and increases the probability accordingly. Each
vehicle also keeps a Bloom Filter for Complaints to prevent re-
play attacks that would further increase the verification probability.
Also, the filters are reset periodically to remove stale messages. A
Bloom Filter is a space-efficient data structure enabling fast mem-
bership checking. If a message M has been added into a Bloom
Filter BF , checking BF(M) will always return true (match found);
if a messageM′ has never been added into the Bloom Filter, check-
ing BF(M′) will return false (no match) with very high probability.
It is called a false positive when a Bloom Filter falsely returns a
match. When a false positive occurs, vehicles may wrongly drop
a new message. To prevent malicious vehicles from deliberately
causing more false positives (e.g., by sending out a small number
of properly crafted messages to fill the filter), every Bloom Filter
should be kept private or keyed so that only the owner who picked
the key k can evaluate the function BFk(M). Although false posi-
tives have a similar effect as packet loss, they have a limited impact
on SelAuth because the false positive rate (e.g., 1%) is often much
lower than the packet loss rate (e.g., 30%).
Probability initialization and adjustment. There are many ways
to assign an initial value p0 to pxy and to adjust it after the initial
assignment. For example, a vehicle can assign an identical ini-
tial probability to every newly identified neighbor. The adjustment
function can be linear (the same amount of increment and decre-
ment), MIAD (multiplicative increase and additional decrease), or
a step function (jump to 1 and come back to p0 when receiving a
threshold number of valid signatures). We use a step function as
suggested in the prior work [34] to accelerate the isolation process.
Probabilistic pushback. One invalid packet can trigger more than
one pushback. However, only one pushback is needed to warn of
the bad packet. To avoid unnecessary communication we imple-
ment probabilistic pushback, in which a vehicle y sends a pushback
complaining a packet previously forwarded by x with a probability
1− pxy, in contrast to initiating a pushback whenever detecting an
invalid packet. The idea is that the lower the verification probabil-
ity pxy the more likely that the vehicle x is benign and needs the
warning of the presence of malicious entities, whereas a high veri-
fication probability implies that x may be malicious and thus it will
be a waste to send warnings to x.
Dealing with consistent attackers. To deal with consistent at-
tackers who never send valid signatures, we always verify the first
packet from a newly encountered neighbor. Moreover, if x’s mis-

199

behavior persists, y should block the identified malicious forwarder
by dropping all the traffic from x or invalidate x’s certificate by re-
porting x to an authority.
Delayed verification. On one hand, we want to block invalid traf-
fic from malicious senders. On the other hand, we also want to
retain high throughput by taking advantage of these bad nodes, i.e.,
by permitting them to forward packets. To achieve this, SelAuth
delays the verification of messages from malicious nodes. Delayed
signature verification can help because a vehicle is likely to have
received duplicated messages due to the broadcast nature. De-
layed verification can address the case where a vehicle has only
one neighbor but the neighbor is malicious. Rather than dropping
all packets forwarded by the malicious neighbor and making itself
get disconnected from the network, the vehicle may want to sacri-
fice some security for availability.

5.4 Preliminary Analysis
A full simulation of SelAuth can be found in Section 7. In this

analysis, we consider a simple line model where vehicles are placed
at location 0, l, 2l, · · · . The communication range is ld, so there
are d next-hop vehicles that forward messages ahead. The initial
verification probability is p for all vehicles. The attacker sends n
invalid signatures during each time interval. Hence the probability
that a receiver of the n invalid signatures does not catch any of
them (and thus forward all of the messages) is α = (1− p)n. We
investigate the case with an attacker at the origin. Note that SelAuth
always checks the first message from a new neighbor, and thus the
attacker’s optimal strategy is to behave at the beginning (t = 0) by
sending one valid signature and attacks after t = 1.
To quantify the impact level, let I(t,h) be the expected number

of invalid signatures forwarded at time t by vehicles h hops away
from the attacker. Note that I(t,h) is defined only when 0≤ h≤ t.
Hence we can express I(t,h) as:

