
SPATE: Small-Group PKI-Less
Authenticated Trust Establishment

Yue-Hsun Lin, Ahren Studer, Yao-Hsin Chen, Hsu-Chun Hsiao, Li-Hsiang Kuo,

Jason Lee, Jonathan M. McCune, King-Hang Wang, Maxwell Krohn,

Phen-Lan Lin, Adrian Perrig, Hung-Min Sun, and Bo-Yin Yang

Abstract—Establishing trust between a group of individuals remains a difficult problem. Prior works assume trusted infrastructure,

require an individual to trust unknown entities, or provide relatively low probabilistic guarantees of authenticity (95 percent for realistic

settings). This work presents SPATE, a primitive that allows users to establish trust via mobile devices and physical interaction. Once

the SPATE protocol runs to completion, its participants’ mobile devices have authentic data that their applications can use to interact

securely (i.e., the probability of a successful attack is 2�24). For this work, we leverage SPATE as part of a larger system to facilitate

efficient, secure, and user-friendly collaboration via e-mail, file-sharing, and text messaging services. Our implementation of SPATE on

Nokia N70 smartphones allows users to establish trust in small groups of up to eight users in less than one minute. The example

SPATE applications provide increased security with little overhead noticeable to users once keys are established.

Index Terms—Authentication, security, human factors.

Ç

1 INTRODUCTION

A Decentralized security infrastructure—one that allows
informally organized groups of colleagues to commu-

nicate securely—remains a great idea in theory. In practice,
the idea is not much more accessible now than when it was
introduced decades ago, dogged by the usual concerns:
how to exchange keys, how to manage keys, how to
integrate with existing applications, how to configure
security policies, etc.

Consider the example of secure e-mail. One of the
most mature systems that provides encrypted, authenti-
cated e-mail exchange is PGP, first introduced in 1991.
PGP allows arbitrary pairs of users to exchange e-mail
securely, without the need for centralized administrators.
However, even as the software becomes streamlined
and more popular, nonexpert users still have difficulty

adopting it, struggling with key management and config-
uration of security policies [1], [2], [3].

Another important example is file sharing. Users without
centralized infrastructure like NFS or AFS still wish to share
files selectively with their friends, while hiding those files
from others. Yet recent work shows that popular file-
sharing utilities make configuring security policies difficult,
and that many users inadvertently expose private files to
strangers [4]. Indeed, configuring access-control lists might
be too much to ask of casual users.

In light of these security problems, a growing trend that
offers promise are mobile devices—now more prevalent than
ever with the proliferation of increasingly sophisticated
mobile phones. As a personal agent, mobile phones can
automate most key management and security configura-
tion. Nonexpert users are only required to perform a small
number of well-instructed procedures in order to commu-
nicate securely with another phone owner. However, prior
work fails to efficiently perform authenticated data ex-
change among a group of participants in a decentralized
setting [5], [6], [7], [8], [9]. An efficient authentic exchange
for groups remains a great challenge because wireless
communication is unreliable and insecure; without physi-
cally interacting with each group member, the members
have no guarantee that the group that is physically present
is exactly the group in which members are exchanging
information wirelessly.

This paper introduces the SPATE protocol, and the
SPATE system built on top of it. The use case for SPATE
is a common one: a small ad hoc group meets in person
and wishes to continue collaboration remotely, whether
via secure e-mail, file-sharing, or SMS (text-messaging).
Using current tools, even this simple scenario is vexing for
the average user, requiring baroque, user-visible key
exchange protocols and confusing access control decisions.
The SPATE system, in contrast, takes advantage of device

1666 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

. Y.-H. Lin, Y.-H. Chen, K.-H. Wang, and H.-M. Sun are with the
Department of Computer Science, National Tsing Hua University, 101,
Kung-Fu Rd., Sec. 2, HsinChu 30013, Taiwan, R.O.C.
E-mail: {tenma.lin, iisaintz, khwang0}@gmail.com, hmsun@cs.nthu.edu.tw.

. A. Studer, H.-C. Hsiao, J. Lee, J.M. McCune, and A. Perrig are with
Cylab, Carnegie Mellon University, 4720 Forbes Ave, Cube 2131F,
Pittsburgh, PA 15213.
E-mail: astuder@andrew.cmu.edu, hsuchunh@ece.cmu.edu,
jasonl1@andrew.cmu.edu, jonmccune@cmu.edu, adrian@ece.cmu.edu.

. L.-H. Kuo and B.-Y. Yang are with the Institute of Information Science,
Academia Sinica, No. 128, Academia Road, Section 2, Nankang, Taipei
11529, Taiwan, R.O.C.
E-mail: lorderic.kuo@gmail.com, byyang@iis.sinica.edu.tw.

. M. Krohn is with the Department of Computer Science, Massachusetts
Institute of Technology, Stata Center, G980, 32 Vassar St., Cambridge,
MA 02139. E-mail: krohn@post.harvard.edu.

. P.-L. Lin is with the Department of Computer Science, Providence
University, 200 Chung Chi Rd., Taichung 43301, Taiwan, R.O.C.
E-mail: lan@pu.edu.tw.

Manuscript received 27 Oct. 2009; revised 15 Apr. 2010; accepted 23 June
2010; published online 5 Aug. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org and reference IEEECS Log Number TMCSI-2009-10-0462.
Digital Object Identifier no. 10.1109/TMC.2010.150.

1536-1233/10/$26.00 � 2010 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

mobility and face-to-face meetings to establish trust and
simplify future communication.

The foundation of the SPATE system is the SPATE
protocol, which runs on mobile phones with the objective
of sharing authenticated data among members of a small
group. Participants initiate the protocol by invoking an
application on their phones and indicating the number of
people in the group. The phones then exchange information
via Bluetooth. The danger in this scenario is a Man-in-the-
Middle (MitM) attack, by which a nearby adversary can
inject bogus data into the exchange. To prevent such an
attack, at the end of the protocol, all mobile devices check that
they received the correct number of data items and display a
visual hash function [10], [11] computed over the exchanged
data. The participants check that all devices agree on the
hash. If both checks succeed, then the group participants
have guarantees that: 1) each participant contributed exactly
one data element to the collective, 2) no one outside the group
contributed data, and 3) the data distributed are exactly what
each individual user’s device intended.

The SPATE exchange is agnostic to the type of data
exchanged. In addition to flexibility (i.e., users can exchange
any data), this can improve security. One obvious use for
such a protocol is to exchange public keys, enabling
subsequent secure remote collaboration. In such a scenario,
long-term secrets need not be stored on mobile devices. This
design provides improved security properties when com-
pared to other key exchange protocols (Section 4). Some
applications require their long-term secrets to be stored on
the phone (e.g., our secure SMS application). However, if the
private key remains on the user’s workstation at home, the
loss of a mobile device has zero impact on security.

Device pairing has recently attracted a significant
amount of interest from the research community, fueled
by the proliferation of wireless mobile devices. Prior work
addresses similar key exchanges, but either assumes a
public key infrastructure [12], [13], [14], [15], [16], [17], [18],
cumbersome key-exchange protocols [19], is vulnerable to
malicious bystanders [20], or are restricted to two-party
exchanges [5], [6], [7], [8], [9], [21], [22], [23], [24], [25]. Other
work offers mechanisms optimized for large groups of 10 to
30 people [26]. This work focuses on small groups where
users can accurately count the group size [27]: eight or
fewer. Assuming group size follows a Zipf distribution, the
majority of groups will be within the range covered by the
SPATE protocol.

This paper presents an implementation of the SPATE
protocol as part of a larger SPATE system, filling in the
details of how to generate cryptographic keys, how to move
keys between one’s PC and one’s phone, how to exchange
keys, and most importantly, how to build real applications
that use the exchanged keys. We present three applications:
secure e-mail, secure file sharing, and secure short message
service (SMS/text messaging). These exploit device mobility
to configure useful secure-by-default policies, without
requiring any expert decisions from the users. In the e-mail
example, a Thunderbird Mail plug-in enables encrypted and
signed e-mail communication by default for e-mail sent
among group members after the meeting. The file-sharing
application provides a shared folder among all group
members, which affords read and write access to group

members and denies access to all others. Secure SMS enables
users to securely send short messages between mobile
devices after the meeting. All applications have the crucial
property that security does not require undue inconveni-
ence. We anticipate that our approach will provide a
foundation for bootstrapping secure communication for
current and future applications.

In summary, this paper offers the following contribu-
tions: 1) a description of the SPATE protocol for securely
exchanging data among members of a small group, 2) an
implementation of the SPATE system on mobile smart-
phones, and 3) three realistic applications that demonstrate
how SPATE enables practical secure-by-default operation.

2 PROBLEM DEFINITION

When meeting face to face, a group can trust that what they
see and hear from other group members have not been
modified by a malicious party. Once the group disperses,
members would like to continue to have that same level of
trust for intragroup communication. Collecting authentic
data (i.e., public keys and application-specific data) from
other members of the group can facilitate such secure
communication. Most security applications have already
been designed to handle public keys (e.g., X.509 certifi-
cates), while other applications can leverage public keys to
setup shared keys or passwords within the group. How-
ever, for ease of use, some applications may want to share
additional information (e.g., e-mail or IP addresses to
simplify contacting other members or sharing data within
the group). Once groups have a way to exchange authentic
data in person, secure collaboration is possible without
requiring members to trust a third party.

