
FACE DETECTION AND SMILE DETECTION

1
Yu-Hao Huang(黃昱豪),

2
Chiou-Shann Fuh (傅楸善)

1
Dept. of Computer Science and Information Engineering, National Taiwan University

E-mail:r94013@csie.ntu.edu.tw
2
Dept. of Computer Science and Information Engineering, National Taiwan University

E-mail:fuh@csie.ntu.edu.tw

ABSTRACT

Due to the rapid development of computer hardware
design and software technology, the user demands of
electric products are increasing gradually. Different
from the traditional user interface, such as keyboard
and mouse, some new human computer interactive
system like the multi-touch technology of Apple iPhone
and the touch screen support of Windows 7 are
catching more and more attention. For medical
treatment, there are some eye-gaze tracking systems
developed for cerebral palsy and multiple sclerosis
patients. In this paper, we propose a real-time, accurate,
and robust smile detection system and compare our
method with the smile shutter function of Sony DSC
T300. We have better performance than Sony on slight
smile.

1. INTRODUCTION

1.1. Motivation

From Year 2000, the rapid development of hardware
technology and software environment make friendly
and fancy user interface more and more possible. For
example, for some severely injured patients who cannot
type or use mouse, there are eye gaze tracking system,
by which the user can control the mouse by simply
looking at the word or picture shown on the monitor. In
2007, Sony has released its first consumer camera
Cyber-shot DSC T200 with smile shutter function. The
smile shutter function can detect at most three human
faces in the scene and automatically takes a photograph
if smile is detected. Many users have reported that
Sony’s smile shutter function is not accurate as
expected, and we find that the Sony’s smile shutter is
only capable of detecting big smile but not able to
detect slight smile. On the other hand, smile shutter
would also be triggered if the user makes a grimace
with teeth appearing. Therefore we propose a more

accurate smile detection system on a common personal
computer with a common webcam.

1.2. Related Work

The problem related to smile detection is facial
expression recognition. There are many academic
researches on facial expression recognition, such as [12]
and [4], but there is not much research about smile
detection. Sony’s smile shutter algorithm and detection
rate are not available. Sensing component company
Omron [11] has recently released smile measurement
software. It can automatically detect and identify faces
of one or more people and assign each smile a factor
from 0% to 100%. Omron uses 3D face mapping
technology and claim its detection rate is more than
90%. But it is not available and we can not test how it
performs. Therefore we would test our program with
Sony DSC T300 and show that we have a better
performance on detecting slight smile and lower false
alarm rate on grimace expressions.
From section 2 to section 4 we would describe our
algorithm on face detection and facial feature tracking.
In section 5, we would run experiments on FGNET face
database [3] and show results with 88.5% detection rate
and 12.04% false alarm rate while Sony T300 performs
72.7% detection rate and 0.5% false alarm rate. Section
6 will compare with Sony smile shutter on some real
case video sequence.

2. FACE DETECTION

2.1. Histogram Equalization

Histogram Equalization is a method for contrast
enhancement. We could always take our pictures with
under-exposure or over-exposure due to the
uncontrolled environment lightness, which would make
the details of the images difficult to recognize. Figure 1
is a gray image from Wikipedia [17] that shows a scene
with pixel values very concentrated. Figure 2 is the
result after histogram equalization.

Figure 1: Before histogram equalization [17].

Figure 2: After histogram equalization [17].

2.2. AdaBoost Face Detection

To obtain real-time face detection, we use the method
proposed by Viola and Jones [15]. There are three
components inside the paper. The first is the concept of
“Integral Image”, which is a new representation of an
image for people to calculate the features quickly. The
second is the Adaboost algorithm introduced by Freund
and Schapire [5] in 1997, which can extract the most
important features from the others. The last component
is ‘cascaded’ classifiers. We can eliminate the non-face
regions in the first few stages. With this method, we
can detect faces from 320 by 240 pixel images at 60
frames per second with Intel Pentium M. 740 1.73 GHz.
We will briefly describe the three major components
here.

