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Abstract—Several security protocols require a human to
compare two hash values to ensure successful completion.
When the hash values are represented as long sequences of
numbers, humans may make a mistake or require significant
time and patience to accurately compare the hash values. To
improve usability during comparison, a number of researchers
have proposed various hash representations that use words,
sentences, or images rather than numbers. This is the first
work to perform a comparative study of these hash comparison
schemes to determine which scheme allows the fastest and most
accurate comparison. To evaluate the schemes, we performed
an online user study with more than 400 participants. Our
findings indicate that only a small number of schemes allow
quick and accurate comparison across a wide range of subjects
from varying backgrounds.

Keywords-Security; Human factors

I. INTRODUCTION

Users often want secure communication while lacking any
prior association. Device pairing, group key exchange/creat-
ion, and communication with remote systems (e.g., SSH or
websites using self-signed certificates with HTTPS) are a
few example scenarios. Without a PKI or other trusted third
party available, a range of protocols are used to exchange
and verify public keys or securely compute a shared key [1]–
[10]. However, to ensure that a malicious entity has not
compromised the key(s), i.e., performed a man-in-the-middle
attack or intercepted a shared key, many protocols require
the user(s) to verify that the different devices received the
same messages during the protocol. Rather than comparing
potentially kilobytes of data, users compare a hash or a
representation of the hash of the data. Most works assume
that users can perform this comparison accurately and base
security guarantees on the length of the hash output or
the hash representation. However, users make errors when
performing such comparisons [11]. An error during this
comparison renders the underlying protocol insecure.
Given humans’ inability to compare long sequences of

numbers accurately, researchers have proposed a number of
different hash representations that (hopefully) improve us-
ability. Rather than comparing numbers, schemes allow users
to compare words [4], sentences [6], or images [3], [7], [12].
In this work, we also propose schemes where users compare
Chinese, Japanese, or Korean characters, which may provide

improved usability depending on a user’s background. Each
of these comparison schemes has strengths and weaknesses
with respect to human speed and accuracy during compar-
ison, quantifiable entropy (and thus probability of unde-
tected attacks when users make correct comparisons), and
computation overhead. The latter properties are quantified
and well studied in previous works which allow protocol
designers to select a hash comparison scheme that provides
strong security with limited computation. However, no study
has examined which approach provides the best accuracy—
ensuring secure communication—with the least amount of
comparison time—ensuring reduced user annoyance. The
goal of this work is to conduct a user study to determine
what hash comparison scheme provides the best accuracy
and shortest comparison time for various users with different
abilities. Based on these results, we can make an informed
decision about which hash comparison scheme provides the
best balance across all properties.

II. RELATED WORK ON HASH COMPARISON

Researchers have proposed ASCII [13]1, text [4], [6], or
visual [3], [7], [12] representations of hash values. ASCII
(or Hexadecimal) is natural for expressing information on
computer systems but difficult for humans to quickly and
accurately compare [11]. To increase usability, the text-
based schemes generate ASCII representations with human
recognizable structure (i.e., English words or sentences). The
visual-based schemes convert hashes into images, in which
humans can easily detect the differences. Fig. 1(a) to 1(i)
show examples of each hash representation scheme we study
in this work.
Hexadecimal digits have long been used for hash com-

parison because truncating a high entropy hash to a short
sequence of digits (0-9) and letters (A-F) is computationally
efficient. However, humans trying to quickly compare digits
often make mistakes (e.g., confuse an 8 for a 0) [11]. Base32
utilizes a subset of digits (‘2’ to ‘7’) and capital letters (‘A’

1Recently OpenSSH 5.1 released an experimental component called
ASCII visualisation, which “render SSH host keys in a visual form that
is amenable to easy recall and rejection of changed host keys” [10]. Given
these representations are meant to be remembered, rather than compared
side-by-side, we do not consider this scheme in our study.
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to ‘Z’). Hence, Base32 avoids confusion of similar-looking
hexadecimal digits and increases the amount of entropy (5
bits per symbol versus 4 bits per hexadecimal digit) [13].
However, hexadecimal digits and Base 32 represent hashes
as a sequence of unrelated units, which one would think,
hinders humans from quickly reading and comparing the
values.
The Unmanaged Internet Architecture (UIA) system rep-

resents hashes with a sequence of English words like
“meals-abut-yuck”, in which each word (unit) is selected
from a fixed size dictionary [4]. With a larger dictionary,
UIA can encode hashes with fewer words. However, a large
dictionary often has to contain similar words, such as “clam”
and “calm”, which are difficult to quickly distinguish.
Researchers consider graphic-based representation a