According to Chen et al. [26], an exchange of authentic
information within a group produces a set of data that must
fulfill the following three properties:

1. Consistent: Every group member acquires the same
set of data.

2. Exclusive: Only group members’ data are in the set.
3. Unique: Each member only contributes one data

element to the set.

In addition, the exchange protocol should place limited
expectations on the users. Humans are impatient and are
inaccurate when comparing numbers [25]. To avoid
frustrating users, an exchange protocol should run quickly
with only a small number of interactions (e.g., taking
pictures of or shaking devices) between group members
(i.e., for n members a total of OðnÞ total interactions). To
avoid human errors, the exchange should facilitate user-
friendly comparisons, rather than requiring several users to
compare hexadecimal digits.

2.1 Assumptions

In this work, we make assumptions about the hardware and
software available on members’ mobile devices, the absence
of malicious software (malware), the probability of human
error, and the user’s diligence for securing private asym-
metric keys.

We assume users’ mobile devices are equipped with
Bluetooth radios, a color display, a camera, and an installation

LIN ET AL.: SPATE: SMALL-GROUP PKI-LESS AUTHENTICATED TRUST ESTABLISHMENT 1667

of our SPATE software. Commodity smartphones can
provide all of these hardware requirements.

We assume that group members’ mobile devices and
workstations (e.g., desktop or laptop) are free of malware. If
malware existed on either system, a malicious party could
subvert any data distributed or collected during a SPATE
exchange. Malware is a serious threat, but is orthogonal to
the authentic exchange of data in groups.

We also assume that humans can count and compare
images correctly within small groups of two to eight
members. Prior studies have shown that users can
accurately perform such tasks in small groups [27].
However, in groups of more than 10 members, counting
errors become more common.

We assume individuals keep their private keys secret. If
a user were to publish their private key or share it with
other users, that key no longer provides authentication.

2.2 Trust Model

SPATE’s trust model is built upon physical interactions via
mobile devices. Having exchanged messages via the
devices, user Ua with mobile device Ma trusts a message
from Mb if two conditions are satisfied: 1) Ub is physically
located in the same place as Ua and 2) the message (or an
unforgeable representation of the message) displayed on
Ma’s screen is identical to the one on Mb. Users can visually
verify both conditions. Therefore, users only trust messages
they have directly received but not those relayed by
someone else.

We now briefly contrast SPATE’s trust model with
Public Key Infrastructure (PKI) and PGP’s web-of-trust.

PKI. A PKI certificate authority issues certificates that bind
users’ digital identities to public keys. The certificates are
unable to bind a user’s physical identity to a public key. When
exchanging public keys in a PKI, a user needs to present his
certificate as proof of the authenticity of an exchanged public
key. The security property relies on a shared trusted
authority, which may not exist in many settings.

PGP. In a PGP key-signing party, user Ua signs a PGP
certificate that binds a public key with another user Ub’s
identity—if Ua believes the identity claimed by Ub. If user Uc
trusts Ua, Uc will accept the Ua-signed certificate as a
credential for Ub, without interacting with Ub.

SPATE is different in that we do not trust any third party.
We assume a stronger trust model where users only trust a
public key acquired through direct physical interaction with
another user.

2.3 Attacker Model

Attackers can eavesdrop, intercept, and manipulate any
message transmitted over the Internet and wireless net-
works. The attacker can also form a coalition of several
group members (insiders), who have control over their own
private keys and devices.

The attacker’s goal is to manipulate the exchanged data
without being detected. Manipulation includes deletion of
users’ data or modification of existing data. Note that the
goal of colluding attackers is to manipulate the data of
benign users. Modifying data of other colluding attackers is
not considered an attack. An attacker can also contribute
bogus data (e.g., another user’s public key). However,

without the corresponding private key, the impersonator
will be unable to perform the operations necessary to
assume the victim’s identity online (i.e., decrypt or sign
data with the appropriate private key).

The attacker can also jam the wireless channel or insert
junk data as part of a denial-of-service (DoS) attack.
However, we do not consider DoS attacks because they are
detectable (users can tell if the protocol aborts or gets stuck
abnormally) and cannot alter any data being exchanged.

We consider computationally bounded attackers who
cannot break basic cryptographic primitives. Hence, keys
cannot be recovered from signatures, and there is a hash
function hðÞ that for all intents and purposes behaves as a
random oracle. But an attacker can brute-force solutions to
“small” problems, such as finding M where hðMÞ ends with
any given 24 bits.

3 BACKGROUND ON HASH COMPARISONS

Protocols that operate with collocated users often require
individuals to compare checksums to ensure successful
setup or authenticity of exchanged data [28], [29], [30]. For
such comparisons, researchers would like a mechanism that
is simple for humans, computationally efficient, and has a
quantifiable level of security.

Traditionally, such protocols require users to compare a
sequence of hexadecimal digits. Hexadecimal digits are
computationally efficient to generate and contain a fixed
amount of entropy (4 bits per digit). However, humans
trying to quickly compare digits often make mistakes (e.g.,
confuse an 8 for a 0) [25].

Given humans’ inability to accurately and quickly
compare digits, researchers have proposed using text [31],
[32] or visual [10], [11] representations of these checksums.
The “Loud and Clear” system [32] expresses hashes as
syntactically correct sentences, while the UIA system [31]
expresses hashes as sequences of dictionary terms (e.g.,
“meals - abut - yuck”). The entropy of the words is easy to
calculate given the size of the dictionary from which the
sequence of words is selected. In addition, looking up
words in a dictionary is computationally efficient. How-
ever, comparison of words may still require significant user
effort as a quick glance at the words may not suffice to
facilitate an accurate comparison.

Humans are good at quickly detecting differences in
images, so visual representations of the checksums present
one promising comparison mechanism. “Random Art” [11]
and “Flag” [10] express hashes as visual images. Random
Art contains an unknown amount of entropy, making
security analysis difficult, and is computationally expen-
sive, requiring around 10 seconds to generate an image on a
mobile device [26]. Flags [10] represent an efficient
alternative. However, their images contain limited entropy
and lack reference points. Such reference points are
important when comparing Flags across mobile devices
where screens are often rotated.

3.1 T-Flags for Hash Comparison

For this work, we have developed a new scheme, T-Flags,
which contains nearly twice the entropy of the original
Flag, includes a visual cue to help users quickly determine

1668 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

the proper orientation during comparison (Section 7 gives
examples), and only requires around 60 ms to generate on
a mobile phone. In this work, we limited ourselves to
3 bits for eight colors per rectangle.1 With eight rectangles
per T-Flag, a T-Flag contains 24 bits of entropy.

To select eight maximally distinct colors, we need to select
colors that appear different independent of display settings
(e.g., contrast or brightness) or color blindness. Based on
human perception, Glasbey et al. deduce 11 maximally
distinct colors [33]. To address color blindness, we elimi-
nated Green. We thus select the following eight colors: Black,
Gray, White, Yellow, Light Pink, Red, Blue, and Brown.

4 PREVIOUS WORK

This work is preceded by protocols that establish authentic
information between two devices, which is often referred to
as “pairing.” Proposed strategies include: password entry
on one or both device(s) [28], [30], string comparison that
uses the human as a channel to ensure authentic exchange
of information [28], [29], [30], [34], audio-based comparison
where the human user compares the strings via audio
representation [32], visual-based comparison of graphics
that encode data [10], [11], shaking devices to create shared
entropy pools [5], [6], [35], common properties of the
wireless channel to establish authentic or secret information
[22], and location-limited channels [21], [23], [24].

Closely related to the SPATE exchange is GAnGS [26].
Both attempt to distribute authentic information within a
group of physically collocated users. However, GAnGS is
designed only for the exchange of public keys and requires
the installation of the private key on the user’s device. In
addition, SPATE is more efficient in that users are required
to perform fewer total interactions in the absence of
infrastructure. Specifically, for N users SPATE requires
N interactions while GAnGS requires 3N .

Within the PGP community, key signing parties maybe
held to authenticate groups of users [19]. The purpose of a
key signing party is to extend the web of trust: users gather
in a physical location to verify the identity of other
attendees (e.g., using a passport or driver’s license) and
sign the PGP certificates linking attendees’ names and
public keys. The proposed methods are suitable for forming
groups, but cumbersome. Attendees print their names and
key fingerprints on slips of paper, to be verified manually
by other attendees. Alternatively, a coordinator compiles a
list of attendees in advance, and each attendee must be
verified at the party. For large groups, comparing each
attendee’s key fingerprint is awkward and error-prone.

Researchers have also proposed numerous key agree-
ment protocols for groups, which rely on a PKI that issues
certificates to each user [12], [14], [15], [16], [17], [18]. These
protocols all assume a common trusted certification
authority (CA). The CA is needed so that group members
can authenticate other members’ certificates. Unfortunately,
this assumption is invalid in many settings. Different
organizations may not have any trusted authorities in
common, or group members may lack certificates entirely.

The SPATE exchange is complementary to PKI-based
schemes, as it can be used to establish the authenticated
certificates needed to set up a group key.

Other works have examined key agreement protocols for
groups, which rely on string comparison or shared pass-
words [20], [36], [37]. In contrast to SPATE, all of these
schemes aim to establish a shared secret between the group
members. After SPATE is used to exchange authentic public
keys, it is possible to set up a shared secret within the group
using any of the PKI-based schemes. However, a shared
secret lacks the properties needed to distribute authentic
public keys within a group. Specifically, with only a shared
symmetric group key, any member can generate a message
authenticator and thus it is impossible to tell which user truly
was the source of a message (i.e., member A can claim Kþ is
member B’s public key and use the shared group key to
produce the correct authenticator to support that claim).
Also, many prior works do not implement their schemes in a
real-world system, which elides numerous practical issues.