I(t,h) = n(α(t−h)hα∑
t−h
i=0)

t−h−i
2 *) = nα1/4(t−h)(t+h+1) (3)

where α(t−h)h represents the probability that none of the vehicles
in the first h hops check the attacker’s packets sent in the first
t − h intervals. α∑

t−h
i=0)

t−h−i
2 * expresses the probability that the h-

hop vehicles receive no pushback from other vehicles. This can be
rephrased as “vehicles between h+ 1 and) t−h−i+12 * hops fail to
check any bad packets sent during the first) t−h−i+12 * intervals”.
Similarly the impact level without the pushback mechanism is:

IFI(t,h) = nα(t−h)h. (4)

The impact level in (3) decreases faster as t increases than in (4), as
the pushback mechanism expedites the containment process.
The analysis shows that SelAuth can converge promptly to a state

where no invalid signatures will be relayed; an attacker at best can
only cause local attacks congesting the neighbors’ wireless chan-
nel within one-hop communication range, in contrast to large-scale
DoS attacks that affect communication multiple hops away.

6. EVALUATION: Fast Authentication
To evaluate FastAuth, we consider a sender vehicle sending bea-

cons and a receiver vehicle receiving these beacons with probabil-
ity 1− ε , where ε is the packet loss rate. The sender moves along
real traffic traces collected by General Motors. The GM dataset
includes four traces and each of them was generated by a vehicle
driving along a 2-mile path for about 2 hours. Though the trajectory
is pre-defined for the purpose of simulation, the sender can only
leverage its past trajectory to predict future location. We simulate

parameter sample value
ECDSA generation time 7ms
ECDSA verification time 22ms
hash operation time 1µs

beacon size 378 bytes
hash size 20 bytes
RS code RS(5,2)

prediction interval (I) 100 (10s)
ECDSA rebinding interval (IE) 20 (2s)

packet loss rate (ε) 0.3

Table 2: Notation and sample values.

33

5

5
55

66

6

7

7

77
7

7

88

8

8

88

99

99

!Δx

!Δy

2 3
5

6

6

7

7

8

8

9

9

9

11

1111

12

13

141414

14

14
14

1414

!Δx

!Δy

(a) default (b) trained

Figure 4: Signature size (in number of hashes) when the vehicle
moves to a particular block.

FastAuth and SelAuth (shown in Section 7) separately to enable a
clearer analysis.

6.1 Evaluation Settings
Table 2 lists the parameters and sample values commonly used

in VANET simulations [11, 37]. In addition to these parameters,
FastAuth requires a prediction table to model future location. In
practice, car manufacturers or VANET application providers can
apply advanced physics models and well-analyzed traffic statistics
to construct the prediction table. For the purpose of simulation,
however, we consider two methods to construct the table. For both,
we build a prediction table large enough to cover most movements
made by a vehicle in one beacon interval (i.e., 0.1 second), given
that the maximum speed limit in US is 80 miles/h or 129 km/h.
The block unit is set to 2 meters given the positioning accuracy of
commodity GPS systems. The first method considers the worst case
where only a default prediction model is available, and allocates
the probabilities using the principle of “the nearer the distance,
the larger the probability”, as shown in Fig. 4(a). The other is
to use the first half of each trace as the training data and evaluate
FastAuth using the second half of trace. For each movement in
the prediction table, its probability is determined by how often the
vehicle made such a movement in the training data. This prediction
table is shown in Fig. 4(b).

6.2 Simulation Results
In this simulation, we discuss the impact of the prediction in-

terval (I), RS coding, packet loss rate (ε), and rebinding interval
(IE) on FastAuth. In particular, we present the performance ratio
of FastAuth to ECDSA. Table 2 summarizes the parameters used
in the evaluation. We evaluate FastAuth using the following met-
rics: 1) sender/receiver computational overhead, 2) communication
overhead (which reflects the accuracy of our location prediction
model), and 3) average beacon update frequency (defined as the
number of beacons successfully verified per second).
Fig. 5 shows the effectiveness of using trained and default ta-

200

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 o
f c

om
m

un
ic

at
io

n

prediction interval (I)

trained, IE = 20
default, IE = 20
trained, IE = 50
default, IE = 50

Figure 5: The effectiveness of trained and default tables as
compared to ECDSA.