2.2.1. Integral Image
Given an image I, we define an integral image I’(x, y)
by





','

),()','('
yyxx

yxIyxI

The value of the integral image at location (x, y) is the
summation over all the left and upper pixel values of
the original image I.

Figure 3: Integral image [15].
If we have the integral image, then we can define some
rectangle features shown in Figure 4:

Figure 4: Rectangle feature [15].
The most commonly used features are two-rectangle
feature, three-rectangle feature, and four-rectangle
feature. The value of two-rectangle feature is the
difference of the pixels sum over gray rectangle to the
pixels sum over the white rectangle. These two regions
have the same size and are horizontally or vertically
adjacent as shown in blocks A, B. Block C is a three-
rectangle feature whose value is also defined as the
difference of pixels sum over the gray region to the
pixels sum over the white regions. Block D is an
example of the four-rectangle features. Since these
features have different areas, it must be normalized
after calculating the difference. After calculating the
integral image in advance, it would be easy to obtain
one rectangle region’s pixels sum by one-plus operation
and two-minus operations. For example, to calculate
the sum of pixels within rectangle D in Figure 5, we
can simply compute 4 + 1 – (2 + 3) value in the integral
image.

Figure 5: Rectangle sum [15].

2.2.2. AdaBoost
There will be a large number of rectangle features with
different sizes. For example, for a 24 by 24 pixel image,
there are 160,000 features. Adaboost is a machine-
learning algorithm used to find the T best classifiers
with minimum error. To obtain the T classifiers, we
will repeat the following algorithm for T iterations:

Figure 6: Boosting algorithm [15].

After running the boosting algorithm for a goal object,
we have T weak classifiers with different weighting.
Finally we have a stronger classifier C(x).

2.2.3. Cascade Classifier
Since we have the T best object detection classifiers, we
can tune our cascade classifier with user input: the
detection rate and the false positive rate. The algorithm
is shown below:

Figure 7: Training algorithm for building cascade
detector [15].

3. FACIAL FEATURE DETECTION AND
TRACKING

3.1. Facial feature location

Although there are many features on human face, most
of them are not very useful for facial expression
representation. To obtain the facial features we need,
we analyze these features from BIOID face database [6].
The database consists of 1521 gray-level images with
resolution 384x286 pixels. There are 23 persons in the
database and every image consists of a frontal view face
from one of them. Besides, there are 20 manually
marked feature points as shown in Figure 8.

Figure 8: Face and marked facial features [6].
Here is the list of the feature points:
0 = right eye pupil
1 = left eye pupil
2 = right mouth corner
3 = left mouth corner
4 = outer end of right eye brow
5 = inner end of right eye brow
6 = inner end of left eye brow
7 = outer end of left eye brow

8 = right temple
9 = outer corner of right eye
10 = inner corner of right eye
11 = inner corner of left eye
12 = outer corner of left eye
13 = left temple
14 = tip of nose
15 = right nostril
16 = left nostril
17 = centre point on outer edge of upper lip
18 = centre point on outer edge of lower lip
19 = tip of chin
We first use Adaboost algorithm to detect the face
region in the image with scale factor 1.05 to get as
precise position as possible, and then normalize the
face size and calculate the feature relative positions and
their standard deviation.

Figure 9: Original image.

Figure 10: Image with
face detection and features
marked.

We detect 1467 faces from 1521 images with detection
rate 96.45%, and we drop some false positive samples
and finally get 1312 useful data. Figure 11 shows one
result, in which the center of the feature rectangle is the
mean of the feature position and the width and height
correspond to four times x and y feature point standard
deviation. Then we can find initial feature position fast.