Identity-Based Encryption (IBE) [38], [39] is another
method to distribute public keys. In such a system, a
subscriber’s identity, e.g., e-mail address, is her public key.
With IBE, distributing public keys is easier than when using
conventional PKI systems; instead of needing certificates,
participants only require the correct identity of the other
party. However, like traditional PKIs, IBE requires a shared
trusted authority.

Finally, there is research using location-limited channels
to exchange keys [13], [21], [24]. Talking to Strangers [21]
and Capkun’s work [13] use demonstrative identification
over a location-limited channel (e.g., infrared) to exchange
authenticated public keys. Talking to Strangers maybe used
for groups, but it lacks a step for member verification.
Thus, the scheme is vulnerable to malicious members who
mount Sybil attacks; the multiple identities of one member
would go undetected. Capkun’s work only discusses how
to establish a security association between two devices
which physically interact or share a trusted “friend” (much
like PGP’s web-of-trust). The Resurrecting Duckling proto-
col [24] leverages a direct physical connection between
devices for key setup. In the protocol, a mother duck (i.e.,
the group leader) defines and distributes a key to the
ducklings (i.e., the other members of the group). During
setup, a policy is uploaded. The policy specifies what
actions a duckling will take. Thus, the mother duck’s policy
can direct the ducklings to support group communication.
Unfortunately, this requires that the mother duck is
completely trusted. In addition, there are several practical
issues with using Resurrecting Duckling for groups. First,
imprinting ducklings is a sequential operation. Every
duckling needs to touch the mother duck, and she becomes
a choke point in the group formation process. Second, the
scheme requires a special interface that supports physical
contact. Finally, like most other group schemes, Resurrect-
ing Duckling has not been implemented in a real-world
system to the best of our knowledge.

The field of Computer-Supported Collaborative Working
(CSCW) is closely related to many of the applications that
would use SPATE. After a group meets and performs a
SPATE exchange, the next logical step is to use CSCW while
the group is physically separated. Within the CSCW field,
little has been done about how to secure applications. Foley
and Jacob [40] described a formal language for defining

LIN ET AL.: SPATE: SMALL-GROUP PKI-LESS AUTHENTICATED TRUST ESTABLISHMENT 1669

1. Ellison and Dohrmann [10] use six bits representing 64 colors per
rectangle, but with so many colors slight differences in shade may lead to
errors during comparison.

security requirements in CSCW, but ignored how to enforce
those requirements. SPATE presents one potential way to
enforce them.

5 SPATE

SPATE is a system that provides a foundation of trust for
secure applications. SPATE relies on visual channels and
physical interactions rather than preexisting trusted infra-
structure (i.e., PKI) or transitive trust (i.e., PGP) to
authenticate data. Our key insight is the use of mobile
devices and human interaction to convert physical interac-
tion into digital trust. A group of users who successfully
complete the SPATE protocol are guaranteed to have
identical and authentic copies of data. The data can be
anything, e.g., public keys, IP addresses, public-key
certificates, or e-mail addresses. The authenticated informa-
tion can be the basis for a host of different secure
applications. For example, to send an encrypted message,
the sender needs to know the correct public key and e-mail
address of the receiver.

5.1 SPATE Protocol Overview

The SPATE protocol is designed to allow a group of users
that meet in person to exchange data which later forms the
basis of trust for an application. People often carry their
phones or other resource-constrained mobile devices, but
may leave their main workstation (i.e., desktop or laptop)
elsewhere. As such, we have designed the SPATE exchange
to run on mobile devices because they will be present when
people physically meet. When security applications and the
SPATE exchange are run on different devices, a mechanism
is needed to transfer the data between the device and the
machine. SPATE thus consists of three steps to allow
operation of our secure applications: 1) the one-time
creation of application-dependent data and imprinting the
data on the mobile device, 2) exchange of authenticated
data with other users, and 3) retrieval of data from the
mobile device. Fig. 1 depicts these three steps.2

1. Creation and imprinting of data. During the creation
and imprinting of data, a workstation (laptop or
desktop) is used to create and transfer a user’s data.
For our prototype, the user’s data (d) is a self-signed
certificate containing the user’s name, e-mail address,
public key, and other application-specific data. In
general, SPATE users can exchange arbitrary data of
their choosing. To securely transfer d from the
computer to the mobile device we use standard
Bluetooth pairing techniques [28] to setup a secure
channel between the two. Initially, pairing requires
the user to copy a passkey from the computer to the
device. Once the two have been paired, files can be
securely transferred between the two. We chose to
use Bluetooth simple pairing since users may have
already paired their mobile device with their com-
puter (e.g., to exchange calendar or contact informa-
tion). Given that a secure mechanism for the

exchange of data already exists, users may view a
SPATE-specific transfer mechanism as unnecessary
and cumbersome. If the workstation lacks a Bluetooth
adapter, users can utilize a USB cable or any other
direct connection to securely transfer data. We avoid
using the Internet to imprint data because of
networking and security issues. On current networks,
mobile devices and most home computers are behind
Network Address Translation services which prevent
direct connections, stopping either the device or the
workstation from acting like a server. Without
additional setup, communication on the Internet is
vulnerable to Man-in-the-Middle attacks where a
third party modifies the data.

2. Exchange of authenticated data. Authenticated
exchange within a small group in SPATE involves
four steps:

a. selection and counting,
b. commitment,
c. distribution, and
d. verification.

In the first step, each user selects the data she wants

to share with the other group members and indicates

to the device the number of physical members in the
group (i.e., the group contains N people). Once the

device knows the number of members and the data
the user wishes to exchange, the device automatically

performs the commitment and distribution steps.
After the device checks that the received commit-

ments agree with the distributed data, the device

computes a T-Flag representation of the received
data. To verify that all of the physically present

participants have the same data, users compare the
T-Flags displayed by their devices. If everyone has

received the same data, the T-Flag on each device
should be identical. Section 5.2 contains more details

on how a SPATE exchange is performed.

1670 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

Fig. 1. Steps associated with a SPATE exchange between Users A, B,

and C. Shown from the perspective of User A.

2. If the security application runs on the user’s mobile device, the data
always reside with the application, removing the need for imprinting or
retrieving the data (Steps 1 and 3).

3. Retrieving data from the device. After the user has
completed the SPATE exchange, the last step is to
upload any collected data from the user’s mobile
device to the user’s workstation. Uploading data
from the mobile device to the workstation is similar
to the creation and imprinting step: the two devices
pair or use an association from a previous pairing to
establish a secure channel which is used to transfer
the collected data.

5.2 SPATE Exchange of Authenticated Data

For applications where a user interacts with other users and
requires trust, users need to obtain authentic data from the
other users. Each user could pair with every other user to
securely exchange data. However, a pairwise protocol is
inefficient in that OðN2Þ pairs are needed for a group of
N users. The following protocol allows a group of N users
numbered 1 . . .N to exchange authentic copies of data
d1 . . . dN (where di is user i’s data) with OðNÞ interactions.
Fig. 2 presents an outline of the steps of the exchange protocol.

In a SPATE exchange of authenticated data, the end goal
is for each group member to have collected an authentic
copy of every other member’s data. This exchange consists
of four major steps: selection and counting, commitment,
distribution, and verification. To ensure authenticity, each
user must count only the number of group members
present and to perform a final comparison of T-Flags. The
mobile devices perform all other steps associated with
committing to, broadcasting, and verifying data without
requiring any human interaction. It is important to note that
the SPATE exchange requires no encryption or signing. As
such, unless the user wants to run an application on the
device that requires the private key, all of a user’s secrets
remain on their workstation. With all of the secrets on the
workstation, a lost device has zero impact on security. This
is more secure and computationally efficient than other
protocols (described in Section 4) where the device must
perform private key operations.

5.2.1 Selection and Counting (Steps 1-2)

The SPATE exchange begins with each user selecting the
data the user wishes to share (data di for user i) and entering
the number of users present in the group (here, we represent
the user-supplied number as ~N). Both of these items require
human intervention. The data to be shared are application-
dependent and depend on how the user wants to interact
with the other group members. The user must enter the
number of physical members in the group. If the device were
to simply count the number of messages it receives, a party
outside the group could inject wireless messages and
infiltrate the group.

5.2.2 Commitment (Steps 3-6)

Once the device knows what data the user wants to share
and the size of the group, the device generates two
commitment [41] values: a protocol commitment and a data
commitment. With two separate commitments, SPATE
prevents attacks and limits the impact of human errors,
unless all group members make a mistake. To generate the
protocol commitment, the device generates a random
number or nonce (i.e., mobile device i generates ni) and
hashes the nonce (pi ¼ hðniÞ). The device hashes the protocol
commitment with this device’s data to generate the data
commitment (see Step 3). Without the data commitment, an
attacker can modify data from some group members without
being detected during verification [42]. During such an
attack, the malicious party would wait until all but one
group member had broadcast their data. The attacker would
replace the last user’s data (dN) with a different d0N such that
T-Flagðhðd1k . . . kdNÞ ¼ T-Flagðhðd1k . . . kd0NÞÞ. With knowl-
edge of d1 to dN�1 and only 24 bits of entropy in a T-Flag, an
attacker could find such a d0N in a few seconds.