bles. Both models enable FastAuth to save more than a half of the
bandwidth compared to ECDSA for I ≥ 10. Interestingly, the de-
fault table performs better than using a short duration (one hour)
of past trajectory as the indicator of future movement, since using
the one-hour past trajectory without context is only a rough estima-
tor. Hence, in the following we evaluate FastAuth using the default
prediction table.
Fig. 6 shows the performance of FastAuth with various RS cod-

ing settings and rebinding intervals. Compared to ECDSA, signa-
ture generation in FastAuth (i.e., the sender’s computation) is 20
times faster and verification (i.e., the receiver’s computation) is 50
times faster. Also the communication ratio is only 20% – 40%.
With a smaller rebinding interval (IE = 20), the beacon update fre-
quency is higher than using ECDSA because of the RS error cor-
rection coding. However, a small IE increases communication and
the sender’s computational overhead. Also, more redundancy in
the error correction code helps improve the update frequency at the
cost of bandwidth consumption.
Fig. 7 shows the impact of the packet loss rate ε on the bea-

con update frequency and the sender’s computational overhead; the
other two metrics are constant with respect to ε . As ε increases,
the ratio of the average beacon update frequency drops and the re-
ceiver’s computational overhead increases. The result shows that
FastAuth provides significant performance advantages even when
ε is abnormally high, and the performance degrades gracefully as
ε increases.
The result confirms that FastAuth can drastically reduce the com-

putational overhead for both the sender and receiver. Specifically,
our signature verification is 50 times faster and signature generation
is 20 times faster than it using ECDSA. The communication over-
head is reduced to 60% as well. Furthermore, FastAuth can achieve
the same level of update frequency as ECDSA with the help of the
error correction and key rebinding mechanisms.

7. EVALUATION: Selective Authentication
To evaluate SelAuth, we compare the performance of five sig-

nature verification schemes in multi-hop networks. We simulate
these schemes using NS-2 [26] with the IEEE 802.11p MAC layer
and Nakagami physical layer model [6], and synthesize vehicles’
traces on a realistic road topology using SUMO [17]. We evaluate
the performance of five signature verification schemes in multi-hop
networks. These five schemes are summarized in the table below:

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 o
f s

en
de

r c
om

p. RS(5,2), IE = 20
RS(3,2), IE = 20
RS(5,2), IE = 50
RS(3,2), IE = 50

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 o
f r

ec
ei

ve
r c

om
p.

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 10 20 30 40 50 60 70 80 90 100

ra
tio

 o
f c

om
m

.

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 0 10 20 30 40 50 60 70 80 90 100ra
tio

 o
f u

pd
at

e
fre

qu
en

cy

prediction interval (I)

Figure 6: Evaluation based on real traffic traces.

scheme probabilistic per forwarder probabilistic
verification probability pushback

SelAuth " " "

Verify-All
FI " "

PB " "

AA [34,38] "

Verify-All is a naive approach in which vehicles verify every incom-
ing packet. Forwarder identification only (FI) uses a per-forwarder
verification probability without pushback warnings, while Push-
back only (PB) provides pushback warnings without a per-forwarder
verification probability (i.e., a shared verification probability for
every neighbor). In Adaptive Message Authentication (AA), neither
pushback nor forwarder identification is supported [34, 38].

7.1 Evaluation Settings
We analyze SelAuth in two scenarios: a linear scenario validat-

ing the performance advantages and a real-world scenario demon-
strating the practicability of deployment. In the linear scenario, 100
static vehicles are placed every 30 meters in a line and an attacker
moves at a constant speed of 10m/s along the line. The simula-
tion time is 50 seconds. The real-world scenario uses a road topol-
ogy reconstructed from a 1km×1km downtown area of Manhattan.
We simulate 336 vehicles with random traffic patterns generated by
SUMO (average speed is 10m/s), and one attacker travels along a
manually selected path to circle within the area. The simulation

201

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ra
tio

 o
f r

ec
ei

ve
r c

om
p. IE = 20

IE = 50

 0
 0.5

 1
 1.5

 2
 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9ra
tio

 o
f u

pd
at

e
fre

qu
en

cy

packet loss rate

Figure 7: The impact of the packet loss rate.

