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ABSTRACT 
 
Due to the rapid development of computer hardware 
design and software technology, the user demands of 
electric products are increasing gradually. Different 
from the traditional user interface, such as keyboard 
and mouse, some new human computer interactive 
system like the multi-touch technology of Apple iPhone 
and the touch screen support of Windows 7 are 
catching more and more attention. For medical 
treatment, there are some eye-gaze tracking systems 
developed for cerebral palsy and multiple sclerosis 
patients. In this paper, we propose a real-time, accurate, 
and robust smile detection system and compare our 
method with the smile shutter function of Sony DSC 
T300. We have better performance than Sony on slight 
smile. 

 

1. INTRODUCTION 
 
1.1. Motivation 
 
From Year 2000, the rapid development of hardware 
technology and software environment make friendly 
and fancy user interface more and more possible. For 
example, for some severely injured patients who cannot 
type or use mouse, there are eye gaze tracking system, 
by which the user can control the mouse by simply 
looking at the word or picture shown on the monitor. In 
2007, Sony has released its first consumer camera 
Cyber-shot DSC T200 with smile shutter function. The 
smile shutter function can detect at most three human 
faces in the scene and automatically takes a photograph 
if smile is detected. Many users have reported that 
Sony’s smile shutter function is not accurate as 
expected, and we find that the Sony’s smile shutter is 
only capable of detecting big smile but not able to 
detect slight smile. On the other hand, smile shutter 
would also be triggered if the user makes a grimace 
with teeth appearing. Therefore we propose a more 

accurate smile detection system on a common personal 
computer with a common webcam. 
 
1.2. Related Work 
 
The problem related to smile detection is facial 
expression recognition. There are many academic 
researches on facial expression recognition, such as [12] 
and [4], but there is not much research about smile 
detection. Sony’s smile shutter algorithm and detection 
rate are not available. Sensing component company 
Omron [11] has recently released smile measurement 
software. It can automatically detect and identify faces 
of one or more people and assign each smile a factor 
from 0% to 100%. Omron uses 3D face mapping 
technology and claim its detection rate is more than 
90%. But it is not available and we can not test how it 
performs. Therefore we would test our program with 
Sony DSC T300 and show that we have a better 
performance on detecting slight smile and lower false 
alarm rate on grimace expressions. 
From section 2 to section 4 we would describe our 
algorithm on face detection and facial feature tracking. 
In section 5, we would run experiments on FGNET face 
database [3] and show results with 88.5% detection rate 
and 12.04% false alarm rate while Sony T300 performs 
72.7% detection rate and 0.5% false alarm rate. Section 
6 will compare with Sony smile shutter on some real 
case video sequence. 
 

2. FACE DETECTION 
 
2.1. Histogram Equalization 
 
Histogram Equalization is a method for contrast 
enhancement. We could always take our pictures with 
under-exposure or over-exposure due to the 
uncontrolled environment lightness, which would make 
the details of the images difficult to recognize. Figure 1 
is a gray image from Wikipedia [17] that shows a scene 
with pixel values very concentrated. Figure 2 is the 
result after histogram equalization. 



 
Figure 1: Before histogram equalization [17]. 

 
Figure 2: After histogram equalization [17]. 
 
2.2. AdaBoost Face Detection 
 
To obtain real-time face detection, we use the method 
proposed by Viola and Jones [15]. There are three 
components inside the paper. The first is the concept of 
“Integral Image”, which is a new representation of an 
image for people to calculate the features quickly. The 
second is the Adaboost algorithm introduced by Freund 
and Schapire [5] in 1997, which can extract the most 
important features from the others. The last component 
is ‘cascaded’ classifiers. We can eliminate the non-face 
regions in the first few stages. With this method, we 
can detect faces from 320 by 240 pixel images at 60 
frames per second with Intel Pentium M. 740 1.73 GHz. 
We will briefly describe the three major components 
here. 
 
2.2.1. Integral Image 
Given an image I, we define an integral image I’(x, y) 
by 
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The value of the integral image at location (x, y) is the 
summation over all the left and upper pixel values of 
the original image I. 