Figure 11: Face and initial feature position with blue
rectangle.
Table 1 shows the first four feature points experiment
results.
 (Pixel) (Pixel) (Pixel) (Pixel)

Landmark Index X Y X St Dev Y St Dev

0: right eye pupil 30.70 37.98 1.64 1.95

1: left eye pupil 68.86 38.25 1.91 1.91
2: right mouth
corner 34.70 78.29 2.49 4.10

3: left mouth corner 64.68 78.38 2.99 4.15

Table 1 Four facial feature locations and error mean
with faces normalized to 100x100 pixels.

3.2. Optical flow

Optical flow is the pattern of motion of objects [18],
which is usually used for motion detection and object
segmentation. In our research, we use optical flow to
find the displacement vector of feature points. Figure
12 shows the corresponding feature points in two
images. Optical flow has three basic assumptions. The
first assumption is brightness consistency, which means
that the brightness of a small region remains the same.
The second assumption is the spatial coherence, which
means the neighbors of a feature point usually have
similar motions as the feature. The third assumption is
temporal persistence, which means that the motion of a
feature point should change gradually over time.

Figure 12: Feature point correspondence in two images.

Let I(x, y, t) be the pixel value at location (x, y) at
time t. From the assumptions, the pixel value would be
I(x + u, y + v, t + 1) with displacement (u, v) at time t
+ 1. Vector (u, v) is also called the optical flow of (x, y).
Then we have I(x, y, t) = I(x + u, y + v, t + 1). To find
the best (u, v), we select a region around the pixel (for
example, a window of size 10 x 10 pixels) and try to
minimize the sum of the square error as below:

2)),,()1,,((),( 
R

tyxItvyuxIvuE

We use Taylor series to expand the first order
derivatives of I(x + u, y + v, t + 1) as

),,(),,(),,(),,()1,,(tyxIvtyxIutyxItyxItvyuxI tyx 

Replace the expansion in the original equation and we
would have 2)(),( 

R
tyx IvIuIvuE .

Equation 0 tyx IvIuI is also called the optical

flow constraint equation. To find the extreme value, the
two equations below should be satisfied.









R
ytyx

R
xtyx

IIvIuI
dv
dE

IIvIuI
du
dE

0)(2

0)(2

Finally we have the linear equation:


































R
ty

R
y

R
yx

R
tx

R
yx

R
x

IIvIuII

IIvIIuI

2

2

By solving the linear equation, we can obtain optical
flow vector (u, v) for (x, y). We use the concept of
Lucas and Kanade [8] to iteratively solve the (u, v). It is
similar to Newton’s method.
1. Choose a (u, v) arbitrarily, and shift the (x, y) to (x

+ u, y + v) and calculate the relative Ix and Iy.
2. Solve the new (u’, v’) and update (u, v) to (u + u’,

v + v’).
3. Repeat Step 1 until (u’, v’) converges.
To have fast feature point tracking, we build the
pyramid images of the current and previous frames
with four levels. At each level we search the
corresponding point in a window size 10 by 10 pixels
and stop the search to get into next level with accuracy
of 0.01 pixels.

4. SMILE DETECTION SCHEME

We have proposed a fast and generally low
misdetection and low false alarm video-based method
of smile detector. We have 11.5% smile misdetection
rate and 12.04% false alarm rate on the FGNET
database. Our smile detect algorithm is as follows:
1. Detect the first human face in the first image frame

and locate the twenty standard facial features
position.

2. In every image frame, use optical flow to track the
position of left mouth corner and right mouth
corner with accuracy of 0.01 pixels and update the
standard facial feature position by face tracking
and detection.

3. If x direction distance between the tracked left
mouth corner and right mouth corner is larger than
the standard distance plus a threshold Tsmile, then
we claim a smile detected.