time is 250 seconds, long enough for the attacker to traverse the
entire area.
In both scenarios, every benign vehicle sends one 160-byte mes-

sage/s for multi-hop applications and broadcasts 10 beacons/s to
exchange information about forwarder identification. However, we
do not consider the overhead caused by beacons in our comparison
as the beacon overhead is nearly identical in all schemes. We eval-
uate schemes using three metrics: 1) overall computational over-
head, expressed as the total number of ECDSA verification opera-
tions performed by vehicles during the time span of the simulation;
2) overall communication overhead, expressed by the total amount
of packets sent by vehicles; 3) average hop of invalid packets, re-
flecting the convergence time.

7.2 Simulation Results
Fig. 8 evaluates the convergence speed and the effectiveness of

isolation of each scheme in the linear scenario by inspecting how
far the invalid packet sent at each time can propagate. In this set-
ting the attacker sends packets at a rate of 10Hz and 80% of packets
sent by the attacker are invalid. The simulation lasts for 100 sec-
onds. Fig. 8 shows that in terms of the ability to block invalid pack-
ets, Verify-All > SelAuth > FI > PB > AA. Specifically SelAuth
stops 99% of bad packets at the first hop. Although Verify-All can
perfectly isolate all bad packets but it introduces an unacceptably
high computational overhead as we will describe shortly.
We investigate the performance of SelAuth under different initial

probabilities and attack rates. The initial probability affects over-
all computational overhead and the convergence speed. We also
examine the effectiveness of the signature verification schemes un-
der different sending rates of bad packets. Intuitively, a smart at-
tacker would send valid packets occasionally to avoid detection and
increase the chance of being removed from others’ blacklist. The
reason is that an attacker that has been detected is unable to resur-
gence by sending fake packets only. An easy and effective attack
is to send fake packets probabilistically to avoid being blocked per-
manently by other nodes.
We study how different attack rates affect the schemes and the

result is shown in the first row of Fig. 9. The initial verification
probability is 0.3. The attacker sends 10 packets per second, and
x% of the packets are invalid (x% is the attack rate). Given a con-
stant packet-sending rate (both valid and invalid packets), an at-
tacker with a higher fake packet sending rate can inject more fake

 2
 4
 6
 8

Verify-All

 2
 4
 6
 8

SelAuth

 2
 4
 6
 8

pr
op

ag
at

io
n

of
 in

va
lid

 p
ac

ke
ts

 (h
op

s)

FI

 2
 4
 6
 8

PB

 2
 4
 6
 8

 0 10 20 30 40 50 60 70 80 90 100
time (sec)

AA

Figure 8: convergence speed.

packets but will be blocked by its neighbors for a longer time. In all
schemes, the higher the attack rate, the higher the communication
overhead. However, the average hop of invalid packets decreases.
It confirms the intuition that it is more difficult to launch a stealthy
attack when the attack rate is high.
The second row of Fig. 9 shows the relationship between various

metrics and the initial probabilities for the real-world scenario (re-
sults for the linear scenario is similar so we omit them due to the
space limitation). For the real-world scenario, we simulate differ-
ent schemes in which the attacker’s strategy "performs best" based
on experiments in the linear case. Each data point on the figures
represents the average of 20 runs. The attacker sends one packet
every one second, and 8 out of 10 packets (selected randomly) are
invalid. Generally, a smaller initial probability leads to lower com-
putational overhead but slows down the reaction to invalid packets.
The result shows that SelAuth causes the least computational over-
head and provides close to optimal containment of invalid packets.
In sum, SelAuth has the lowest computational overhead among

all schemes; it consumes only 15% of computational resources
compared to the Verify-All approach. Also SelAuth achieves 99%
of isolation of invalid packets, much higher compared to other prob-
abilistic verification schemes.