promising alternative for hash comparison because humans
are good at quickly detecting differences in images. Perrig
et al. [12] propose Random Art to visually represent hashes.
Nevertheless, generating Random Art is computationally
expensive (around 10 seconds to visualize a 160-bit hash
on a handhold device) because each pixel in a Random
Art image is determined by evaluating a complex arith-
metic expression. Moreover, the resulting image contains an
unknown amount of entropy, which may weaken security
arguments in protocols which leverage Random Art [2].
Ellison et al. [3] propose Flag, a visual hash representa-

tion consisting of four colored strips. With 2n possible colors
in each strip, Flag contains 4n bits of entropy. However, Flag
can only contain limited entropy because humans can have
difficulty distinguishing minor variations in colors. Flag also
lacks a visual cue to help users quickly determine the proper
orientation when comparing images across mobile devices
which may be rotated during comparison. T-Flag [7], which
consists of 8 blocks of 8 possible colorblind proof colors
with an embedded visual cue, contains 24 bits of entropy.
However, Flag and T-Flag mainly express hashes by colors,
rather than shapes which can encode a large amount of
entropy (e.g., as Random Art does).

III. PROPOSED HASH COMPARISON SCHEMES

In addition to studying previously proposed hash com-
parison schemes, we propose and study four new schemes:
Flag Extension and three Asian-character-based schemes,
i.e., Chinese characters, Japanese characters, and Korean
characters, as shown in Fig. 1(f)-1(i).
The Flag Extension aims to improve T-Flag by reducing

the number of blocks while adding shapes on top of each
block. A Flag Extension image contains 4 colored blocks
(two rows and two columns). Each block has 8 possible
colors (using the same colorblind proof palette as in T-Flag)
and 8 possible of shapes: ‘#’,‘�’,‘I’,‘�’,‘×’, ‘∨’, ‘�’, and
no shape.

(a) Base32 (b) English words (c) Random Art

(d) Flag (e) T-Flag (f) Flag Extension

(g) Chinese characters (h) Japanese characters (i) Korean characters

Figure 1. Example representations generated by the different schemes.

Chinese characters, Japanese characters, and Korean char-
acters contain higher entropy per character compared to
ASCII, and we hypothesize that people who recognize these
characters are able to quickly compare characters. These
schemes can be used to pair two very simple devices without
full displays, e.g., LED displays designed to show single-line
texts, because they only require a terminal-like non-color
display with the supporting codecs (e.g., Unicode), which
are often available on commodity devices.
Our Chinese characters scheme contains 9810 commonly

used traditional and simplified characters from International
Ideographs Core (IICORE) [14]. This is only a subset
of the CJK Unified Ideograph Block (which itself covers
20,000 characters), reduced to fit in memory-limited devices
like PDAs and mobile phones. In the Japanese characters
scheme, we use Hiragana, the Japanese phonetic alphabet,
which contains roughly 6 bits of entropy per unit. Our Ko-
rean characters scheme uses Hangul2 (the Korean character
set), which contains roughly 13 bits of entropy per unit.

IV. STUDY DESIGN

In this study, we examine the performance of each hash
comparison scheme with respect to accuracy rate and re-
sponse time. We are also interested in knowing if participant
recruitment method, gender, age, and/or language ability
affects the performance. To collect such data, we built an
online survey where participants can conduct a series of hash

2A Hangul character consists of one of 19 initial jamo, one of 21
medial jamo combinations, and optionally one of 27 concluding jamo
combinations. To generate a unique Hangul character, we select a jamo,
a medial jamo, and/or a concluding jamo, which results in a cardinality of
19×21×28= 11172. However, many of the combinations are meaningless.
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comparisons and submit their background information. To
recruit participants we advertised on an online service and
sent emails to university classes in the US, Japan, Korea,
and Taiwan.
In this section, we first present our design goals and a

set of questions to be answered by this study. We then
explain how to generate hash representations and specify
the sampling space for a fair comparison (e.g., similar
amount of entropy) between schemes. Also, we describe
the procedure of our online survey. Finally, we summarize
participant demographics, with details on how we recruited
participants and the gender, age, and language ability, of all
436 participants.
Particularly, we study 9 hash comparison schemes:

Base32, English words, Random Art, Flag, T-Flag, Flag Ex-
tension, Chinese characters, Japanese characters, and Korean
characters. We do not consider hexadecimal digits because
that scheme is similar to Base32 and known to be error-
prone.

A. Design Goals

This study aims to answer the following questions:

• Does the participant recruitment method impact accu-
racy or comparison time?

• Does age or gender impact accuracy or comparison
time?