 
Figure 3: Integral image [15]. 
If we have the integral image, then we can define some 
rectangle features shown in Figure 4: 

 
Figure 4: Rectangle feature [15]. 
The most commonly used features are two-rectangle 
feature, three-rectangle feature, and four-rectangle 
feature. The value of two-rectangle feature is the 
difference of the pixels sum over gray rectangle to the 
pixels sum over the white rectangle. These two regions 
have the same size and are horizontally or vertically 
adjacent as shown in blocks A, B. Block C is a three-
rectangle feature whose value is also defined as the 
difference of pixels sum over the gray region to the 
pixels sum over the white regions. Block D is an 
example of the four-rectangle features. Since these 
features have different areas, it must be normalized 
after calculating the difference. After calculating the 
integral image in advance, it would be easy to obtain 
one rectangle region’s pixels sum by one-plus operation 
and two-minus operations. For example, to calculate 
the sum of pixels within rectangle D in Figure 5, we 
can simply compute 4 + 1 – (2 + 3) value in the integral 
image. 

 



Figure 5: Rectangle sum [15]. 
 
2.2.2. AdaBoost 
There will be a large number of rectangle features with 
different sizes. For example, for a 24 by 24 pixel image, 
there are 160,000 features. Adaboost is a machine-
learning algorithm used to find the T best classifiers 
with minimum error. To obtain the T classifiers, we 
will repeat the following algorithm for T iterations: 
 

 
Figure 6: Boosting algorithm [15]. 
 
After running the boosting algorithm for a goal object, 
we have T weak classifiers with different weighting. 
Finally we have a stronger classifier C(x). 
 
2.2.3. Cascade Classifier 
Since we have the T best object detection classifiers, we 
can tune our cascade classifier with user input: the 
detection rate and the false positive rate. The algorithm 
is shown below: 

 
Figure 7: Training algorithm for building cascade 
detector [15]. 
 

3. FACIAL FEATURE DETECTION AND 
TRACKING 

 
3.1. Facial feature location 
 
Although there are many features on human face, most 
of them are not very useful for facial expression 
representation. To obtain the facial features we need, 
we analyze these features from BIOID face database [6]. 
The database consists of 1521 gray-level images with 
resolution 384x286 pixels. There are 23 persons in the 
database and every image consists of a frontal view face 
from one of them. Besides, there are 20 manually 
marked feature points as shown in Figure 8. 

 
Figure 8: Face and marked facial features [6]. 
Here is the list of the feature points: 
0 = right eye pupil 
1 = left eye pupil 
2 = right mouth corner 
3 = left mouth corner 
4 = outer end of right eye brow 
5 = inner end of right eye brow 
6 = inner end of left eye brow 
7 = outer end of left eye brow 



8 = right temple 
9 = outer corner of right eye 
10 = inner corner of right eye 
11 = inner corner of left eye 
12 = outer corner of left eye 
13 = left temple 
14 = tip of nose 
15 = right nostril 
16 = left nostril 
17 = centre point on outer edge of upper lip 
18 = centre point on outer edge of lower lip 
19 = tip of chin 
We first use Adaboost algorithm to detect the face 
region in the image with scale factor 1.05 to get as 
precise position as possible, and then normalize the 
face size and calculate the feature relative positions and 
their standard deviation. 

 
Figure 9: Original image. 

 
Figure 10: Image with 
face detection and features 
marked. 

We detect 1467 faces from 1521 images with detection 
rate 96.45%, and we drop some false positive samples 
and finally get 1312 useful data. Figure 11 shows one 
result, in which the center of the feature rectangle is the 
mean of the feature position and the width and height 
correspond to four times x and y feature point standard 
deviation. Then we can find initial feature position fast. 

 
Figure 11: Face and initial feature position with blue 
rectangle. 
Table 1 shows the first four feature points experiment 
results. 
 (Pixel) (Pixel) (Pixel) (Pixel) 

Landmark Index X Y X St Dev Y St Dev 

0: right eye pupil 30.70 37.98 1.64 1.95 

1: left eye pupil 68.86 38.25 1.91 1.91 
2: right mouth 
corner 34.70 78.29 2.49 4.10 

3: left mouth corner 64.68 78.38 2.99 4.15 

Table 1 Four facial feature locations and error mean 
with faces normalized to 100x100 pixels. 