8. RELATEDWORK
The most closely related works [15, 34] are compared in Sec-

tions 6 and 7. This section gives a more comprehensive overview
of works in broadcast authentication.
Researchers have explored the design space of broadcast authen-

tication for years in various network settings, from resourceful en-
vironments like the Internet [5,9,10,18,19,29], to resource-limited
and unreliable environments such as sensor networks [24, 31, 38]
and vehicular networks [32, 34, 37]. Despite the diversity in broad-
cast authentication research, the common idea is to minimize the
use of expensive cryptographic operations such as ECDSA digital
signatures. There are two types of approaches: one is to move away
from asymmetric cryptography to symmetric cryptography, and the

202

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ov
er

al
l c

om
pu

ta
tio

n
(#

 o
f v

er
ifi

ca
tio

n)

attack rate

 0

 200

 400

 600

 800

 1000

 1200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ov
er

al
l c

om
m

un
ic

at
io

n
(K

B)

attack rate

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

ho
ps

 o
f i

nv
al

id
 p

ac
ke

ts

attack rate

SelAuth
Verify-All

FI
PB
AA

 0
 20000
 40000
 60000
 80000

 100000
 120000
 140000
 160000
 180000
 200000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ov
er

al
l c

om
pu

ta
tio

n
(#

 v
er

ifi
ca

tio
n)

initial probability

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ov
er

al
l c

om
m

un
ic

at
io

n
(K

B)

initial probability

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

av
er

ag
e

ho
ps

 o
f i

nv
al

id
 p

ac
ke

ts

initial probability

SelAuth
Verify-All

FI
PB
AA

Figure 9: Upper row: the linear scenario with different attack rates. Lower row: the real-world scenario with different initial
probabilities.

other is to reduce the amount of cryptographic work when there is
no (or few) malicious activities in the network.
One-time signatures and one-way hash chains are two lightweight

cryptographic primitives often used in constructing broadcast au-
thentication schemes. As we discuss in the earlier section, one-
time signatures generally provide fast authentication at the cost of
short signatures [9, 21, 27, 30]. Though FastAuth is also based on
one-time signatures, it reduces the size of signatures by leveraging
the predictability of a vehicle’s trajectory. TESLA-based broadcast
authentication schemes build one-way hash chains to authenticate
symmetric keys [13, 31, 37]. However, TESLA-based schemes re-
quire a timestamping server to achieve the non-repudiation prop-
erty. In TESLA, in order to verify packets, the receiver caches all
incoming packets until the sender releases the associated MAC key
that is used to sign these packets. Later on, the receiver can verify
the cached packets using the released key. Such caching and key re-
lease processes prevent TESLA-based approaches from providing
instant verification. Delayed verification is unfavorable in safety-
related applications where the recipient would like to verify time-
sensitive messages immediately. Moreover, even in multi-hop ap-
plications where delayed verification is acceptable, TESLA-based
schemes cannot be applied directly since it is difficult to efficiently
collect a signed trust anchor, which is used to bootstrap TESLA,
from every vehicle.
The other type of efficient authentication schemes generally de-

sign mechanisms with adjustable overhead. Specifically, many works
propose to use selective verification, where only a subset of mes-
sages is validated right upon reception and the rest is assumed valid
until the actual verification is performed [10,19,22,34,38]. Again,
selective verification performs well in some scenarios (e.g., multi-
hop relevant VANET applications) but is inapplicable for others
such as safety applications. For example, prior work has suggested
that vehicles suppress less important beacons [36]. However, send-
ing beacons only when emergency events occur is insufficient and
dangerous because the absence of a beacon could mean either no

abnormal events or that some attacker has successfully suppressed
the beacons. Also, most of the prior work has difficulty in confining
the spread of invalid messages originated by a mobile attacker.
The idea of integrating a Huffman coding tree with a Merkle

hash tree has been discussed in the context of certificate revocation
checking, where such an integration can reduce the size of response
messages from an untrusted certificate repository [28]. However,
since a Huffman hash tree is hard to adjust once being constructed,
the checking scheme cannot handle repository update efficiently.
In contrast, FastAuth, as a one-time signature scheme, inherently
requires a new hash tree for every beacon and thus is free from
such a limitation Also, invalid signature notification [22], an idea
similar to the pushback warnings in SelAuth, has been proposed
to help identify invalid but unverified messages. However, without
teaming with SelAuth’s forwarder identification mechanism, the at-
tacker can abuse such notifications to cause denial of service.