4. Repeat from Step 2 to Step 3.
In the smile detector application, we strongly

consider that x direction distance between the right
mouth corner and left mouth corner plays an important
role in the human smile action. We do not consider y
direction displacement. Since the user can have little up
or down head rotation and that will falsely alarm our
detector. How to decide our Tsmile threshold? As shown
in Table 1, we have mean distance 29.98 pixels
between left mouth corner and right mouth corner and
their standard deviation value 2.49 and 2.99 pixels. Let
Dmean be 29.98 pixels and Dstd be 2.49 + 2.99 = 5.48
pixels. In each frame, let Dx be x distance between two
mouth corners. If Dx is greater than Dmean + Tsmile, then
it is a smile, otherwise, it is not. With large Tsmile, we
have high misdetection rate and low false alarm rate,

and low misdetection rate and high false alarm rate
with small Tsmile. We run different Tsmile in FGNET
database and results are shown in Table 2. We use 0.55
Dstd = 3.014 pixels as our standard Tsmile to have 11.5%
misdetection rate and 12.04% false alarm rate.

Threshold Misdetection
Rate

False Alarm
Rate

0.4*Dstd 6.66% 19.73%

0.5*Dstd 9.25% 14.04%

0.55*Dstd 11.50% 12.04%

0.6*Dstd 13.01% 8.71%

0.7*Dstd 18.82% 4.24%

0.8*Dstd 25.71% 2.30%
Table 2 Misdetection rate and false alarm rate with
different thresholds.

5. REAL-TIME SMILE DETECTION

It is important to note that the feature tracking will
accumulate errors as time goes by and that would lead
to misdetection or false alarm results. Since we do not
want users to take an initial neutral photograph every
few seconds, which would be annoying and unrealistic.
Moreover, it is difficult to identify the timing to refine
feature position. If the user is performing some facial
expression when we refine the feature location, it would
lead us to a wrong point to track. Here we propose a
method to automatically refine for real-time usage.
Section 5.1 would describe our algorithm and Section
5.2 would show some experiments.

5.1. Feature Refinement

From our very first image, we have user’s face images
with neutral facial expression. We would build user’s
mouth pattern grey image at that time. The mouth
rectangle is surrounded by four feature points: right
mouth corner, center point of upper lip, left mouth
corner, center point of lower lip. Actually we would
expand the rectangle wider and higher to one standard
deviation in each direction. Figure 13 shows the user’s
face and Figure 14 shows the mouth pattern image. For
each following image, we use normalized cross
correlation (NCC) block matching method to calculate
the best matching block to the pattern image around the
new mouth region and calculate their cross correlation
value. The NCC equation is:














'),(

2

),(

2

'),(,),(

)),(()),((

)),()(),((

RvuRyx

RvuRyx

gvugfyxf

gvugfyxf
C

The equation shows the cross correlation between
two blocks R and R’. If the correlation value is larger

than some threshold, which we would describe more
clearly later, it means the mouth state is very close to
the neutral one rather than an open mouse, a smile
mouth or other state. Then we would relocate feature
positions. To not take too much computation time on
finding match block, we set the search region center by
initial position. To overcome the non-sub pixel block
matching, we set the search range to a three by three
block and find the largest correlation value as our
results.

Figure 13: User face
and mouth region (blue
rectangle).

Figure 14: Grey image

of mouth pattern [39x24
pixels].

5.2. Experiment

As we have mentioned, we want to know the threshold
value to do the refinement. We have a real-time case in
Section 5.2.1 to show the correlation value changes
with smile expression and off-line case on FGNET face
database to decide the proper threshold in Section 5.2.2.

5.2.1. Real-Time Case
Table 3 shows a sequence of images and their
correlation value corresponding to the initial mouth
pattern. These images give us some level of confidence
that using correlation to identify the neutral or smile
expression is possible. To show stronger evidence, we
run a real-time case by doing seven smile activities with
244 frames and record their correlation value. Table 4
shows the image index and their correlation values. If
we set 0.7 as our threshold, we would have mean
correlation value 0.868 and standard deviation 0.0563
for neutral face and mean value 0.570 and standard
deviation 0.0676 for smile face. The difference of mean
value 0.298 = 0.868-0.570 is greater than two times
sum of standard deviation 0.2478 = 2 x
(0.0563+0.0676). To have more persuasive evidence,
we run on FGNET face database in Section 5.2.2.