The protocol commitment ensures that if at least one user
correctly compares T-Flags within the group, SPATE fulfills
the three properties of an authentic group exchange (even if
some members are lazy and skip the comparison step). Our
prior work contains more details about this use of
commitments [43]. The device records its nonce, protocol
commitment, data, and data commitment as the initial
members in a set of nonces, protocol commitments, data,
and data commitments for this group: sets IN; IP; ID, and CC,

LIN ET AL.: SPATE: SMALL-GROUP PKI-LESS AUTHENTICATED TRUST ESTABLISHMENT 1671

Fig. 2. Steps for user Ui (i 2 1 . . .N) to exchange data di with the

other N � 1 users via mobile devices. Ui�!
UI
Mi indicates inputs over

the user interface from user Ui to their mobile device Mi. Any other

transfer of data (e.g., Mi ! �) indicates wireless communication.

respectively. After generating these values, the device
broadcasts the data commitment to the rest of the group
(Step 4). At the same time, the device is receiving data
commitment broadcasts from the other group members
(Step 5), and adding the received commitments to its set of
data commitments (CC). If the device receives fewer than
~N data commitments before a timer threshold, either the

user miscounted or a malicious party is preventing a device
from contributing its commitment. In such a case, the
protocol quits, since at least one of the ~N devices has failed
to contribute a data commitment. If the device receives
more than ~N commitments, either the user miscounted the
size of the group, or a malicious party has inserted
additional commitments. In such a scenario, the protocol
quits and any data are discarded as invalid.

5.2.3 Distribution (Steps 7-8)

Once each device has received the correct number of data
commitments, devices can begin to exchange data. The
device broadcasts its data and the protocol commitment
used to generate its data commitment (Step 7). At the same
time, the device receives the other devices’ data values and
protocol commitments and adds those values to the
respective sets (Step 8).

5.2.4 Verification (Steps 9-15)

Once a device has received the entire set of data, data
commitments, and protocol commitments, the verification
stage of the protocol begins. The device verifies that the
data and protocol commitments match the original data
commitments (Step 9) by comparing the data commitment
with the hash of the received nonce and protocol
commitment.3 Provided all of the data commitments are
correct, all that remains to ensure authenticity is for the
device to verify that the values it received match the values
the other devices received and that the other devices
received its data. To verify each member’s device received
the same information, each device displays a T-Flag which
represents the hash of the data commitments, data, and
protocol commitments exchanged during the protocol
(Step 10). At this time, the group members will compare
the T-Flags on the devices’ screens and indicate to their
device if “All N T-Flags Match” or if “Some T-Flags Differ”
(Step 11). The use of commitments and a final comparison
where users verify the T-Flags on every device match
ensures with high probability that all of the devices in the
group received the same information. With a T-Flag
containing 24 bits of entropy, the probability of the same
T-Flag on each device with different underlying data is
2�24. (Our prior work contains a security analysis [43].)

Impatient group members may click “All N T-Flags
Match” without looking at the T-Flags in the group. In
SPATE, the use of protocol commitments and nonces allows
the actions of one or more diligent group members to protect
such impatient users from saving incorrect data in the case of
an attack. After a user indicates the T-Flags agree, the device
will reveal its nonce (see Step 12) and expect to receive the
correct nonce from the other N � 1 group members (see

Step 13) before the device saves ID. An incorrect n is an
indicator that a member indicated “Some T-Flags Differ” and
dictates that members should discard ID since ID is
inconsistent across some of the devices.4 An incorrect nonce
can be detected by comparing the hash of the nonce to the
associated protocol commitment (see Step 14). When all
N nonces are correct, every group member agrees that “All
N T-Flags Match,” and every device will save ID. The nonces
ensure that any saved data fulfill the three properties needed
for authentic information exchange within a group, even if
N � 1 or fewer group members click “All N T-Flags Match”
without even looking at their devices.

SPATE guarantees authentic information exchange if at
least one member correctly compares T-Flags within the
group. When all members are impatient to check the
consistency of T-Flags, an addition to the SPATE verifica-
tion step (between Steps 11 and 12) can prevent the device
from saving bogus data as follows: SPATE periodically
instructs the device to display a challenge T-Flag, chosen at
random, before displaying the original T-Flag which
represents the hash of the exchanged information as shown
in Step 12. SPATE ensures that devices with an identical
copy of data (i.e., hðCCkIDkIPÞ) switch to the challenge phase
together. Because the challenge T-Flags are chosen at
random, they will be different within the group with high
probability (1� 2�24ðN�1Þ). As a consequence, some users
must report “Some T-Flags Differ” in the challenge phase,
in which case SPATE proceeds to show the original T-Flags
(Step 12). On the other hand, SPATE aborts if all users click
“All N T-Flags Match” without even looking at the display.
Despite reducing the impact of human errors, this change
requires an additional round of T-Flags comparison and
broadcast, thus increasing the protocol runtime.

6 APPLICATIONS

The SPATE system allows users to exchange public keys in
a secure and convenient way. To demonstrate the useful-
ness of the SPATE system, we design and implement three
applications on top of SPATE. In this section, we present a
high-level overview of a secure e-mail application, a secure
file-sharing application, and a secure short message service
(SMS). In the following sections, we present our implemen-
tation and evaluation.

6.1 Secure E-Mail

In an ad hoc group meeting, people may exchange their
physical business cards, or simply e-mail addresses, to
enable subsequent communication. Each group member
needs to distribute her cards to all the other group
members, and she will receive a different business card
from each of the other group members. Not only does
distributing physical cards consume time and resources, but
each user then needs to enter the received information into
her digital address book later. Distributing vCards [44]
using Bluetooth wireless communication may save time by
eliminating typing, however, it requires pairwise Bluetooth
pairing to provide any authenticity guarantees for the

1672 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

3. To ensure the proper protocol commitment, data, and data commit-
ment are compared, all sets are ordered with respect to a unique sender
value (e.g., Bluetooth or MAC address), as opposed to the value of the
element.

4. A malicious party can inject an incorrect number to force members to
discard data, but this is only a denial-of-service attack.

received information. This approach does not scale: even for
small groups with eight users, there are 28 pairs.

Our secure e-mail application provides a convenient
mechanism for importing other users’ public keys and e-mail
addresses. Using the secure e-mail application, a user can
imprint a self-generated X.509 public key certificate from
their workstation onto their mobile device. During the
exchange of authenticated data, she will obtain other users’
certificates. When she retrieves the collected certificates, the
application will extract the e-mail addresses and names from
the certificates and automatically import them into the
application’s address book. Then, the user can send secret
and authentic e-mails. Our application is built as a plug-in to
Thunderbird [45], enabling simple adoption.

We can summarize the features of the secure e-mail
application as follows:

1. Convenient to import contacts. The user does not
have to perform any operation per received
certificate. The uploading process is fully batched
and automated.

2. Authenticated and confidential e-mail. We provide an
alternative to PGP- and PKI-based solutions. Thanks
to the physical contact between human users, we can
assert that the contact information and public key
that a user received is from the person she met.5

3. Compatible with an existing mail client. Thunderbird is
one of the most popular POP/IMAP e-mail clients.
Existing Thunderbird users can adopt our applica-
tion by installing it as a plug-in.

6.2 Secure File Sharing

In many scenarios, people may want to share files after a
social gathering. For example, scholars meet at a conference
and wish to start up a research project, or students at a party
want to share video games and music. In these cases, the
participants want to block people outside the group from
accessing the files. Also, they would like to share the files with
proper access control, but without frustrating management
overhead. Good and Krekelberg show that users have trouble
correctly setting permissions on files [4]. Furthermore, the file
system should maintain accountability information and
revocability to help detect and stop misbehaving users.
Current solutions (e.g., BitTorrent [46], Dropbox [47], and
KaZaA [48]) do not meet these requirements.

We present a secure file-sharing application that does
satisfy the above requirements. Each user downloads her
workstation’s configuration file and its public key to her
mobile device in advance. During the distribution of
certificates with SPATE, a user voluntarily provides her
storage space for file sharing. The configuration file of this
user is now distributed to other users in the group, and the
user collects the other users’ public keys. That user uploads
other users’ public keys to our application, which will
automatically create a session for this group of users. They
will have a separate directory which only this session’s
users can access. Other users upload the configuration file
to their respective workstations and mount the remote file
system. We implemented this application on top of sshfs
[49], a file system that works over the SSH protocol.

Our application has the following advantages over past
solutions:

1. Secure transport. SSH tunnels protect file transfers
from eavesdropping and tampering.

2. Convenient access control. Shares on the server corre-
spond one-to-one with successful SPATE protocol
exchanges. They are created automatically, with the
policy that only users present at the physical key
exchange can access the files in the share.

3. Accountability and revocability for misbehaving users.
Each user is connected to the remote machine as an
individual user. Any misbehavior by the user can be
attributed to her user name. For instance, it is
suspicious if many sessions simultaneously connect
to the server using the same login credentials. The
machine owner can then revoke or suspend this
user. The file system could also be extended to use
the SPATE exchanged public keys to enable non-
repudiation for changes made to the shared files via
digital signatures.

4. User-friendliness. Users do not need to remember
hostnames, usernames, or passwords. The host
address and usernames are exchanged during the
Distribution phase of SPATE. Since authentication is
done using public key authentication in SSH, no
passwords are required. Of course, our system does
assume that the server machine is globally routable.
Servers behind NAT can work but are more difficult
to configure.