 
3.2. Optical flow 
 
Optical flow is the pattern of motion of objects [18], 
which is usually used for motion detection and object 
segmentation. In our research, we use optical flow to 
find the displacement vector of feature points. Figure 
12 shows the corresponding feature points in two 
images. Optical flow has three basic assumptions. The 
first assumption is brightness consistency, which means 
that the brightness of a small region remains the same. 
The second assumption is the spatial coherence, which 
means the neighbors of a feature point usually have 
similar motions as the feature. The third assumption is 
temporal persistence, which means that the motion of a 
feature point should change gradually over time. 

 
Figure 12: Feature point correspondence in two images. 

Let I(x, y, t) be the pixel value at location (x, y) at 
time t. From the assumptions, the pixel value would be 
I(x + u, y + v, t + 1) with displacement (u, v) at time t 
+ 1. Vector (u, v) is also called the optical flow of (x, y). 
Then we have I(x, y, t) = I(x + u, y + v, t + 1). To find 
the best (u, v), we select a region around the pixel (for 
example, a window of size 10 x 10 pixels) and try to 
minimize the sum of the square error as below: 
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We use Taylor series to expand the first order 
derivatives of I(x + u, y + v, t + 1) as 
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Replace the expansion in the original equation and we 
would have 2)(),(  

R
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Equation 0 tyx IvIuI  is also called the optical 

flow constraint equation. To find the extreme value, the 
two equations below should be satisfied. 
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Finally we have the linear equation: 
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By solving the linear equation, we can obtain optical 
flow vector (u, v) for (x, y). We use the concept of 
Lucas and Kanade [8] to iteratively solve the (u, v). It is 
similar to Newton’s method. 
1. Choose a (u, v) arbitrarily, and shift the (x, y) to (x 

+ u, y + v) and calculate the relative Ix and Iy. 
2. Solve the new (u’, v’) and update (u, v) to (u + u’, 

v + v’). 
3. Repeat Step 1 until (u’, v’) converges. 
To have fast feature point tracking, we build the 
pyramid images of the current and previous frames 
with four levels. At each level we search the 
corresponding point in a window size 10 by 10 pixels 
and stop the search to get into next level with accuracy 
of 0.01 pixels. 
 

4. SMILE DETECTION SCHEME 
 

We have proposed a fast and generally low 
misdetection and low false alarm video-based method 
of smile detector. We have 11.5% smile misdetection 
rate and 12.04% false alarm rate on the FGNET 
database. Our smile detect algorithm is as follows: 
1. Detect the first human face in the first image frame 

and locate the twenty standard facial features 
position. 

2. In every image frame, use optical flow to track the 
position of left mouth corner and right mouth 
corner with accuracy of 0.01 pixels and update the 
standard facial feature position by face tracking 
and detection. 

3. If x direction distance between the tracked left 
mouth corner and right mouth corner is larger than 
the standard distance plus a threshold Tsmile, then 
we claim a smile detected. 

4. Repeat from Step 2 to Step 3. 
In the smile detector application, we strongly 

consider that x direction distance between the right 
mouth corner and left mouth corner plays an important 
role in the human smile action. We do not consider y 
direction displacement. Since the user can have little up 
or down head rotation and that will falsely alarm our 
detector. How to decide our Tsmile threshold? As shown 
in Table 1, we have mean distance 29.98 pixels 
between left mouth corner and right mouth corner and 
their standard deviation value 2.49 and 2.99 pixels. Let 
Dmean be 29.98 pixels and Dstd be 2.49 + 2.99 = 5.48 
pixels. In each frame, let Dx be x distance between two 
mouth corners. If Dx is greater than Dmean + Tsmile, then 
it is a smile, otherwise, it is not. With large Tsmile, we 
have high misdetection rate and low false alarm rate, 

and low misdetection rate and high false alarm rate 
with small Tsmile. We run different Tsmile in FGNET 
database and results are shown in Table 2. We use 0.55 
Dstd = 3.014 pixels as our standard Tsmile to have 11.5% 
misdetection rate and 12.04% false alarm rate. 

