
STRING FINDING BASED ON APPLICATION CONNECTED TO SERVER 
 

1 Po-Hsun, Huang (黃柏勳),2 Yu – Chen, Chen (陳昱成),3 Chiou-Shann Fuh (傅楸善) 

 1
 Department of Computer Science and Information Engineering, 

2
 Department of Electrical Engineering, 

3
 Department of Computer Science and Information Engineering, 

National Taiwan University, Taipei, Taiwan, 

E-mail: haung12936@gmail.com    ken7968684@yahoo.com.tw    fuh@csie.ntu.edu.tw     

 

 

 
 

ABSTRACT 

For this project we propose and implement a reading 

tool on Andriod platform that can be used to identify 

keywords on paper-based media. We breakdown the 

image processing after receiving an image of the media 

into three steps. In the first step, we pre-process the 

image using binarization, deskew and de-noising. The 

second step involves using OCR (in particular, 

Tesseract OCR engine) to recognize the text and find 

the keywords. Finally, we highlight the keywords by 

circling it with bounding boxes. 

 

1. INTRODUCTION 

 

Have you ever read a long paper based article and find 

yourself unable to locate keywords? With the 

advancement of digital media, sometimes we take basic 

word search for granted. But the world is still full of 

media printed on paper and it would make our lives 

much simpler if we can apply this searching tool to old 

fashioned books. We propose a mobile application that 

will be able to find a word that the user specified 

through a phone’s viewfinder. As soon as the phone 

detects the word it will highlight it in the viewfinder, 

saving the user a lot time manually searching for word. 

him/herself. 

For example, we want to search for “right” in this 

paperbased Declaration of Independence. We only need 

to use our smart phone to scan over the paper. 

Whenever the word “right” appears on the phone screen, 

it will be immediately circled in red bounding boxes. 

 

2. Pre‐processing 

 

2.1 Binarization 

 

First we need to separate words from background, so we 

previously perform a global thresholding, which 

converts the image into a binary version using Otsu’s 

method. Since our image is mostly black text on white 

background(or uni-colored text on uni-colored 

background). Otsu's method is used to automatically 

perform clustering-based image thresholding or, the 

reduction of a graylevel image to a binary image. The 

algorithm assumes that the image contains two classes 

of pixels following bi-modal histogram (foreground 

pixels and background pixels), it then calculates the 

optimum threshold separating the two classes so that 

their combined spread (intra-class variance) is minimal, 

or equivalently (because the sum of pairwise squared 

distances is constant), so that their inter-class variance is 

maximal. Consequently, Otsu's method is roughly a 

one-dimensional, discrete analog of Fisher's 

Discriminant Analysis. Otsu's method is also directly 

related to the Jenks optimization method. Here, the 

matter is straight forward. If pixel value is greater than a 

threshold value, it is assigned one value (may be white), 

else it is assigned another value (may be black). The 

function used is cv.threshold. First argument is the 

source image, which should be a grayscale image. 

Second argument is the threshold value which is used to 

classify the pixel values. Third argument is the maxVal 

which represents the value to be given if pixel value is 

more than (sometimes less than) the threshold value. It 

should work farily well in converting the image into a 

binary version. 

The reason not to apply Otsu’s method to every block is 

that if some blocks are background with a number of 

noise pixels, Ostu’s method will keep the noise pixels 

while classifying the entire block as background will 

eliminate noise. 

The second method is Maximally Stable Extremal 

regions (MSER)[3]. In computer vision, MSER is 

widely used as a method of blob detection. Like the 

SIFT detector, the MSER algorithm extracts from an 

image a number of co-variant regions, called MSERs. 