6.3 Secure SMS

Short messaging service is a very popular mobile phone
service. In 2008, United Kingdom phone subscribers sent
more than 1.1 billion text messages every week [50]. As
mobile devices become more complex and are used for
multiple functions, many attacks become possible. For
example, criminals may send unsolicited fraudulent mes-
sages to subscribers informing them that they have won big
prizes. Deceived recipients might send their banking
information to the criminals in hopes of claiming such
prizes. Several solutions have been proposed to protect
users [51], [52], [53]. However, the security of these solutions
depends on the trust establishment and security algorithms
applied, with secure key distribution being the main
bottleneck.

Our Secure SMS application leverages SPATE to achieve
secure key distribution. Unlike the previous applications,
Secure SMS uses symmetric cryptography with keys
derived from mobile device generated Diffie-Hellman
values. The private Diffie-Hellman value is kept secret in
phone storage while the public value is distributed during
the SPATE exchange. After the exchange, each member uses
Diffie-Hellman key agreement to create pairwise keys with
every other member. This pairwise symmetric key allows
encryption and authentication of SMS messages with
limited computation and bandwidth overhead.

Secure SMS can provide the following benefits:

1. Effective key distribution. Each user’s mobile device
generates her own Diffie-Hellman values. During a
SPATE exchange, members exchange authentic
public values which the mobile devices use to agree
upon shared keys, without per pair exchanges.

LIN ET AL.: SPATE: SMALL-GROUP PKI-LESS AUTHENTICATED TRUST ESTABLISHMENT 1673

5. Of course, we cannot avoid errors if the person she met gave false
information. This problem cannot be solved even if PGP or a PKI is used.

2. Authentic and confidential SMS. A successful SPATE
exchange ensures the authenticity of the public
values and thus the security of the shared key. The
shared key is used to authenticate and encrypt SMS
messages between the two devices, preventing other
devices from impersonating the devices or accessing
their communication.

3. Efficient performance. Symmetric cryptography re-
quires less computation and bits to provide the
same privacy and authentication as asymmetric
cryptography. These facts are crucial when using
computationally limited mobile devices which pay
per message.

7 IMPLEMENTATION

We have fully implemented the SPATE system and three

applications on Nokia N70 and E51 smartphones and

commodity Dell workstations running Windows XP and

Ubuntu Linux. The system contains four parts:

1. the SPATE Mobile Client that supports key exchange
for the e-mail, file-sharing, and SMS applications,

2. a Thunderbird plug-in to enable secure e-mail,
3. a file-sharing application, and
4. a Secure SMS application (Fig. 3).

We have also implemented the SPATE system on Apple

iPhones. However, Apple’s isolation between applications

prevents us from implementing secure SMS on the iPhone.

In the following sections, we describe the implementation

details of these programs.

7.1 Nokia SPATE Mobile Client

The SPATE Mobile Client is implemented in C++ for

Symbian OS v8.1a (with Nokia Series 60 second generation

graphical user interface) running on Nokia N70 smartphones
equipped with a digital camera and Bluetooth radio. The size
of the Symbian Installation System (SIS) binary for the
SPATE Mobile Client is 47 KB, enabling deployment over
even bandwidth-limited GPRS networks. We have also
ported the SPATE Mobile Client to the newer Nokia E51
with Symbian OS v9.1 (Series 60 third generation); however,
we focus on our N70 implementation for comparability with
prior work on authenticated exchange [8], [26].

Fig. 3 shows the architecture of our SPATE Mobile
Client: it includes a library of commonly used functions and
e-mail-specific, file-sharing-specific, and SMS-specific mod-
ules. The SPATE Library includes communication and
visual engines. The communication engine is responsible
for data transmission and contains the Bluetooth module.
The visual engine is used to generate T-Flags. As described
in Section 5.2, SPATE requires devices that support message
broadcast. Bluetooth does not support broadcast; however,
it does support a piconet of up to eight devices. We employ
Bluetooth piconets to simulate broadcast by forming a star
network with a volunteer leader during a SPATE exchange.
Our simulated broadcast also has the advantage of isolating
different groups in the same physical space, thereby
eliminating crosstalk between groups of well-behaved
devices (the common case).

Additionally, we desire to circumvent the Bluetooth
device and service discovery process, as it can introduce
overheads of tens of seconds, as well as user confusion [54].
Thus, we augment our visual engine to generate, photo-
graph, and decode two-dimensional barcodes (2D barcodes)
which we use to circumvent Bluetooth device discovery, as
proposed by Scott et al. [54].

The Bluetooth module is used for all data exchange
(between mobile devices and between a mobile device and
a workstation). Note that this is a design decision we made
for our implementation; other communication interfaces
(e.g., infrared, USB, WiFi, or the cellular network) are also
viable. Ideally, during the SPATE exchange, we would have
a broadcast primitive available.

2D Barcodes are generated, photographed, and decoded
using the VisualCodes module from Rohs and Gfeller [55],
ported to work with newer versions of Symbian OS. The
T-Flags module is used at the end of an authenticated data
exchange; it displays a visual hash on devices’ screens (Fig. 4).

7.2 SPATE Exchange Walk-Through

Here, we provide a walk-through of a SPATE exchange
using our implementation, in accordance with the SPATE
protocol from Section 5.2. The only significant departure
from the SPATE protocol in Section 5.2 is the additional
requirement that the people in the prospective group agree
on a leader to serve as the hub of the star network to simulate
broadcast with Bluetooth. Fig. 5 provides a chronological
breakdown of the individual actions performed by a user
during the exchange.

Step 1, Selection and Counting, begins automatically when
the user starts a Mobile Client or initiates an exchange
within the Secure SMS App on her mobile device. Step 1a in
Fig. 5 shows the library prompting the user to count the
number of prospective group members: “How many
people?” The user may enter a number between 2 and 8

1674 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

Fig. 3. SPATE system overview.

(the maximum number of devices supported by Bluetooth
piconets, and the threshold above which humans begin to
make counting errors [27]). Once the count has been
entered, the library prompts the user as to whether she
would like to act as the leader for this SPATE exchange:
“Act as Leader?” The user may select Yes or No.

The devices must now establish Bluetooth connectivity.
We use 2D barcodes to circumvent the Bluetooth discovery
process. The leader uses her device’s camera to photograph
the barcodes on the remaining prospective group members’
devices (which encodes each device’s Bluetooth address).
Step 1c shows a SPATE Library displaying a barcode, and
Step 1d shows the leader’s library successfully decoding the

barcode on another device. Once the leader has photo-
graphed all members’ barcodes (detected automatically
since the library can compute the expected number of
distinct barcodes from the count entered by the user in Step
1a), her device can construct a Bluetooth piconet between all
of the devices. The leader’s device serves as the master and
the remaining devices are slaves. The result is a network
with a star topology connecting all prospective group
members’ devices to the leader’s device. The leader’s device
can then simulate broadcast by unicasting messages to all
connected slave devices.

All SPATE protocol operations for Step 2 (Commitment)
and Step 3 (Distribution) are automatically executed by the

LIN ET AL.: SPATE: SMALL-GROUP PKI-LESS AUTHENTICATED TRUST ESTABLISHMENT 1675

Fig. 4. Our Mobile Client displaying T-Flags on N70 smartphones during a SPATE exchange. The left and center T-Flags are identical, but the right

T-Flag is different.

Fig. 5. Execution flow of a SPATE exchange. Step 1: Selection and Counting, Step 2: Commitment, Step 3: Distribution, and Step 4: Verification.

Steps 1b, 1c, and 1d are necessary in our implementation because Bluetooth does not support broadcast.

SPATE Library. We design our library to avoid all non-
essential user interactions in an effort to make the exchange
as smooth and fast as possible. The final step (Verification)
again involves the user. If the SPATE protocol successfully
verifies all message commitments, then each device will
compute the final hash of the prospective group members’
public keys and commitments and display it as a T-Flag
(Step 4a in Fig. 5). The user is prompted to determine
whether the T-Flags match. If the protocol fails during the
automated message exchange, the user is informed that there
has been an error and that she should retry.

It is now the responsibility of the prospective group
members to compare the T-Flags displayed by each of their
devices. If the users agree that all of the devices are
displaying identical T-Flags, they select “All T-Flags Match”
(Step 4b). Otherwise, they select “Some T-Flags Differ.” If
the user indicates that the flags do match, then her device
stores the newly received information for use with the
associated application. It also displays the message,
“SPATE Exchange Complete!” (Step 4c).

7.3 iPhone SPATE Library

SPATE implementation and operation on the iPhone is
similar to that on the Nokias, but is hindered by Bluetooth
limitations on the iPhone. The library implementation uses
Apple’s Game Kit Framework to connect collocated devices
using Bluetooth. Unfortunately, the kit is structured such
that the Bluetooth discovery phase cannot be bypassed. As
such, iPhones are forced to use traditional device discovery,
rather than capturing barcodes, to connect to other group
members. Once the group members have counted and are
connected, the remainder of SPATE operation is the same:
commitment, distribution, and verification via T-Flag.

7.4 Secure E-mail

We enable secure (with authenticity, integrity, and secrecy
if desired) e-mail communication between users without a
PKI. We implemented our secure e-mail application as a
Thunderbird extension using only 4,135 lines of code. The
extension uses OpenSSL [56] to generate a public/private
signing keypair encapsulated in an X.509 certificate and
PKCS12 file for the user. This happens once during initial
setup. The certificate includes the user’s e-mail address and
is imported into Thunderbird as a trusted CA. The user’s
certificate serves as a CA to authenticate future certificates
received from other users via the user’s Mobile Client. Next,
the user can download her certificate from the extension to
her mobile phone, thus imprinting it with the user’s digital
identity. She is now ready to participate in SPATE
exchanges, as described in the previous section.