Threshold Misdetection 
Rate 

False Alarm 
Rate 

0.4*Dstd 6.66% 19.73% 

0.5*Dstd 9.25% 14.04% 

0.55*Dstd 11.50% 12.04% 

0.6*Dstd 13.01% 8.71% 

0.7*Dstd 18.82% 4.24% 

0.8*Dstd 25.71% 2.30% 
Table 2 Misdetection rate and false alarm rate with 
different thresholds. 
 

5. REAL-TIME SMILE DETECTION 
 

It is important to note that the feature tracking will 
accumulate errors as time goes by and that would lead 
to misdetection or false alarm results. Since we do not 
want users to take an initial neutral photograph every 
few seconds, which would be annoying and unrealistic. 
Moreover, it is difficult to identify the timing to refine 
feature position. If the user is performing some facial 
expression when we refine the feature location, it would 
lead us to a wrong point to track. Here we propose a 
method to automatically refine for real-time usage. 
Section 5.1 would describe our algorithm and Section 
5.2 would show some experiments. 
 
5.1. Feature Refinement 
 
From our very first image, we have user’s face images 
with neutral facial expression. We would build user’s 
mouth pattern grey image at that time. The mouth 
rectangle is surrounded by four feature points: right 
mouth corner, center point of upper lip, left mouth 
corner, center point of lower lip. Actually we would 
expand the rectangle wider and higher to one standard 
deviation in each direction. Figure 13 shows the user’s 
face and Figure 14 shows the mouth pattern image. For 
each following image, we use normalized cross 
correlation (NCC) block matching method to calculate 
the best matching block to the pattern image around the 
new mouth region and calculate their cross correlation 
value. The NCC equation is: 
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The equation shows the cross correlation between 
two blocks R and R’. If the correlation value is larger 



than some threshold, which we would describe more 
clearly later, it means the mouth state is very close to 
the neutral one rather than an open mouse, a smile 
mouth or other state. Then we would relocate feature 
positions. To not take too much computation time on 
finding match block, we set the search region center by 
initial position. To overcome the non-sub pixel block 
matching, we set the search range to a three by three 
block and find the largest correlation value as our 
results. 
 

Figure 13: User face 
and mouth region (blue 
rectangle). 

 
Figure 14: Grey image 

of mouth pattern [39x24 
pixels]. 

 
5.2. Experiment 
 
As we have mentioned, we want to know the threshold 
value to do the refinement. We have a real-time case in 
Section 5.2.1 to show the correlation value changes 
with smile expression and off-line case on FGNET face 
database to decide the proper threshold in Section 5.2.2. 
 
5.2.1. Real-Time Case 
Table 3 shows a sequence of images and their 
correlation value corresponding to the initial mouth 
pattern. These images give us some level of confidence 
that using correlation to identify the neutral or smile 
expression is possible. To show stronger evidence, we 
run a real-time case by doing seven smile activities with 
244 frames and record their correlation value. Table 4 
shows the image index and their correlation values. If 
we set 0.7 as our threshold, we would have mean 
correlation value 0.868 and standard deviation 0.0563 
for neutral face and mean value 0.570 and standard 
deviation 0.0676 for smile face. The difference of mean 
value 0.298 = 0.868-0.570 is greater than two times 
sum of standard deviation 0.2478 = 2 x 
(0.0563+0.0676). To have more persuasive evidence, 
we run on FGNET face database in Section 5.2.2. 
 

 
Initial neutral expression. 

 
Initial mouth pattern 
39x25 pixels. 

 
Cross correlation value 0.925 

 

 
Cross correlation value 0.767 

 

 
Cross correlation value 0.502 

 

Table 3 Cross correlation value of mouth pattern for 
smile activity. 
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Table 4 Cross correlation value of mouth pattern with 
seven smile activities. 
 