An MSER is a stable connected component of some 

level sets of the image. In this case, black words on the 

white paper are successfully detected by using vl-feat 

vl_mser function (MinDiversity=0.2, MaxVariation=0.7, 

haung12936@gmail.com
mailto:ken7968684@yahoo.com.tw
mailto:fuh@csie.ntu.edu.tw
https://en.wikipedia.org/wiki/Thresholding_(image_processing)
https://en.wikipedia.org/wiki/Variance
https://en.wikipedia.org/wiki/Linear_discriminant_analysis#Fisher's_linear_discriminant
https://en.wikipedia.org/wiki/Linear_discriminant_analysis#Fisher's_linear_discriminant
https://en.wikipedia.org/wiki/Jenks_optimization_method
https://docs.opencv.org/3.4.0/d7/d1b/group__imgproc__misc.html#gae8a4a146d1ca78c626a53577199e9c57


Delta=15, MaxArea=0.1). In all possible thresholdings 

of a gray-level image I, we refer to the pixels below a 

threshold as ‘black’ and to those above or equal as 

‘white’. If we were shown a movie of thresholded 

images 𝐼𝑡, with frame t corresponding to threshold t; we 

would see first a white image. Subsequently black spots 

corresponding to local intensity minima will appear and 

grow. At some point regions corresponding to two local 

minima will merge. Finally, the last image will be black. 

The set of all connected components of all frames of the 

movie is the set of all maximal regions; minimal regions 

could be obtained by inverting the intensity of I and 

running the same process. In many images, local 

binarization is stable over a large range of thresholds in 

certain regions. Such regions are of interest since they 

posses the following properties:  

 Invariance to affine transformation of image 

intensities. 

 Covariance to adjacency preserving (continuous) 

transformation on the image domain. 

 Stability, since only extremal regions whose 

support is virtually unchanged over a range of 

thresholds is selected. 

 Multi-scale detection. Since no smoothing is 

involved, both very fine and very large structure 

are detected. 

The process produces a data structure storing the area of 

each connected component as a function of intensity. A 

merge of two components is viewed as termination of 

existence of the smaller component and an insertion of 

all pixels of the smaller component into the larger one. 

Finally, intensity levels that are local minima of the rate 

of change of the area function are selected as thresholds 

producing MSER. In the output, each MSER is 

represented by position of a local intensity minimum (or 

maximum) and a threshold. Although the set of extremal 

regions is covariant with any one-to-one continuous 

transformation of the image domain and thus covariant 

to projective transformation, the process of the selection 

of the maximally stable subset is affine-covariant. The 

MSERs are therefore only affine covariant. 

The third method is locally adaptive thresholding. 

Unlike the global thresholding technique, local adaptive 

thresholding chooses different threshold values for 

every pixel in the image based on an analysis of its 

neighboring pixels. This is to allow images with varying 

contrast levels where a global thresholding technique 

will not work satisfactorily. The reason we choose 

locally adaptive thresholding instead of global 

thresholding is that the lighting/brightness of the image 

is not uniform, which will cause global thresholding to 

perform poorly in the extreme bright/dark regions. 

The idea of locally adaptive thresholding is divide the 

image into blocks/windows. For each block, use 

grayscale variance to determine whether the block is 

uniform. If the block is non-uniform (high variance), 

apply Otsu’s method/global thresholding to the block; if 

the block is uniform (low variance), classify the entire 

block as all black or all white based on the mean 

grayscale value. 

Adaptive thresholding typically takes 

a grayscale or color image as input and, in the simplest 

implementation, outputs a binary image representing the 

segmentation. For each pixel in the image, a threshold 

has to be calculated. If the pixel value is below the 

threshold it is set to the background value, otherwise it 

assumes the foreground value. 

There are two main approaches to finding the threshold: 

(i) the Chow and Kaneko approach and (ii) 

local thresholding. The assumption behind both methods 

is that smaller image regions are more likely to have 

approximately uniform illumination, thus being more 

suitable for thresholding. Chow and Kaneko divide an 

image into an array of overlapping subimages and then 

find the optimum threshold for each subimage by 

investigating its histogram. The threshold for each 

single pixel is found by interpolating the results of the 

subimages. The drawback of this method is that it is 

computational expensive and, therefore, is not 

appropriate for real-time applications. 

An alternative approach to finding the local threshold is 

to statistically examine the intensity values of the local 

neighborhood of each pixel. The statistic which is most 

appropriate depends largely on the input image. Simple 

and fast functions include the mean of the local intensity 

distribution, the median value, or the mean of the 

minimum and maximum values. The size of the 

neighborhood has to be large enough to cover sufficient 

foreground and background pixels, otherwise a poor 

threshold is chosen. On the other hand, choosing regions 

which are too large can violate the assumption of 

approximately uniform illumination. This method is less 

computationally intensive than the Chow and Kaneko 

approach and produces good results for some 

applications. Like global thresholding, adaptive 

thresholding is used to separate desirable foreground 

image objects from the background based on the 

difference in pixel intensities of each region. Global 

thresholding uses a fixed threshold for all pixels in the 

image and therefore works only if the intensity 

histogram of the input image contains neatly separated 

peaks corresponding to the desired subjects and 

backgrounds. Hence, it cannot deal with images 

containing, for example, a strong illumination gradient. 