• Does knowledge of a language impact accuracy or
comparison time?

• What scheme(s) provide the highest accuracy?
• What scheme(s) provide the quickest response time?
We consider the problem of comparing “easy” or “hard”

pairs of hash representations for each scheme. An easy
pair consists of two representations that are either identical
or apparently different. A hard pair, or similar pair,
consists of two representations which are designed to be
similar (but with subtle differences). Ideally, the probability
of encountering a hard pair should be much lower than
the probability of encountering an easy pair. In practice,
however, the probabilities depend on the implementation of
a hash comparison scheme and also on how humans perceive
images. Hence, we separate the analysis of easy pairs and
hard pairs. Easy pairs represent a baseline performance for
each scheme while the hard pairs represent a worst case
scenario.

B. Designing Comparison Pairs

To achieve a fair comparison, ideally each hash repre-
sentation scheme should contain the same amount of infor-
mation (entropy), because it is more difficult to distinguish
between two slightly different representations with higher
entropy. However, some schemes only allow the adjustment
of the entropy in fixed intervals. For example, a Base 32
character contains 5 bits of information, so Base32 contains
5n bits when used with n characters. Without a way to have
equal entropy, while preserving each scheme’s properties, we

design each scheme to carry 22 to 28 bits of information.
Table I summarizes the amount of entropy in each hash
representation in our study.
In the remainder of this subsection, we describe the

sampling space and derive the entropy of each hash compar-
ison scheme. We also explain the strategy to generate hard
pairs, i.e., select similar-but-distinct representations from
each hash representation’s sampling space.
Base32. A Base32 item consists of 5 characters, with 32

possible values for each character, for a total of 25 bits of
entropy. We create a similar pair by either of the following
two methods: (1) creating another sequence by swapping two
adjacent characters in the original sequence, e.g., VILXX
and VLIXX; (2) creating another sequence by replacing a
character with a very similar character, e.g., (5 ↔ S), (O
↔ Q), (2 ↔ Z). For example, PCSRA and PC5RA.
English words. The English words scheme, which con-

sists of three words selected from a 512-word dictionary,
provides 27 bits of entropy. We construct a similar pair
by replacing one of the three words with a similar word,
which is generated by (1) transposing two adjacent letters
in a word to morph the word into another word (e.g., ‘blub’
and ‘bulb)’; (2) selecting a word which differs by only one
letter (e.g., ‘moons’ and ‘moans’). ‘house-moons-food’
and ‘house-moans-food’ is one example of a hard pair of
English words.
Random Art. The Random art image generator [12] takes

any length of input and processes it with the SHA-1 hash.
Theoretically speaking, it has at most 160 bits of entropy.
However, there is no guarantee that Random Art is collision-
resilient. Our analysis shows that with 91.4% probability a
Random Art image contains 19.71 to 23.71 bits of entropy
(see Appendix A for details). We use the PerceptualDiff
tool [15] to measure the perceptual differences between
two random art images. After generating 2000 Random Art
images, we selected the five pairs with the least perceptual
difference as the hard/similar pairs.
Flag. We modify Flag to output 24 bits of entropy (6

bits in each of the 4 color strips), and have a visual cue
to help users determine the proper orientation of mobile
devices during image comparison. Without a visual cue, an
image with red-blue-green-yellow strips looks the same as
another image with yellow-green-blue-red strips rotated by
180 degrees. We use 64 colors with each RGB intensity
assigned one of four uniformly selected values (e.g., with
intensities ranging from 0-255 we would use 0, 85, 170,
and 255). To create a similar image, we copy an image and
increase (or decrease) the intensity of one color of one strip
by one level.
T-Flag. T-Flag gives 24 bits of entropy (3 bits in each

of the 8 colored blocks). Each block is assigned a color
out of 8 red-green colorblind proof colors, i.e., Black, Gray,
White, Yellow, Light Pink, Red, Blue, and Brown. To create
a similar image, we copy an image and swap the colors of
two adjacent blocks.