9. CONCLUSION
We design and evaluate two flooding-resilient signature schemes

for VANETs based on the observation that the overheads of broad-
cast authentication should match the entropy of messages. Our
schemes are superior to previous work in their ability to provide
efficient signature verification thus enabling VANET to operate in
the presence of signature flooding. Specifically, FastAuth secures
VANET periodic single-hop beacons by leveraging the beacon pre-
dictability. On the other hand, SelAuth secures multi-hop applica-
tions by prompt attack isolation. We believe that these two broad-
cast authentication schemes can mitigate signature flooding in many
VANET applications. In any case, the techniques we propose in
this paper bring VANETs one step closer to reality, as they enable
resource-constrained devices to verify safety messages, which the
current standard cannot achieve even in benign settings.

203

10. REFERENCES

[1] LEA-6 u-blox 6 GPS modules data sheet, 2010.
[2] BAI, F., KRISHNAN, H., SADEKAR, V., HOLLAND, G.,

AND ELBATT, T. Towards characterizing and classifying
communication-based automotive applications from a
wireless networking perspective. In Proceedings of IEEE
AutoNet (2006).

[3] BAI, F., STANCIL, D. D., AND KRISHNAN, H. Toward
understanding characteristics of dedicated short range
communications from a perspective of vehicular network
engineers. In Proceedings of ACM MobiCom (2010).

[4] BLOOM, B. H. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM 13, 7 (1970), 422–426.

[5] CANETTI, R., GARAY, J., ITKIS, G., MICCIANCIO, D.,
NAOR, M., AND PINKAS, B. Multicast security: A
taxonomy and some efficient constructions. In Proceedings
of IEEE INFOCOMM (1999).

[6] CHEN, Q., SCHMIDT-EISENLOHR, F., JIANG, D.,
TORRENT-MORENO, M., DELGROSSI, L., AND
HARTENSTEIN, H. Overhaul of IEEE 802.11 modeling and
simulation in ns-2. In Proceedings of ACM MSWiM (2007).

[7] CHIANG, J. T., AND HU, Y.-C. Cross-layer jamming
detection and mitigation in wireless broadcast networks. In
Proceedings of ACM MobiCom (2007).

[8] FRANCILLON, A., DANEV, B., AND CAPKUN, S. Relay
attacks on passive keyless entry and start systems in modern
cars. In Proceedings of NDSS (2010).

[9] GENNARO, R., AND ROHATGI, P. How to sign digital
streams. In Proceedings of CRYPTO (1997).

[10] GUNTER, C. A., KHANNA, S., TAN, K., AND
VENKATESH, S. DoS protection for reliably authenticated
broadcast. In Proceedings of NDSS (2004).

[11] HAAS, J. J., AND HU, Y.-C. Communication requirements
for crash avoidance. In Proceedings of VANET (2010).

[12] HSIAO, H.-C., STUDER, A., DUBEY, R., SHI, E., AND
PERRIG, A. Efficient and secure threshold-based event
validation for vanets. In Proceedings of ACM Conference on
Wireless Network Security (WiSec) (2011).

[13] HU, Y.-C., AND LABERTEAUX, K. P. Strong VANET
security on a budget. In Proceedings of ESCAR (2006).

[14] HUFFMAN, D. A. A method for the construction of
minimum-redundancy codes. Institute of Radio Engineers
40, 9 (September 1952), 1098–1101.

[15] IEEE. 1609.2: Trial-use standard for wireless access in
vehicular environments-security services for applications and
management messages. IEEE Standards, 2006.

[16] JUNG, J., KRISHNAMURTHY, B., AND RABINOVICH, M.
Flash crowds and denial of service attacks: characterization
and implications for CDNs and web sites. In Proceedings of
ACM WWW (2002).

[17] K. DANIEL, H., GEORG, R., AND PETER, W. SUMO
(Simulation of Urban MObility) - an open-source traffic
simulation. In Proceedings of MESM (2002).