5.2.2. Face Database 
In Section 5.2.1 we have shown clear evidence that 
neutral expression and smile expression have a great 
difference on correlation value. We obtain more 
convincing threshold value by running cross correlation 
value’s mean and standard deviation on FGNET face 
database. There are eighteen people, who have three 
sets of image sequences for each. Each set has 101 
images or 151 images and roughly half of them are 
neutral face and others are smile face. We drop some 
false performing datasets. By setting threshold value 
0.7, we have neutral face mean of mean and standard 
deviation correlation value 0.956 and 0.040. At the 
same time, smile face values are 0.558 and 0.097. It is 
not surprising that smile face has higher variance then 



neutral face since different user has different smile type. 
We set three standard deviation distances 0.12 = 3*0.04 
as our threshold. If correlation value is beyond the 
original value minus 0.12, we can refine user’s feature 
position automatically and correctly. 
 

6. EXPERIMENTS 
 
We test our smile detector on the happy part of FGNET 
facial expression database [3]. There are fifty-four 
video streams coming from eighteen persons and three 
video sequences for each. We drop four videos which 
failed to perform smile procedure due to users out of 
control. Additionally, the ground truths of image are 
labeled manually. From Figure 15 to Figure 20 are six 
sequential images which show the procedure of smiling. 
In each frame, there are twenty blue facial features (the 
fixed initial) and twenty red facial features (the 
dynamically updated) and the green label lying at the 
left-bottom of the image. Besides, we put the word 
“Happy” at the top of the image if we have smile 
detected. Figure 15 and Figure 20 are correctly detected 
images, while from Figure 16 to Figure 19 are false 
alarm results. But the false alarm samples are somehow 
ambiguous to different people. 
 

 
Figure 15: Frame 1 with 
correct detection. 

 
Figure 16: Frame 2 with 
false alarm (Ground truth: 
Non Smile, Detector: 
Happy). 

 
Figure 17: Frame 3 with 
false alarm (Ground truth: 
Non Smile, Detector: 
Happy). 

 
Figure 18: Frame 4 with 
false alarm (Ground truth: 
Non Smile, Detector: 
Happy). 

 
Figure 19: Frame 5 with 
false alarm (Ground truth: 
Non Smile, Detector: 
Happy). 

 
Figure 20: Frame 6 with 
correct smile detection. 

Total Detection Rate: 
90.6% 

Total False Alarm Rate: 
10.4% 

Table 5 illustrates our detection result with Sony T300 
of Person 1 in FGNET face database. Figure 21 and 
Figure 22 show the total detection and false alarm rate 
results of the fifty video sequences in FGNET. We have 
a normalized detection rate 88.5% and false alarm rate 
12% while Sony T300 has a normalized detection rate 
72.7% and false alarm rate 0.5%.  
Sony T300 Our program 
Image index 63 with 
misdetection (Ground 
Truth: Smile, Detector: 
Non Smile). 

 
Image index 63 with 
correct detection (Ground 
Truth: Smile, Detector: 
Happy). 

Image index 64 with 
misdetection (Ground 
Truth: Smile, Detector: 
Non Smile). 

 
Image index 64 with 
correct detection (Ground 
Truth: Smile, Detector: 
Happy). 

 
Image index 65 with 
correct detection (Ground 
Truth: Smile, Detector: 
Sony). 

 
Image index 65 with 
correct detection (Ground 
Truth: Smile, Detector: 
Happy). 

 
Image index 66 with 
correct detection (Ground 
Truth: Smile, Detector: 
Sony). 

 
Image index 66 with 
correct detection (Ground 
Truth: Smile, Detector: 
Happy). 

Total Detection Rate: 
96.7% 

Total Detection Rate: 
100% 

Total False Alarm Rate: 
0% 

Total False Alarm Rate: 
0% 

Table 5 Detection results of Person 1 in FGNET. 
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Figure 21: Comparison of detection rate. 
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Figure 22: Comparison of false alarm rate. 

 
7. CONCLUSION 

 
We have proposed a relatively simple and accurate real-
time smile detection system that can easily run on a 
common personal computer and a webcam. Our 
program just needs an image resolution of 320 by 240 
pixels and minimum face size of 80 by 80 pixels. We 
have an intuition that the feature around the mouth 
right corner and left corner would have optical flow 
vectors pointing up and outward. The feature which has 
the most significant flow vector is right on the corner. 
Meanwhile, we can support a small head rotation and 
user’s moving toward and backward from camera. In 
the future, we would try to update our mouth pattern 
such that we can support larger head rotation and face 
size scaling. 
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