107



Flag Extension. A Flag Extension image contains 24 bits
of entropy, where each of the 4 blocks contributes 6 bits (3
bits from color and 3 bits from shape). We generate a similar
image by swapping the shapes or colors of two adjacent
blocks.
Chinese characters. To represent a hash by Chinese

characters, two characters are selected from a set of
9810 characters. Hence, a Chinese representation contains
2 log2(9810) = 26.52 bits of entropy. To create a similar
representation, we replace one of the two characters by a
character that differs by one or two strokes, or by their
radical.3 For example, ‘我’ ↔ ‘找’ or ‘甲’ ↔ ‘申’ are
only different by one or two strokes, and ‘游’ ↔ ‘遊’ or
‘獲’ ↔ ‘穫’ are different by one radical.
Japanese characters. The Japanese character scheme is

composed of four Hiragana and has 4log2(70) = 24.52 bits
of entropy. A similar pair is generated by modifying a
dakuten or handakuten (the upper-right quotation mark or
circle) in one of the four characters (e.g., ‘き’ ↔ ‘ぎ’),
or by selecting two very similar Hiragana characters (e.g.,
‘ぬ’ ↔ ‘め’ or ‘は’ ↔ ‘ほ’).
Korean characters. The Korean character scheme, rep-

resented by two Hangul, gives 2 log2(11172) = 26.90 bits
entropy. To generate a similar pair, we replace one jamo with
a very similar jamo, (e.g., ‘달’ ↔ ‘말’or ‘현’ ↔ ‘한’).

C. Online Study

We performed an online user study to compare the ac-
curacy and time needed for each of the hash comparison
schemes. When participants visited our website, they com-
pleted two main steps: fill in background information and
perform 27 hash comparisons. In Section IV-D, we discuss
how we recruited participants and participant demographics.

Step 1. Fill in background form Participants were
first asked to report their gender, age group, and language
abilities. Specifically, we asked if the participant was able
to recognize Chinese characters, Japanese characters, and
Korean characters.

Step 2. Compare 27 pairs of hash representations After
collecting demographic information, participants compared
27 pairs of hash representations (i.e., 3 pairs from each
of the nine schemes). The participant were instructed to
compare two hash representations at a time and decide if
the representations were the same or not by pressing “same”
or “different” buttons on the webpage. Fig. 2(a) shows the
instructions from the webpage with two example pairs; a
“same” pair on the left hand side and a “different” pair
on the right hand side. Fig. 2(b) shows a screenshot of a
comparison.

3A radical is a portion of a character that serves as an index in the
dictionary. For example, the radicals of ‘穫’ is ‘禾’.

During the comparisons, the order of the different
schemes and the pairs encountered were randomly assigned.
The detailed procedure was as follows:

1) The order of the schemes was randomly assigned,
with each participant seeing each scheme once. After
comparing 3 pairs from one scheme, the participant
encounters 3 pairs from a randomly selected not-yet-
encountered scheme.

2) Each pair of representations was selected from a pre-
generated pool. The webpage shows,

a) with probability 1
2 , a pair of two identical repre-

sentations;
b) with probability 1

4 , a pair of two obviously dif-
ferent representations;

c) with probability 1
4 , a distinct but similar-looking

pair, a hard pair.

To simulate different representations that may not be
perfectly aligned, each pair was displayed on the web-
page (Fig. 2(b)) with one of the hash representations
slightly rotated by a uniformly random angle between
±30 degrees.

3) For each question, the participant clicked the “Same”
or the “Diff” button to answer how they perceived the
pair (i.e., as identical or different).

4) The answer and time spent comparing the pair were
recorded and the next pair was shown.

In the experiment, same and different image pairs were
shown with equal probability to ensure that a user that clicks
the same button for all questions achieves a 50% accuracy.
For the pairs which were different, we made half similar
pairs, with the other half obviously different pairs.

D. Participant Demographics

We recruited participants from two sources: 1) university
classes in the US, Japan, Korean, and Taiwan and 2)
Mechanical Turk (MTurk)4 [16]. Since participants were
unsupervised during the survey, participants who spent over
60 seconds for a question were dropped from the survey.
There were 259 male and 177 female participants. The age
of the participants varied with 239 participants 18 to 25 years
old, 163 participants 26 to 40, 31 participants between 41
and 60, and only 3 participants older than 60. Information
about participants’ ability to recognize Asian languages can
be found in Table II. Note that, some rows sum to a number
greater than the number of participants from a given source
because some participants can recognize more than one
Asian language.

4Mechanical Turk is an online service that allows “requesters” to post
tasks which “workers” complete in exchange for money. Most of these
tasks are problems that are difficult for computers to do accurately (e.g.,
transcribe recordings) or require human knowledge (e.g., review a product
or location).
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Table I
ENTROPY IN EACH HASH COMPARISON SCHEME.

Scheme Base32 English Chinese Japanese Korean Random Art Flag T-Flag Flag Extension
Entropy (bits) 25 27 26.52 24.52 26.90 19.71-23.71∗ 24 24 24

∗Note: The entropy of Random Art is an estimate (see Appendix A for more details).

(a) Instruction page

(b) An example of a hash comparison question

Figure 2. Screenshots from our survey website.