After the user has participated in a SPATE exchange, her
device will have obtained self-signed public key certificates
from other users. She can upload all received certificates
from her Mobile Client to the Thunderbird extension. The
extension automatically signs6 the received certificates with
the user’s private signing key and imports them into
Thunderbird’s address book. Users can then exchange
secure e-mails through Thunderbird’s built-in S/MIME
[57] functionality. In accordance with S/MIME, the e-mail

content can also be encrypted under the receiver’s public key
(in addition to being signed by the sender’s private key).

7.5 File Sharing

Our file-sharing program is built for Linux using Java 6 and
shell scripts, on top of the SSH File System (SSHFS) [49].
SSHFS allows a client to mount a remote file system
tunneled through the SSH protocol. When the program is
first started, it creates a server configuration file with its
host’s IP address and the public host key that is used by the
host’s SSH server. It also generates a public/private signing
keypair for the Mobile Client. After key generation, the user
imprints her mobile phone (via downloading) with her
workstation’s configuration file and her public key. Her
device is now ready to participate in SPATE exchanges to
identify users with whom she would like to share files.

The Mobile Client of the user that volunteers to be the
leader of the group during the SPATE exchange will
distribute both the file-sharing configuration file and the
user’s public signing key. Other users only send out their
public signing keys. At the end of this phase, every client
will have received the leader’s server configuration file and
the leader will have received all the clients’ public key
certificates. The leader later uploads the other clients’
certificates to her workstation.

The file-sharing application (acting on behalf of the
group leader) briefly requires root privileges to complete
the following tasks:

1. generate a group name with the hash of received
certificates,

2. create an account for each client, using the filename
of her public key as the username,

3. register their public keys as authorized SSH users,
and

4. restrict their SSH access to reading and writing files
only (e.g., using scponly [58]).

Finally, it creates a directory for the group and adds each
client into the group. The user may also assign the group a
“friendly name” after importing the other users’ public keys.

Each of the nonleader users uploads the received
configuration file from their Mobile Client to the file-sharing
application running on their workstation. The application
will read the server’s IP address from the configuration file
and append the server’s public host key into its list of known
hosts (~/.ssh/known_hosts). The application mounts the
remote file system using the SSHFS engine. Since the
server and the client use their exchanged public keys for
authentication (i.e., the public key-based authentication
method offered by a standard SSH installation), there are
no passwords for authentication.

The file-sharing application displays information about
currently shared folders, active groups, and active users on
the local machine (Fig. 6). It also enables the user to mount
shared folders from remote machines.

7.6 Secure SMS

Secure SMS leverages a SPATE exchange and an application
on the mobile phone to provide secret and authentic
communication between group members without a PKI.
The secure SMS application consists of three modules: a
vCard module, a SMS module, and a cryptographic
module. The vCard module creates a vCard from the

1676 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

6. Thunderbird does not accept public keys unless they are signed by a
trusted CA.

device’s information and extracts information from other
devices vCards after a successful SPATE exchange. The
SMS module handles the sending or receiving of SMS
messages. The cryptographic module contains primitives to
perform symmetric and asymmetric cryptographic opera-
tions and KeyGen and KeyProtect modules to generate and
protect secrets, respectively.

To use secure SMS, the application creates the user’s
vCard, distributes the vCard and receives others’ vCards
during a SPATE exchange, uses the received vCards to
established shared keys, and uses a shared key to securely
send or receive messages. vCard generation includes the
generation of Diffie-Hellman values using the KeyGen
module and packing the public value with the user’s name,
phone number, and any other data the user wants to share
(e.g., a personal photo). After a SPATE exchange, the vCard
module extracts the public Diffie-Hellman value and
contact information from the received vCards. Rather than
performing key agreement for every message, the crypto-
graphic module performs Diffie-Hellman key agreement
after each successful exchange to generate shared secrets.
When not in use, the KeyProtect submodule uses a
password to encrypt the user’s private Diffie-Hellman
value and any shared secrets stored on the phone.

When a user wants to send a secure SMS, the shared key is
retrieved and session encryption and authentication keys are
generated and used to secure the message before it is sent.
After defining the recipient and entering the desired
message, the user enters her password to access any secrets
stored on the phone. With access to the shared keys, the
cryptographic module generates an encryption key for use
with AES-CBC and an authentication key for use with
HMAC-SHA1. These symmetric operations provide space
and computational efficiency compared to using asymmetric
encryption or authentication. The cryptographic module
encrypts the message, and generates the corresponding
MAC. HMAC-SHA1 takes input ciphertext and initialization
vector (IV) to output the MAC [59], [60]. Finally, the SMS
Module sends the data over the cellular network (see Fig. 7a
for an example ciphertext). After receiving the encrypted
message, the receiver enters her password to access the
corresponding shared key. The cryptographic module can
then decrypt and verify the authenticity of the message (see
Fig. 7b for the decrypted and verified message).

8 EVALUATION

We evaluate the performance of authenticated exchange
using our SPATE Mobile Client implementation. We do not
discuss the performance of data exchange between a mobile
device and a workstation (i.e., imprinting the device
initially and then retrieving newly acquired data), since
synchronizing data between a mobile device and work-
station is a widely available operation.

8.1 Method

We ran SPATE on two to eight Nokia N70 smartphones and
two to eight Apple iPhones. Each data point represents the
average of 10 runs. Time consumed by automated protocol
steps (i.e., without involving the human; Step 2 from Fig. 1)
is recorded in the experiment. We measured the time
consumed by Collection, Connection, and Communication.
Collection represents the time consumed by the leader while
she photographs the 2D barcodes on others’ screens.
Connection represents the time needed to establish a
Bluetooth piconet. Communication includes the time for
data transfer during the automated Commitment and
Distribution (Steps 2 and 3 from Section 5.2 and Fig. 5)
steps of the SPATE exchange. The iPhone forces applica-
tions to use traditional Bluetooth discovery and thus lacks
any collection (see Section 7.3). We also ran Seeing-is-
Believing [8] and GAnGS [26] on the Nokia N70s to
compare the total runtime for each protocol. To eliminate
human factors in the execution time, these tests were
performed by experienced operators of all three systems.

8.2 Results

Fig. 8 shows the time consumed by Collection, Connection,
and Communication for the N70 and iPhone-based imple-
mentations. Unfortunately, in our experience, the, iPhone’s
underlying Bluetooth library becomes unstable when more
than six devices attempt to form a piconet, so we only
present results for two to six devices.

During Collection, the leader photographs N � 1 2D
barcodes from the other users. In our experience, the leader
needs 2-3 seconds to successfully photograph one 2D

LIN ET AL.: SPATE: SMALL-GROUP PKI-LESS AUTHENTICATED TRUST ESTABLISHMENT 1677

Fig. 6. Screenshot from the file-sharing application. The application lists

the shared folders on the local host and folders mounted from remote

systems.

Fig. 7. The data transferred as part of secure SMS and the decrypted

message at the receiver. (a) Transferred Data. (b) Decrypted and

Verified Message.

barcode. While this is the leading source of time consump-
tion in the Nokia implementation, 2-3 seconds is consider-
ably less than the delay we would have incurred using
Bluetooth device and service discovery. To confirm the
overhead of Bluetooth discovery (and to validate the results
of Scott et al. [54]), we implemented a Symbian C++
program to record the time spent on device and service
discovery. We conducted this experiment twice: once in an
open cubicle environment with many nearby Bluetooth
devices, and once in a closed apartment isolated from other
Bluetooth devices. Fig. 9 shows our results; each data point
is the average of five runs. Even the best case result requires
almost 30 seconds for two devices to discover each other,
connect, and query for the desired service.

Once all of the Bluetooth addresses have been collected
by the leader during N70 Collection, the leader’s device
establishes a Bluetooth piconet. This results in the N70

Connection overhead in Fig. 8, which takes roughly one to
ten seconds, depending on how many devices are involved.

The iPhone implementation forces devices to perform
Bluetooth discovery. This causes highly variable iPhone
Connection times as seen in Figs. 8 and 10. Fig. 10 represents
the average time needed for the iPhone implementation to
form a piconet with two to six devices while in a closed

environment. Compared to the N70, the iPhone provides
faster average Bluetooth connections (Fig. 9 versus Fig. 10).
However, the current iPhone Bluetooth library fails to
provide the same scalability (i.e., piconets of seven or eight
devices cannot be reliably established in a reasonable
amount of time) and suffers from high variability even
with zero interfering devices.

Once the connections are established, Communication
consumes less than five seconds even with a full eight
devices. Even with our star network topology, Bluetooth
has sufficient bandwidth to rapidly transfer the data,
commitments, and nonces, which make up no more than
a few kilobytes. Verification of the commitments consumes
less than 200 milliseconds. We omit it from the figure since
it would not be visible.

The time consumed by the human user to count the
number of participants, photograph barcodes, and compare
flags also contributes overhead. We find that these opera-
tions can be done within 30 seconds by users familiar with
SPATE, enabling a complete run of the SPATE exchange
with eight users in less than one minute.

Comparison with existing systems. Next, we present a
comparison between SPATE and two prior key-exchange
systems using the N70 smartphones: Seeing-is-Believing
and GAnGS (Fig. 11). Note that SiB is designed for key
exchange between two parties. Our SiB experiment was
performed with two people; we then extrapolated to obtain
the expected overhead where each member must pair with
every other member for a total of OðnÞ rounds of pairing.
Without the additional time needed to move about the

1678 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

Fig. 8. Time consumed during a SPATE exchange.