Local adaptive thresholding, on the other hand, selects 

an individual threshold for each pixel based on the range 

of intensity values in its local neighborhood. This allows 

for thresholding of an image whose global intensity 

histogram doesn't contain distinctive peaks.  

OpenCV function adaptiveThreshold is applied for 

binarization. Through large amounts of expirements, we 

tried 15, 21, and 51 blockSize according to specific 

distance between cell phone and the paper which we 

want to scan. It is observed that a blockSize of 51 yields 

a good tradeoff between efficiency and thresholding 

effect.  
 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/gryimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/colimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/threshld.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/histgram.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/histgram.htm


2.2  De-skew 

 

 
Fig. 1: Deskewed image. 

 

We use the method described in Abuhaiba [2]. Which 

depends on finding a horizontal RLSA (Run-Length 

Smoothing Algorithm) image of the skewed document. 

The average skew of selected black connected 

components in the RLSA image is considered as the 

skew angle for the whole document. And then we use a 

single-pass skew detection and correction algorithum to 

de-skew the image. 

However, after some experiment, we adapted another 

method. The input image from the user can be taken at 

an angle and the lines of text may not be horizontally 

aligned[4]. This may cause the following OCR stage to 

not perform as expected. Thus the image should be 

rectified first. Hough transform is used to detect (text) 

lines in the image. Then the binarized image is rotated 

by the mean of the rotation angles calculated from each 

text line. OpenCV function getRotationMatrix2D can be 

used to do it. In order to avoid cutting off corners in the 

rotation process, padding is introduced before rotating. 

See Fig. 1. The image after getRotationMatrix2D  is 

larger than the previous images  because of padding, but 

the padding will be chopped off as a last step to match 

the original image size. Observing that Tesseract does a 

decent job for images skewed by less than 5 degrees, we 

have included logic to bypass de-skew image rotation 

for such images. This improves accuracy because image 

rotation lowers image quality after interpolation. By 

skipping rotation, we essentially preserve more details 

in the image and therefore boost performance for 

images with a small skew. In our accuracy test in skew 

angles, 0-degree test cases have better performance than 

others. Even though theoretically 0-degree test cases 

should not be affected by image rotation if the skew is 

exactly 0 degree, we performed testing by hand-holding 

the device, which can introduce skew of a few degrees. 

Therefore skipping the rotation step can save us from 

the interpolation effect and boost performance. 

 

2.3 De-noising 

 

We also performed median filtering with a kernel size of 

3 to eliminate any salt-and-pepper noise. The main idea 

of the median filter is to run through the signal entry by 

entry, replacing each entry with the median of 

neighboring entries. The pattern of neighbors is called 

the "window", which slides, entry by entry, over the 

entire signal. For 1D signals, the most obvious window 

is just the first few preceding and following entries, 

whereas for 2D (or higher-dimensional) signals such as 

images, more complex window patterns are possible 

(such as "box" or "cross" patterns). This improves the 

accuracy of the character size detection, because 

otherwise the size of noise spots will introduce error 

into character size calculation. 

 

3. WORD RECOGNITION‐OCR 

 

We propose to use the Tesseract OCR [1] engine for this 

project, the latest version is 4.0.0, released on October 

29, 2018. In 2006, Tesseract was considered one of the 

most accurate open-source OCR engines then available. 

Tesseract 4 adds a new neural net (LSTM) based OCR 

engine which is focused on line recognition, but also 

still supports the legacy Tesseract OCR engine of 

Tesseract 3 which works by recognizing character 

patterns. It has many additional languages and scripts, 

bringing the total to 116 language, including right-to-

left text such as Arabic or Hebrew, many Indic scripts as 

well as CJK quite well. Tesseract supports various 

output formats: plain text, hOCR (HTML), PDF, 

invisible-text-only PDF, TSV. The master branch also 

has experimental support for ALTO (XML) output. 