Table II
NUMBER OF PARTICIPANTS FROM EACH SOURCE THAT CAN RECOGNIZE

THE DIFFERENT ASIAN LANGUAGES.

Source # familiar with # familiar with # familiar with
(total #) Chinese Japanese Korean
US (52) 13 3 3
Japan (52) 2 52 0
Korea (39) 0 1 39
Taiwan (87) 87 0 0
MTurk (212) 27 21 10

V. RESULTS AND ANALYSIS

In this section, we present the results of our study, analyze
the average accuracy rate and response time for both easy
and hard questions, and inspect the impact of different
sources, age groups, gender, and hash comparison schemes.
The statistical test ANOVA along with post-hoc contrasts
were used to determine if group means were significantly
different. All of our statistical tests use a significance level

of 0.05. In addition, we present p-values for all statistically
significant tests (i.e., p< 0.05). A smaller p-value shows a
greater confidence in the conclusion of a statistical test that
factor X has an impact on accuracy or speed. We found that

• Source, age, and gender have no significant impact
on average accuracy rate across all of the schemes—
excluding the Asian characters. The age group 18–25
is significantly faster than people in the 26–40 and
41–60 age groups. We also found participants from
Mechanical Turk are significantly slower than Koreans
on hard questions.

• Language ability affects the performance of language-
based schemes (including Chinese characters, Japanese
characters, Korean characters, and English words), but
the influence is not always positive. In some cases, the
familiarity of a language can increase the accuracy or
decrease time while comparing representations which
utilize that particular language. However, for English
words, native speakers have lower recognition accuracy.

• In general, Base32, Random Art, T-Flag, and Flag
Extension provide fast and accurate comparisons of
both easy and hard questions.

In the remainder of this section, we show the result of each
factor or scheme in detail.

A. Impact of Source, Age, Gender

Source. On hard questions, participants from Mechanical
Turk were significantly slower than participants from Korean
(on average 4.48 seconds per comparison versus 3.7 seconds
per comparison, p = 0.041). When we ignore the Asian
character schemes, there were no significant differences for
accuracy or time on easy or hard items.

Age. On easy questions, age had no significant impact on
the average time. On hard questions, the youngest age group
was faster than both 26 to 40 year olds (on average 3.93
seconds versus 4.47 seconds, p = 9.09× 10−3) and 41 to
60 year olds (on average 3.93 seconds versus 4.89 seconds,
p = 1.57× 10−2). There were too few people (3) to make
meaningful conclusions about participants older than 60.

Gender. There was no significant difference between
males and females on easy or hard pairs with respect to
time or accuracy.
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B. Impact of Language Ability

When selecting a hash comparison scheme, one would
like to know if the ability to recognize various Asian
characters will impact performance. To help answer this
question, we analyzed if Asian character recognition im-
pacted the accuracy and speed of hash comparison. Table III
summarizes the average accuracy and time for participants
with different language abilities on the different Asian-
character-based schemes. To determine if knowledge of a
language provided better accuracy or speed, we compared
the performance of participants that spoke a language and
participants that did not speak the language.

Table III
AVERAGE PERFORMANCE OF PARTICIPANTS ACROSS ALL OF THE ASIAN

CHARACTER-BASED SCHEMES WHEN SEPARATED BY LANGUAGE

ABILITY.

Language Average Easy Pair Average Hard Pair
Ability Accuracy Time (s) Accuracy Time (s)

Recognize Chinese 97% 4.70 76% 4.31
No Chinese Recognition 97% 4.98 53% 5.26

Recognize Japanese 99% 4.14 65% 4.26
No Japanese Recognition 98% 4.74 55% 5.26

Recognize Korean 100% 3.72 84% 3.90
No Korean Recognition 98% 4.72 50% 5.05

English Only 92% 4.71 68% 4.60
English & ≥ 1 Asian 96% 4.88 60% 4.64
language

Chinese. Knowledge of Chinese had no significant impact
on speed. On easy pairs, Chinese speakers had similar
accuracy to non-Chinese speakers (both 97%). However,
Chinese speakers did have better accuracy on hard pairs.
On hard questions, Chinese speakers had an average accu-
racy of 76% compared to 53% for non-Chinese speakers
(p= 3.50×10−4).
Japanese. Japanese speakers were significantly faster on
hard items than non-Japanese speakers (4.18 seconds versus
5.62 seconds, p = 0.016), but had similar speeds on easy
items. Knowledge of Japanese had no statistically significant
impact on accuracy. On easy questions, Japanese speakers
had an average accuracy of 99% (with a 95% confidence
interval of ±19%) as opposed to 98% (±13%) for non-
Japanese speakers. On hard questions, Japanese speakers had
an average accuracy of 65% while non-Japanese speakers
had an average accuracy of 55%. Despite a 10% difference in
accuracy, the large variance in accuracy (±88% and ±94%
confidence intervals) on hard pairs produces a p-value of
0.179 (not statistically significant).