[18] KARLOF, C., SASTRY, N., LI, Y., PERRIG, A., AND
TYGAR, J. D. Distillation codes and applications to DoS
resistant multicast authentication. In Proceedings of NDSS
(2004).

[19] KHANNA, S., VENKATESH, S. S., FATEMIEH, O., KHAN,
F., AND GUNTER, C. A. Adaptive selective verification. In
Proceedings of IEEE INFOCOM (2008).

[20] KOSCHER, K., CZESKIS, A., ROESNER, F., PATEL, S.,
KOHNO, T., CHECKOWAY, S., MCCOY, D., KANTOR, B.,
ANDERSON, D., SHACHAM, H., AND SAVAGE, S.
Experimental security analysis of a modern automobile. In
Proceedings of IEEE Symposium on Security and Privacy
(2010).

[21] LAMPORT, L. Constructing digital signatures from a
one-way function. Tech. rep., October 1979.

[22] LI, Z., AND CHIGAN, C. On resource-aware message
verification in VANETs. In Proceedings of IEEE ICC (2010).

[23] LIU, Y., NING, P., DAI, H., AND LIU, A. Randomized
differential DSSS: jamming-resistant wireless broadcast
communication. In Proceedings of IEEE INFOCOM (2010).

[24] LUK, M., PERRIG, A., AND WHILLOCK, B. Seven cardinal
properties of sensor network broadcast authentication. In
Proceedings of ACM workshop on Security of ad hoc and
sensor networks (SASN) (2006).

[25] MCAULEY, A. J. Reliable broadband communication using
a burst erasure correcting code. SIGCOMM Comput.
Commun. Rev. 20, 4 (1990), 297–306.

[26] MCCANNE, S., FLOYD, S., AND FALL, K. ns2 (network
simulator 2). http://www-nrg.ee.lbl.gov/ns/.

[27] MERKLE, R. C. A digital signature based on a conventional
encryption function. In Proceedings of CRYPTO (1987).

[28] MUÑOZ, J. L., FORNÉ, J., ESPARZA, O., AND REY, M.
Efficient certificate revocation system implementation:
Huffman merkle hash tree (HuffMHT). Trust, Privacy and
Security in Digital Business 3592 (2005), 119–127.

[29] PANNETRAT, A., AND MOLVA, R. Efficient multicast packet
authentication. In Proceedings of NDSS (2003).

[30] PERRIG, A. The BiBa one-time signature and broadcast
authentication protocol. In Proceedings of ACM CCS (2001).

[31] PERRIG, A., CANETTI, R., TYGAR, J. D., AND SONG, D.
The TESLA broadcast authentication protocol. RSA
CryptoBytes (2002).

[32] RAYA, M., AND HUBAUX, J.-P. Securing vehicular ad hoc
networks. JCS-SASN (2007).

[33] REED, I., AND SOLOMON, G. Polynomial codes over
certain finite fields. J. SIAM 8, 2 (1960), 300–304.

[34] RISTANOVIC, N., PAPADIMITRATOS, P.,
THEODORAKOPOULOS, G., HUBAUX, J.-P., AND
LEBOUDEC, J.-Y. Adaptive message authentication for
vehicular networks. In Proceedings of ACM VANET (2009).

[35] ROUF, I., MILLER, R., MUSTAFA, H., TAYLOR, T., OH,
S., XU, W., GRUTESER, M., TRAPPE, W., AND SESKAR,
I. Security and privacy vulnerabilities of in-car wireless
networks: A tire pressure monitoring system case study. In
Proceedings of USENIX Security Symposium (2010).

[36] SCHOCH, E., AND KARGL, F. On the efficiency of secure
beaconing in VANETs. In Proceedings of ACM WiSec
(2010).

[37] STUDER, A., BAI, F., BELLUR, B., AND PERRIG, A.
Flexible, extensible, and efficient VANET authentication.
Journal of Communications and Networks 11, 6 (Dec. 2009),
574–588.

[38] WANG, R., DU, W., AND NING, P. Containing
denial-of-service attacks in broadcast authentication in
sensor networks. In Proceedings of ACM MobiHoc (2007).

204