Algorithm: 

Step 1: the engine first detects component outlines, 

which are then grouped into blobs.  

Step 2: Blobs are organized into lines and lines are 

analyzed for fixed pitch.  

Step 3: The pitch is then used to separate out the words.  

Step 4: During the first pass, each satisfactory word is 

entered into an adaptive classifier which will enable to 

the engine to more easily recognize the words further 

down the page. 

Step 5: A second pass will be made to reanalyze the 

words at the beginning of the page since the classifier 

was not trained during the first pass.  

Step6:A final phase resolves fuzzy spaces, and uses x-

height normalization to detect lower case letters. 

Tesseract's output will have very poor quality if the 

input images are not preprocessed to suit it: Images 

(especially screenshots) must be scaled up such that the 

text x-height is at least 20 pixels, low-frequency 

changes in brightness must be high-pass filtered, or 

Tesseract's binarization stage will destroy much of the 

page, and dark borders must be manually removed, or 

they will be misinterpreted as characters. 

 

A. Segmentation by Letter  

 

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/CJK_characters
https://en.wikipedia.org/wiki/Screenshot
https://en.wikipedia.org/wiki/Image_scaling
https://en.wikipedia.org/wiki/X-height
https://en.wikipedia.org/wiki/High-pass_filter
https://en.wikipedia.org/wiki/Binary_image


The first step of word recognition is to segment the 

image into rectangles each containing a letter. Because 

most letters consists of one connected component in the 

image, contours can be drawn (using OpenCV function 

findContours and drawContours) around each letter and 

then find a bounding box of each contour (OpenCV 

function boundingRect). Some letters (for instance, 

lower case “i”, “j”) consists of two connected 

components, and hence will have two bounding boxes, 

but it does not affect the algorithm since they will get 

combined in the next step as we combine letter 

bounding boxes into word bounding boxes. 

  
B. Smart Segmentation by Word  

 

 
Fig. 2: Word’s bounding box. 

 

The motivation/assumption behind this method is that in 

a normal text document, line spacing, character size, 

word spacing, etc. scales linearly, i.e. large characters 

means large spacing, and vice versa [5]. We have to 

combine neighboring letter bounding boxes into a word 

bounding box, but there is no existing OpenCV 

functions that performs this task. Therefore the 

following functions are implemented in C++:  

1) Find Character Size: We implemented function 

findCharSize to estimate the average height and 

width of each letter (or its bounding box). This is 

important because when deciding whether two 

letter-bounding boxes are neighbors, we need to 

look at the distance between them relative to the 

average size of bounding boxes. Making the 

decision based on absolute distance only is not 

accurate. The implementation was done by creating 

a map with keys being the areas of the bounding 

boxes, and the values being the occurrences (i.e. 

how many bounding boxes have areas equal to the 

key). Then the ten most frequent area values are 

selected, and their mean is used as the character 

size metric. The function calculates the values for a 

few important parameters including: 

 cArea: The mean calculated from the ten most 

frequent area values. 

 cHeight: An estimate of average height of letters, 

calculated from √𝑐𝐴𝑟𝑒𝑎 multiplied by a constant 

factor to take into account that most letters have 

larger height than width. 

 cWidth: An estimate of average width of letters, 

calculated from √𝑐𝐴𝑟𝑒𝑎 multiplied by a constant 

factor to take into account that most letters have 

larger width than height.  

2) Find Neighbour: Function isNeighbour is 

implemented to determine whether two letters are 

next to each other in the same word. This is the key 

logic in determining which letter bounding boxes to 

merge together into a word bounding box. Two 

bounding boxes need to satisfy both conditions 

below in order to be called neighbours: 

 • The x-coordinate of the right edge of box 1 and the 

xcoordinate of the left edge of box 2 are off by at most 

0.32 × cWidth (box 1 is to the left of box 2); or vice 

versa, the x-coordinate of the left edge of box 1 and the 

x-coordinate of the right edge of box 2 are off by at 

most 0.32 × cWidth (box 1 is to the right of box 2). The 

factor 0.45 is the parameter that gives the best results 

after several experiments. 