Korean. Korean speakers were faster than non-Korean
speakers on both easy (3.72 seconds versus 4.72 seconds,
p = 0.018) and hard Korean items (3.90 seconds versus
5.05 seconds, p= 0.0136). On easy questions, the accuracy
was independent of knowledge of Korean. However, on hard

questions Korean speakers were significantly more accurate
(84% versus 50%, p= 8.32×10−5).
English. We also analyzed if English only speakers (pos-
sibly native English speakers) had an advantage on English
words. Surprisingly, English only speakers were significantly
less accurate on easy items than people who spoke Asian
languages (92% accuracy versus 96% accuracy, p= 0.018).
On hard questions, English only speakers’ accuracy was not
significantly different than participants that knew at least
one Asian language (68% versus 60%, p = 0.19). Average
comparison time was not affected by knowing only English.

Table IV
RESULT OF QUESTIONS FROM EACH HARD LANGUAGE-BASED PAIR.

Scheme Question Accuracy Comparison
Speaker Nonspeaker

Chinese
charac-
ters

1 59.3% 48.4% ©
2 80.0% 53.1% +
3 76.0% 38.8% +
4 90.9% 69.6% +
5 94.4% 52.3% +

Japanese
charac-
ters

1 85.7% 66.2% +
2 36.4% 52.9% ©
3 62.5% 32.1% +
4 82.4% 52.3% +
5 83.3% 83.1% ©

Korean
charac-
ters

1 90.0% 61.9% +
2 100.0% 38.2% +
3 55.6% 21.5% +
4 100.0% 74.6% +
5 87.5% 44.6% +

English
words

1 92.6% 87.5% ©
2 48.0% 54.1% ©
3 54.5% 70.0% ©
4 83.8% 64.1% +
5 40.5% 44.2% ©

1) Further Analysis of Hard Question Pairs: Table IV
lists the accuracy of the individual hard pairs for the 4 differ-
ent language-based schemes (Chinese, Japanese, and Korean
characters and English words). The third and fourth columns
indicate the accuracy of participants which recognize those
characters versus the accuracy of participants that do not
recognize those characters. For the English words, “speaker
accuracy” only includes participants that only speak English.
“Non-speaker accuracy” refers to participants that speak at
least one of the three Asian languages. The last column indi-
cates if speakers have a statistically significant advantage (+)
or disadvantage (−) with respect to accuracy. © indicates
that there is no significant difference.
These results indicate that the ability to recognize a set

of characters provides an advantage during at least some
hard pairs (and no disadvantage). Questions that were most
difficult for participants who could recognize the characters
are shown in Fig. 3, including Question 1 of Chinese
characters, Question 2 of Japanese characters, Question 3
of Korean characters, and Question 5 of English words.
However, Question 1 of Chinese characters and Question 2
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of Japanese characters were not the most difficult questions
for participants who could not recognize the characters.
Such a difference may be attributed to stroke order: the
sequence of strokes in which a character is written. Every
Asian character has a particular stroke order. A participant
who has learned a set of Asian characters may compare
two characters by following the stroke orders (rather than
blindly trying to find a difference in two images). Hence,
Asian language speakers have most difficulty comparing a
pair that differs at a late stroke order, e.g., Fig. 3(a)-3(c).
English only speakers’ advantage may have been the result

of which English the participants learned. English words
hard pair 4 was “jowly-begs-gaol” versus “ jowly-begs-
goal”. Those who learned the “Queen’s” English may know
that a “gaol” is a jail. However, few Americans may know
the word. As a result, those who learned American English
quickly notice the difference between “gaol” and “goal”.

C. Performance of Each Hash Comparison Scheme

Table V summarizes the performance of each scheme. The
first column shows the average accuracy rate over all easy
pairs. The second column indicates the average accuracy
over all hard pairs. The third column shows the minimum
accuracy of a particular scheme among all hard pairs for
that scheme. The fourth and fifth columns show the average
time a user needs to compare pairs.
Our analysis shows that at least 2 schemes significantly

differ in both time and accuracy for both easy and hard
questions. We created partial order graphs to demonstrate
the order within the schemes from most to least accurate
and least time to most time (Fig. 4). In these graphs, an
edge from scheme A to scheme B means participants were
significantly more accurate on scheme A than on scheme B
or required significantly less time.
In addition, we compared all of the schemes with Asian-

language speakers removed from our sample because they
perform differently in the categories Chinese characters,
Japanese characters, and Korean characters based on our
previous analysis on language ability. Again, the differences
in accuracy and speed are statistically significant for some
schemes. The partial order graphs for this set of data are
shown in Fig. 5.