Fig. 9. N70 Bluetooth discovery overhead.

Fig. 10. iPhone Bluetooth discovery overhead.

Fig. 11. Comparison between SPATE, SiB, and GAnGS.

group or keep track of who has paired with whom, our SiB
results can be interpreted as best case.

SPATE, SiB, and GAnGS all use the barcode format
proposed by Rohs and Gfeller [55]. In our experience,
recognition is efficient and accurate. However, SiB and
GAnGS use an extension to support multiple, cycling
barcodes where, e.g., four barcodes are cycled every second.
We have found that the requirement to successfully
recognize all four barcodes significantly degrades usability.
With SPATE, the only information to be conveyed in the
barcode is the Bluetooth address and service channel: 48þ
3 ¼ 51 bits. We can therefore employ a single static barcode,
greatly improving recognition times. In addition to slower
barcode recognition, SiB and GAnGS require bidirectional
barcode recognition (i.e., A reads B’s barcode, and B reads
A’s barcode). GAnGS is a multiround protocol designed for
scalability and denial-of-service resilience. However, for
smaller groups multiple rounds introduce overhead and
thus slower performance. With a single round, fewer
barcodes to recognize, and faster barcode recognition,
SPATE outperforms SiB and GAnGS for groups of 3-8 users.

9 DISCUSSION

In this section, we discuss whether counting is necessary or
not. In SPATE, group members count the number of
members present to prevent nongroup members from
adding their data. However, if users exchange personally
identifiable information (e.g., names and pictures), counting
is optional. After running SPATE (without counting), group
members can examine the acquired data and verify that they
received information from the expected group members and
only those people. For example, user A will verify that
running SPATE with users B and C yields data with B’s
name and data with C’s name. During this extra verification
step, the user can detect any additional data inserted by an
outsider, O. IfO simply adds itself to the group,A can detect
the unexpected data labeled with O’s name. If O tries to
impersonate a legitimate group member (e.g., O submits a
different public key or e-mail, but the same personally
identifiable information as C), A will notice the duplicate
entries for C. If O tries to delete a group member, the T-Flag
comparison will detect the attack. Without counting, SPATE
requires the user to press a button to indicate when the
commitment phase is complete (i.e., without ~N , the device
does not know when it has the proper number of commit-
ments). Therefore, there is a trade-off to ensure security;
users have to count before the commitment phase or
carefully examine the data as part of the verification phase.

10 CONCLUSION

We have presented SPATE, a system for authentic exchange
of information in groups of up to eight people. SPATE
represents a unique point in the design space for ad hoc
group key establishment. We trade off scalability and
denial-of-service resilience for speed and ease of use.
Indeed, only symmetric cryptographic primitives are
employed on the mobile device.

We rely on the user to accurately compare images across
other users’ devices and count the number of prospective
group members, but we limit the maximum group size to
eight people. In our experience, the resulting system is

easy and fun to use, finally providing the opportunity to

achieve easy-to-use secure e-mail, secure file sharing, and

secure SMS.

REFERENCES

[1] A. Whitten and J. Tygar, “Why Johnny Can’t Encrypt,” Proc.
USENIX Security Symp., Aug. 1999.

[2] S. Sheng, L. Broderick, J. Hyland, and C. Koranda, “Why Johnny
Still Can’t Encrypt: Evaluating the Usability of Email Encryption
Software,” Proc. Symp. Usable Privacy and Security, 2006.

[3] S. Gaw, E.W. Felten, and P. Fernandez-Kelly, “Secrecy, Flagging,
and Paranoia: Adoption Criteria in Encrypted Email,” Proc.
SIGCHI Conf. Human Factors in Computing Systems, pp. 591-600,
2006.

[4] N.S. Good and A. Krekelberg, “Usability and Privacy: A Study of
Kazaa P2P File-Sharing,” Proc. SIGCHI Conf. Human Factors in
Computing Systems (CHI ’03), 2003.

[5] C. Castelluccia and P. Mutaf, “Shake Them Up! A Movement-
Based Pairing Protocol for CPU-Constrained Devices,” Proc. ACM/
Usenix MobiSys, 2005.

[6] J. Lester, B. Hannaford, and B. Gaetano, “Are You with
Me?—Using Accelerometers to Determine if Two Devices are
Carried by the Same Person,” Proc. Second Int’l Conf. Pervasive
Computing, 2004.

[7] C. Soriente, G. Tsudik, and E. Uzun, “BEDA: Button-Enabled
Device Association,” Proc. Int’l Workshop Security for Spontaneous
Interaction (IWSSI), 2007.

[8] J.M. McCune, A. Perrig, and M.K. Reiter, “Seeing-Is-Believing:
Using Camera Phones for Human-Verifiable Authentication,”
Proc. IEEE Symp. Security and Privacy, May 2005.

[9] C. Soriente, G. Tsudik, and E. Uzun, “HAPADEP: Human
Assisted Pure Audio Device Pairing,” Proc. Information Security
Conf. (ISC), Sept. 2007.

[10] C. Ellison and S. Dohrmann, “Public-Key Support for Group
Collaboration,” ACM Trans. Information and System Security, vol. 6,
no. 4, pp. 547-565, 2003.

[11] A. Perrig and D. Song, “Hash Visualization: A New Technique to
Improve Real-World Security,” Proc. Int’l Workshop Cryptographic
Techniques and E-Commerce (CrypTEC ’99), M. Blum and C. H. Lee,
eds., pp. 131-138, Jul. 1999.

[12] M. Burmester and Y. Desmedt, “Efficient and Secure Conference
Key Distribution,” Proc. Int’l Workshop Security Protocols, pp. 119-
129, Apr. 1997.

[13] S. Capkun, J.-P. Hubaux, and L. Buttyan, “Mobility Helps Security
in Ad Hoc Networks,” Proc. ACM MobiHoc, 2003.

[14] M. Just and S. Vaudenay, “Authenticated Multi-Party Key
Agreement,” Proc. Advances in Cryptology (ASIACRYPT), pp. 36-
49, 1996.

[15] Y. Kim, A. Perrig, and G. Tsudik, “Simple and Fault-Tolerant Key
Agreement for Dynamic Collaborative Groups,” Proc. ACM Conf.
Computer and Comm. Security (CCS), pp. 235-244, Nov. 2000.

[16] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener, “A Secure
Audio Teleconference System,” Proc. Advances in Cryptology
(Crypto ’90), pp. 520-528, 1990.

[17] M. Steiner, G. Tsudik, and M. Waidner, “Key Agreement in
Dynamic Peer Groups,” IEEE Trans. Parallel and Distributed
Systems, vol. 11, no. 8, pp. 769-780, Aug. 2000.

[18] W.-G. Tzeng and Z. Tzeng, “Round-Efficient Conference-Key
Agreement Protocols with Provable Security,” Proc. Advances in
Cryptology (ASIACRYPT), pp. 614-628, 2000.

[19] V.A. Brennen, “The Keysigning Party HOWTO,” http://cryptnet.
net/fdp/crypto/keysigning_party/en/keysigning_party.html,
Jan. 2008.

[20] N. Asokan and P. Ginzboorg, “Key-Agreement in Ad-Hoc
Networks,” Computer Comm., vol. 23, no. 17, pp. 1627-1637, Nov.
2000.

[21] D. Balfanz, D.K. Smetters, P. Stewart, and H.C. Wong, “Talking to
Strangers: Authentication in Ad-Hoc Wireless Networks,” Proc.
Ninth Ann. Network and Distributed System Security Symp. (NDSS),
2002.

[22] M. Cagalj, S. Capkun, and J.-P. Hubaux, “Key Agreement in Peer-
to-Peer Wireless Networks,” Proc. IEEE, special issue on crypto-
graphy, vol. 94, no. 2, pp. 467-478, Feb. 2006.

[23] NFC Forum, “NFC Forum: Specifications,” http://www.nfc-
forum.org/specs, 2010.

LIN ET AL.: SPATE: SMALL-GROUP PKI-LESS AUTHENTICATED TRUST ESTABLISHMENT 1679

[24] F. Stajano and R.J. Anderson, “The Resurrecting Duckling:
Security Issues for Ad-Hoc Wireless Networks,” Proc. Security
Protocols Workshop, pp. 172-194, 1999.

[25] E. Uzun, K. Karvonen, and N. Asokan, “Usability Analysis of
Secure Pairing Methods,” Proc. Int’l Conf. Usable Security (USEC),
Feb. 2007.

[26] C.-H.O. Chen, C.-W. Chen, C. Kuo, Y.-H. Lai, J.M. McCune, A.
Studer, A. Perrig, B.-Y. Yang, and T.-C. Wu, “GAnGS: Gather
Authenticate ’n Group Securely,” Proc. ACM MobiCom, Sept. 2008.

[27] C. Kuo, “Reduction of End User Errors in the Design of Scalable,
Secure Communication,” PhD dissertation, Carnegie Mellon
Univ., 2008.

[28] J. Linksky et al., “Simple Pairing Whitepaper, Revision v10r00,”
http://www.bluetooth.com/NR/rdonlyres/0A0B3F36-D15F-
4470-85A6-F2CCFA26F70F/0/SimplePairing_WP_V10r00.pdf,
Aug. 2006.

[29] S. Laur and K. Nyberg, “Efficient Mutual Data Authentication
Using Manually Authenticated Strings,” Proc. Cryptology and
Network Security (CANS), pp. 90-107, 2006.