 • Because different letters have different heights, we 

decided to use the y-coordinate of the bottom edge to 

determine whether two boxes are on the same row. The 

y-coordinates of the bottom edges of the two boxes 

needs to be within 0.32 × cHeight of each other. 

 • In addition, we also want to combine the dot in lower 

case “i” and “j”, therefore we allow the case where the 

y-coordinates of the top edges are within 0.28×cHeight.  

Segmentation By word factors are tuned so that the 

algorithm works for the majority of test cases. Take Fig. 

2 for example, we draw a red bounding box through 

every word. 

 

C. Search and Label Matches  

 

 
Fig. 3(a): Original image take from cell phone. 



 
Fig. 3(b): Rotate back after recognizing and drawing 

bounding box where words we want at. 

 

At last, bounding boxes (hopefully each containing 

exactly one word at this point) can be passed to the 

Tesseract OCR engine. See Fig. 3(b) for example. In 

order to improve efficiency, function withinRange is 

implemented to filter out boxes too wide or too narrow 

given the keyword length. Sometimes the image is out 

of focus or blurry due to vibration, therefore the result 

from Tesseract is not accurate. To cope with the 

imperfection, we label exact matches with red 

rectangles, non-exact matches with blue or green 

rectangles. Exact or non-exact matches are determined 

by the ratio between edit distance (or Levenshtein 

distance) and the length of the keyword. A ratio of exact 

zero (or edit distance equal to zero) means that there is 

an exact match. A ratio reasonably close to zero means 

that we have a non-exact match. Levenshtein distance is 

defined to be the minimum number of single-letter 

operations (insertion, deletion, or substitution) needed to 

transform one string into another. For example, to 

change “abcd” into “bcda”, one can either change each 

letter (change the first letter “a” to “b”, the second letter 

“b” to “c”, the third letter “c” to “d”, the fourth letter “d” 

to “a” ), which has a total of four operations, or delete 

the “a” from the beginning of the string and add an “a” 

to the end of it, which has a total of two operations. 

Therefore the Levenshtein distance between the two 

strings is two. The distance can be calculated between 

any two strings using dynamic programming. Finally, 

we draw rectangular boxes of different colors (in order 

to differentiate between exact matches and close 

matches) at the coordinates where we find matches, and 

then overlay the rectangles onto the original image.  

 

D.  SERVER-CLIENT CONNECTION  

 

OCR is an extremely computationally intensive 

operation. To perform this operation using the 

processors on an outdated smartphone would be 

impractical. Therefore, we decided to offload OCR and 

all other image processing operations onto the servers 

we configure. The server side is a PHP script that waits 

for an http connection. Once the connection is 

established, the PHP script receives the image uploaded 

by the phone along with other parameters and stores 

them on the afs disk. The server side needs to run OCR 

and OpenCV. Therefore, we configure OCR and 

OpenCV libraries, and then we implemented a backend 

Python script that is responsible for linking up with the 

PHP script and executing the OpenCV/OCR executable 

on our own server. Once the processing is complete, the 

PHP script picks up the output image and streams it 

back to the phone. Figure 3(c) illustrates the connection 

from client side/mobile device to server side. 

 

 
Fig. 3(c): Client-server connection. 

 

On the client side, app takes a picture of the text when 

the user press the capture image button See Fig. 3(d). 

After the image was saved, It then sends the image to 

the server for processing. After the image is received 

from the server, the phone will display it on the screen 

until the user hits the back button to take a new picture. 

User could also clear the screen by hitting the clear 

button to take another picture. The whole process may 

take a few minutes, depends on your hardware device 

and network connection. 

 

 
Fig. 3(d): User interface of App  



 

5. EXPERIMENT RESULTS 

 

 
Fig. 4(a): Server waits for image. 

 

 
Fig. 4(b): Cell phone APP takes picture and uploads 

to Server and then waits for the result. 

 
Fig. 4(c): The result finding the word “to”. 

 

 
Fig. 4(d): The result finding the word “contextual”. 

 
Fig. 4(e): The result finding the word “models”. 

 



First, we use python3 to run up the server monitor.  