(a) Q1, Chinese
characters

(b) Q2, Japanese
characters

(c) Q3, Korean
characters

(d) Q5, English
words

Figure 3. Image pairs that participants had the most difficulty comparing.

D. Suggestion

Based on our results, we suggest that protocols which re-
quire users to perform a hash comparison should use Base32,
Random Art, T-Flag, or Flag Extension, because participants
perform well in these schemes (for both baseline—easy
pairs—and worst case—hard pairs—scenarios), independent
of language ability. These suggested schemes allow faster
and more accurate comparison than the other schemes in-
dependent of participants’ ability to distinguish subtle color
differences (i.e., Flag) or to recognize different characters
(i.e., Chinese characters, Japanese characters, and Korean
characters).

VI. DISCUSSION

In this section, we discuss some topics related to hash
comparison schemes that were not yet addressed in the
paper: requirements, additional properties, and the limited
entropy of the hash comparison schemes. In addition to ac-
curacy and speed of comparison, hash comparison schemes
also have a number of different requirements and properties
that may impact what scheme works best for a given
application. Hash comparison schemes provide notably less
security than the underlying hash functions (20 to 30 bits of
entropy versus 128 or more bits). Protocol designers must
be aware of this limited entropy and design schemes that
prevent an attacker from brute forcing the hash comparison
scheme.

A. Additional Properties of the Hash Comparison Schemes

In this section, we discuss requirements and benefits of
each hash comparison scheme.

Requirements. Some of the schemes require the devices
to have certain properties to generate and display the hash
comparison. Random Art, Flag, T-Flag, and Flag Extension
require a color display. In addition, Random Art requires
a high resolution display. Random Art and Flag images
may appear different when printed on paper or displayed
on different screens with different contrast and brightness
settings. Without duplicate display settings, Random Art
and Flag that appear different may not represent different
data. The selection of 8 colorblind friendly colors for T-
Flag and Flag Extension ensures that differences in contrast
and brightness will not change the general colors one views.
Random Art images require significant computation power
since each pixel is computed from a complex arithmetic
tree. On average, it takes about 8 seconds to generate a
180×180 pixel Random Art image on a mobile device [2],
[7]. Devices that generate Chinese characters, Japanese
characters, and Korean characters, require codec support
to display corresponding character sets. Depending on the
intended application and platform, some of these require-
ments may rule out the use of certain hash comparison
schemes. For example, if the hash comparison scheme is
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Table V
SUMMARY STATISTICS FOR EACH SCHEME.

Category
Average accuracy
on easy pairs

Average accuracy
on hard pairs

Minimum accuracy
on a hard pair

Average time for
easy pairs (sec)

Average time for
hard pairs (sec)

Base32 97% 86% 71.1% 3.39 3.51
Chinese characters 97% 59% 51.4% 4.89 5.01
English words 94% 63% 42.5% 4.80 4.63
Flag Extension 98% 88% 62.7% 3.93 4.02
Japanese characters 98% 57% 39.1% 4.64 5.07
Korean characters 98% 54% 25.7% 4.61 4.92
Flag 97% 50% 15.1% 3.70 4.28
Random Art 98% 94% 60% 4.77 3.21
T-Flag 98% 85% 70.8% 3.99 4.00
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Figure 4. Partial order of schemes with all participants.
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Figure 5. Partial order of schemes when the three Asian-language speakers are excluded.

meant for computationally limited mobile devices, Random
Art’s computation requirement makes it a suboptimal choice.
This comparison is summarized in Table VI, where a �
indicates “required”.

Additional benefits. A scheme is describable if users
can clearly describe the representation without showing it to
another user (e.g., speaking the characters directly or stating
the colors). It is very difficult to accurately describe some of
the schemes. English words and Base32 can be easily spelled
using letters and numbers (or words if the English words
are common). A user will be unable to accurately describe
Random Art images since some Random Art images contain
a series of bars as part of a gradient of one color, but of
different widths. A user can describe the colors, shapes, and
order in T-Flag and Flag Extension. In Flag, minor variations

in the colors may be difficult to describe without knowledge
of the underlying RGB values. For Asian characters, users
that speak the language can speak the given characters, but
others may have trouble describing the characters. Even for
random Korean characters, those familiar with the language
can decompose the characters into the proper jamos.