[30] “Wi-Fi Protected Setup Specification,”WiFi Alliance Document,
2007.

[31] B. Ford, J. Strauss, C. Lesniewski-Laas, S. Rhea, F. Kaashoek, and
R. Morris, “Persistent Personal Names for Globally Connected
Mobile Devices,” Proc. Seventh USENIX Symp. Operating Systems
Design and Implementation (OSDI), Nov. 2006.

[32] M.T. Goodrich, M. Sirivianos, J. Solis, G. Tsudik, and E. Uzun,
“Loud and Clear: Human-Verifiable Authentication Based on
Audio,” Proc. Int’l Conf. Distributed Computing (ICDCS), p. 10,
2006.

[33] C. Glasbey, G. van der Heijden, V.F.K. Toh, and A. Gray, “Colour
Displays for Categorical Images,” Color Research and Application,
vol. 32, no. 4, pp. 304-309, June 2007.

[34] S. Vaudenay, “Secure Communications over Insecure Channels
Based on Short Authenticated Strings,” Proc. Advances in Cryptol-
ogy (Crypto), pp. 309-326, 2005.

[35] L.E. Holmquist, F. Mattern, B. Schiele, P. Alahuhta, M. Beigl, and
H.-W. Gellersen, “Smart-Its Friends: A Technique for Users to
Easily Establish Connections between Smart Artefacts,” Proc. Int’l
Symp. Ubiquitous Computing (Ubicomp), 2001.

[36] J. Valkonen, N. Asokan, and K. Nyberg, “Ad Hoc Security
Associations for Groups,” Proc. Security and Privacy in Ad-Hoc and
Sensor Networks (ESAS), pp. 150-164, 2006.

[37] M. Abdalla, E. Bresson, O. Chevassut, and D. Pointcheval,
“Password-Based Group Key Exchange in a Constant Number
of Rounds,” Proc. Public Key Cryptography (PKC), pp. 427-442, 2006.

[38] A. Shamir, “Identity-Based Cryptosystems and Signature
Schemes,” Proc. Advances in Cryptology, pp. 47-53, 1984.

[39] D. Boneh and M. Franklin, “Identity-Based Encryption from the
Weil Pairing,” Proc. Advances in Cryptology (CRYPTO ’01), pp. 213-
229, 2001.

[40] S.N. Foley and J. Jacob, “Specifying Security for CSCW Systems,”
Proc. Eighth IEEE Workshop Computer Security Foundations, 1995.

[41] M. Blum, “Coin Flipping by Telephone,” Proc. Advances in
Cryptography, pp. 11-15, Aug. 1982.

[42] M. Jakobsson, “Issues in Security and Privacy,” Lecture Slides,
http://www.informatics.indiana.edu/markus/i400, 2006.

[43] Y.-H. Lin, A. Studer, H.-C. Hsiao, J.M. McCune, K.-H. Wang, M.
Krohn, P.-L. Lin, A. Perrig, H.-M. Sun, and B.-Y. Yang, “SPATE:
Small-Group PKI-Less Authenticated Trust Establishment,” Proc.
ACM MobiSys, June 2009.

[44] T. Howes and M. Smith, “A MIME Content-Type for Directory
Information,” IETF RFC 2425, Sept. 1998.

[45] Mozilla, “Thunderbird 2,” http://www.mozilla.com/en-US/
thunderbird, Dec. 2008.

[46] B. Cohen, “Bittorrent,” http://www.bittorrent.com, Apr. 2001.
[47] D. Houston and A. Ferdowsi, “Dropbox,” https://www.getdrop

box.com, Sept. 2008.
[48] N. Zennström, J. Friis, and P. Kasesalu, “KaZaA Media Desktop,”

http://www.kazaa.com, Mar. 2001.
[49] M. Szeredi, “SSH Filesystem,” http://fuse.sourceforge.net/sshfs.

html, Jan. 2005.
[50] MDA: Mobile Data Assoc., “The Q1 2008 UK Mobile Trends

Report,” http://www.swiftcrm.net/MDA_Q1_2008_UK_mobile_
report.pdf, 2009.

[51] A. Grillo, A. Lentini, G. Me, and G.F. Italiano, “Transaction
Oriented Text Messaging with Trusted-SMS,” Proc. Ann. Computer
Security Applications Conf., pp. 485-494, 2008.

[52] Kryptext, “Kryptext—Offers Software to Encrypt SMS Text
Messages from Mobile to PC,” http://www.kryptext.co.uk, 2010.

[53] CryptoSMS, “CryptoSMS—Protecting Your Confidential SMS
Messages,” http://www.cryptosms.com, 2008.

[54] D. Scott, R. Sharp, A. Madhavapeddy, and E. Upton, “Using
Visual Tags to Bypass Bluetooth Device Discovery,” ACM Mobile
Computer Comm. Rev., vol. 9, no. 1, pp. 41-53, Jan. 2005.

[55] M. Rohs and B. Gfeller, “Using Camera-Equipped Mobile Phones
for Interacting with Real-World Objects,” Proc. Advances in
Pervasive Computing, pp. 265-271, Apr. 2004.

[56] M.J. Cox and R.S. Engelschall, “OpenSSL: Open Source Toolkit
Implementing for SSL/TLS,” http://www.openssl.org, May 1999.

[57] B. Ramsdell, “Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.1 Message Specification,” IETF RFC 3851,
July 2004.

[58] “Scponly,” http://sublimation.org/scponly, 2009.
[59] M. Bellare and C. Namprempre, “Authenticated Encryption:

Relations Among Notions and Analysis of the Generic Composi-
tion Paradigm,” Proc. Advances in Cryptology (ASIACRYPT ’00),
pp. 531-545, 2000.

[60] H. Krawczyk, “The Order of Encryption and Authentication for
Protecting Communications (Or: How Secure is SSL?),” Proc.
Advances in Cryptology (CRYPTO ’01), pp. 310-331, 2001.

Yue-Hsun Lin is a PhD candidate in the
Computer Science Department at National Tsing
Hua University. His research interests include
wireless sensor networks, network security, and
applied cryptography.

Ahren Studer is a PhD candidate in electrical
and computer engineering at Carnegie Mellon
University working with Adrian Perrig. His re-
search interests revolve around authentication
and trust establishment in ad hoc networks.

Yao-Hsin Chen is a PhD candidate in computer
science at National Tsing Hua University. His
current research interests include provable
security, applied cryptography, and network
security.

Hsu-Chun Hsiao is a PhD candidate in elec-
trical and computer engineering at Carnegie
Mellon University working with Adrian Perrig.
Her main research interest is in network security
and privacy.

1680 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 12, DECEMBER 2010

Li-Hsiang Kuo received the BE degree in
computer science and information engineering
from the National Taiwan University. He has
been a research assistant for Dr. Bo-Yin Yang in
the Institute of Information Science at Academia
Sinica since 2008. His research interests include
cryptography and algorithms.

Jason Lee received the bachelor’s degree in
computer science at Carnegie Mellon University
and is currently working toward the master’s
degree in the same field under professor Adrian
Perrig. His main area of research is secure
communication between mobile devices.

Jonathan M. McCune received the PhD degree
in electrical and computer engineering from
Carnegie Mellon University. He is a research
systems scientist for CyLab at Carnegie Mellon
University. He was recipient of the A.G. Jordan
Thesis Award. His research interests include
secure systems, trusted computing, virtualiza-
tion, and spontaneous interaction between
mobile devices.

King-Hang Wang received the PhD degree in
computer science from the National Tsing Hua
University. Currently, he serves at the Center of
Cyber Logistic at the Chinese University of
Hong Kong. His research interests include
provable security, digital rights management,
and steganography.

Maxwell Krohn received the PhD degree in
computer science from the Massachusetts
Institute of Technology. He cofounded and
cobuilt several community websites, some vin-
tage (TheSpark.com), others live and kicking
(Spark Notes.com and OkCupid.com). His re-
search interests are in operating systems,
distributed systems, and security.

Phen-Lan Lin received the PhD degree in
electrical engineering from Southern Methodist
University. She is a professor in the Department
of Computer Science and Information Engineer-
ing at Providence University. Her current re-
search interests are in the fields of multimedia
security, network security, medical imaging, and
visual inspection.

Adrian Perrig received the PhD degree in
computer science from Carnegie Mellon Uni-
versity. Currently, he is a professor in electrical
and computer engineering, engineering and
public policy, and computer science at Carnegie
Mellon University. He serves as the technical
director for Carnegie Mellon’s Cybersecurity
Laboratory (CyLab). He is a recipient of the
US National Science Foundation CAREER
Award in 2004, IBM faculty fellowships in 2004

and 2005, and the Sloan research fellowship in 2006.

Hung-Min Sun received the PhD degree in
computer science and information engineering
from National Chiao-Tung University. Currently,
he is a professor with the Department of
Computer Science, National Tsing Hua Univer-
sity. His research interests include information
security, wireless network security, cryptogra-
phy, and multimedia security.

Bo-Yin Yang received the PhD degree in
mathematics from the Massachusetts Institute
of Technology and taught math in Taiwan.
Currently, he works in the Institute of Information
Science at Academia Sinica, where he leads the
most active crypto group in Taiwan, specializing
in efficient implementations and cryptanalysis.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

LIN ET AL.: SPATE: SMALL-GROUP PKI-LESS AUTHENTICATED TRUST ESTABLISHMENT 1681