Server monitor will await our APP’s connection. See 

Fig. 4(a). App’s connection will be established after we 

take the photo. See Fig. 4(b). The APP will then upload 

the photo to the server and wait for the result returning 

from the server. Fig. 4(c), Fig. 4(d), and Fig. 4(e) are 

different experiment finding the word “to”, “contextual”, 

and “models”. We can observe that the word we want to 

find is surrounded by red bounding box. Furthermore, 

We tested the keyword recognition rate with more than 

100 data points. The sample space covers different skew 

angles (0 degree, 15 degrees and 30 degrees), and 

different word lengths, because we believe that those are 

the two main factors that can affect performance. The 

overall accuracy is 89.7%, and we have included a 

breakdown by word length and skew angle, See Fig. 4(f) 

and Fig. 4(g).  

From the breakdown by keyword length, we can 

observe that although accuracy varies for different word 

lengths, there is no clear trend that performance 

deteriorates as keyword length increases/decreases, 

which is desirable. Variation does exist but it is largely 

due to the relatively small sample size. We would like to 

perform more testing if time permits.  

From the breakdown by skew angle, notice that there is 

a slight deterioration in performance due to the skew. 

We have investigated this by looking at the intermediate 

steps/results on the algorithm and concluded that the de-

skew algorithm works reasonably well, the deterioration 

is mostly due to the fact that image rotation lowers the 

image quality. We also noticed that there is very little 

change in performance from 15-degree skew to 30-

degree skew, which is desirable. 

 

 
Fig. 4(f) 

 

 
See Fig. 4(g) 

By examining the test input and output images, we 

noticed that results may vary due to uneven line spacing, 

different fonts, and image quality. De-focus and blur 

due to hand shaking account for a large proportion of 

inaccuracies. 

 

6. CONCLUSION 

 

We successfully find the word we want without human 

finding. If the situation is that we have large amounts of 

paper and we want to search keyword in these paper. 

We tried a variety of methods and techniques to 

successfully identify a word from a corpus of words 

within an image. With local thresholding, deskewing 

and smart segmentation, we were able to successfully 

segment each word in a majority of test cases. Both 

preprocessing and postprocessing (editdistance based 

match analysis) were tailored to the powerful Tesseract 

OCR. Multi-platform (client, server) and 

multilanguage(java, C++, python, php) were introduced 

in this project to bypass numerous configuration 

difficulties. For the purpose of demonstration, we were 

able to accurately query any word using an Android 

phone. Ideally, our algorithm runs fast enough to 

support real-time word search. But due to the client-

server transport delay, realtime scan-mode is impractical 

to use. To solve this problem, we could either move the 

computation to the client side, or use other feature 

detection (i.e. SURF) technique to reuse the previous 

detection results. Since consecutive frames can have 

large overlapping areas, we can increase efficiency by 

avoid re-computing those overlapping areas. Also, to 

improve user experience and make our app interesting, 

here are some future work to try. First Spell-Check 

Backed by a Lexicon: Since the correctness of words 

detected by our algorithm may be influenced by various 

factors, such as skewed view, unbalanced illumination, 

the spell-checking will also be included in our project. 

The basic idea is to improve OCR accuracy by 

constraining the word by a lexicon – a list of “legal” 

words that are allowed to occur in a document. The 

available lexicon such as Hunspell dictionary and UNIX 

shared dictionary will be helpful in our projects. Also, 

by leveraging the technique of dynamical programming 

to find the edit distance, spell-check could be done 

based on edit distance analysis. Second Word translator: 

Once the particular word is circled out, we could use 

Google Translate API to translate the word. 

 

 

 

7. REFERENCES 

[1] Akhil S, ”An overview of Tesseract OCR Engine”,  

A Seminar Report, 2016 

[2] Ibrahim S. I. Abuhaiba, “Skew Correction of 

Textural Documents”, J. King Saud Univ., Vol. 15, 

Comp. & Info. Sci., pp. 67-86 (A.H. 1423/2003) 



[3] J. Matas, O. Chum, M. Urban, T. Pajdla, Robust 

Wide Baseline Stereo from Maximally Stable Extremal 

Regions  

[4] Sam S. Tsai, Huizhong Chen, David Chen, 

Ramakrishna Vedantham, Radek Grzeszczuk and Bernd 

Girod, Mobile Visual Search Using Image and Text 

Features  

[5] Vinay Raj Hampapur, Tahrina Rumu, Umit Yoruk, 

Keyword Guided Word Spotting In Printed Text 