B. Limited Entropy of the Hash Comparison Schemes

Each hash comparison scheme represents a hash h by an
image or text representation R(h) that outputs around 20-
30 bits of entropy. To subvert most protocols, an attacker
has to break the second-preimage resistance of the hash
representation, as opposed to the hash (i.e., given a hash h
the attacker finds some different data and hash h′ such that
h �= h′, but R(h) =R(h′)). Given modern devices can perform
220 or more hash computations a second, it is feasible for
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Table VI
SUMMARY OF REQUIREMENTS.

Scheme
Color Duplicate Computation Codec
Display Display Power Support

Settings
Base32 - - - -
English words - - - -
Random Art � � � -
Flag � � - -
T-Flag � - - -
Flag Extension � - - -
Chinese characters - - - �
Japanese characters - - - �
Korean characters - - - �

an attacker to find such a h′ in a few minutes.
To prevent attacks, we could encode the entire output of

a secure hash function (such as all 160 bits from SHA-1)
by a hash representation. However, increasing entropy is not
a solution because it sacrifices usability and accuracy. With
more entropy, representations will contain longer sequences
of characters or more minute details which will lead to
increased time and errors during comparisons.
Rather than increasing entropy, the protocol should use

commitments [17] or other techniques to ensure security.
Commitments make participants’ inputs to the hash rep-
resentations unpredictable and prevent participants from
modifying their data in response to other participants data.
Without prior knowledge of the inputs and no way to change
inputs after learning other participants’ inputs, a malicious
party is limited to a single attempt to find a collision for the
hash representation. With a single guess, the chance of two
hash representations with n bits of entropy being equal is
2n−1.

VII. CONCLUSION

We found that Base32, Random Art, T-Flag, and Flag
Extension provide the best balance across all properties—
quick high accuracy comparison independent of language
ability. We conclude with a decision tree (Fig. 6) that
suggests proper visual comparison schemes (out of these
four schemes) based on device’s capability, i.e., whether
a device has a high resolution display and/or sufficient
computation power. Hence, these suggested schemes offer
the best tradeoffs among accuracy, speed, and usability for
each branch.
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APPENDIX

Despite that Random Art is designed to encode a large
amount of entropy (e.g., 160 bits of SHA-1) [12], to the
best of our knowledge, there is no theoretical analysis show-
ing that its perceptual entropy (the amount of information
perceived by humans) is close to the encoded entropy. To
tackle this entropy estimation problem, we randomly sample
a subset of Random Art images and count the number of
perceptually similar images in the subset, by which we
can statistically estimate the total number of perceptually
different images.
We use PerceptualDiff [15], a tool that measures the

perceptual difference between two images, to help us iden-
tify perceptually similar images in an image set. Though
PerceptualDiff is not perfect — it may claim two different
(or similar) images are somewhat similar (or different),
it still provides a good starting point for our analysis.
We generate 3709 Random Art images and evaluate the
difference of each pair of images by PerceptualDiff. After
manually inspecting the 50 pairs with the least perceptual
differences, we found that 6 images are indeed very similar.

(a) (b) (c)

(d) (e) (f)

Figure 7. 6 perceptually similar images captured by PerceptualDiff. There
are 4 repetitions: image (b) and (c) repeat image (a), and image (e) and (f)
repeat image (d).

Orlitsky et al. [18] propose a statistic estimator k̂(Nr,r)
to estimate a population k by random sampling, i.e.,

k̂(Nr,r) =
N2r
2r

(1)

Here Nr is the number of samples until there are r repeti-
tions. For example, in a sequence of c,g,c,s,g,c,v, N1 =
3,N2 = 5,N3 = 6. In the context of image sampling, we
define a repetition to be an image that is perceptually similar
to a previous shown image.
Equation 2 shows the confidence level of this estimator,

expressing by the probability that the estimate falls outside
of [k(1−α),k(1+α).

Pr(k̂(Nr,r) �∈ k(1±α)) <
(1+α)r

erα
, α ≥ 1. (2)

The result of PerceptualDiff (together with our manual
inspection) shows that there are 4 repeated instances (i.e.,
perceptually similar images) in the first 3709 samples. Fig. 7
shows that image (b) and (c) “repeat” image (a), and image
(e) and (f) “repeat” image (d), i.e., α = 3. We conclude that
the number of perceptually different images generated by
Random Art is 37092/4 = 3439170.25 ≈ 221.71, with only
8.6% that Random Art will carry more than 23.71 bits or
less than 19.71 bits.
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