Initial neutral expression.

Initial mouth pattern
39x25 pixels.

Cross correlation value 0.925

Cross correlation value 0.767

Cross correlation value 0.502

Table 3 Cross correlation value of mouth pattern for
smile activity.

Cross Correlation Value

0.4

0.5

0.6

0.7

0.8

0.9

1

1 21 41 61 81 101 121 141 161 181 201 221 241

Image Index

C
or

re
la

tio
n

Table 4 Cross correlation value of mouth pattern with
seven smile activities.

5.2.2. Face Database
In Section 5.2.1 we have shown clear evidence that
neutral expression and smile expression have a great
difference on correlation value. We obtain more
convincing threshold value by running cross correlation
value’s mean and standard deviation on FGNET face
database. There are eighteen people, who have three
sets of image sequences for each. Each set has 101
images or 151 images and roughly half of them are
neutral face and others are smile face. We drop some
false performing datasets. By setting threshold value
0.7, we have neutral face mean of mean and standard
deviation correlation value 0.956 and 0.040. At the
same time, smile face values are 0.558 and 0.097. It is
not surprising that smile face has higher variance then

neutral face since different user has different smile type.
We set three standard deviation distances 0.12 = 3*0.04
as our threshold. If correlation value is beyond the
original value minus 0.12, we can refine user’s feature
position automatically and correctly.

6. EXPERIMENTS

We test our smile detector on the happy part of FGNET
facial expression database [3]. There are fifty-four
video streams coming from eighteen persons and three
video sequences for each. We drop four videos which
failed to perform smile procedure due to users out of
control. Additionally, the ground truths of image are
labeled manually. From Figure 15 to Figure 20 are six
sequential images which show the procedure of smiling.
In each frame, there are twenty blue facial features (the
fixed initial) and twenty red facial features (the
dynamically updated) and the green label lying at the
left-bottom of the image. Besides, we put the word
“Happy” at the top of the image if we have smile
detected. Figure 15 and Figure 20 are correctly detected
images, while from Figure 16 to Figure 19 are false
alarm results. But the false alarm samples are somehow
ambiguous to different people.

Figure 15: Frame 1 with
correct detection.

Figure 16: Frame 2 with
false alarm (Ground truth:
Non Smile, Detector:
Happy).

Figure 17: Frame 3 with
false alarm (Ground truth:
Non Smile, Detector:
Happy).

Figure 18: Frame 4 with
false alarm (Ground truth:
Non Smile, Detector:
Happy).

Figure 19: Frame 5 with
false alarm (Ground truth:
Non Smile, Detector:
Happy).

Figure 20: Frame 6 with
correct smile detection.

Total Detection Rate:
90.6%

Total False Alarm Rate:
10.4%

Table 5 illustrates our detection result with Sony T300
of Person 1 in FGNET face database. Figure 21 and
Figure 22 show the total detection and false alarm rate
results of the fifty video sequences in FGNET. We have
a normalized detection rate 88.5% and false alarm rate
12% while Sony T300 has a normalized detection rate
72.7% and false alarm rate 0.5%.
Sony T300 Our program
Image index 63 with
misdetection (Ground
Truth: Smile, Detector:
Non Smile).

Image index 63 with
correct detection (Ground
Truth: Smile, Detector:
Happy).

Image index 64 with
misdetection (Ground
Truth: Smile, Detector:
Non Smile).

Image index 64 with
correct detection (Ground
Truth: Smile, Detector:
Happy).

Image index 65 with
correct detection (Ground
Truth: Smile, Detector:
Sony).

Image index 65 with
correct detection (Ground
Truth: Smile, Detector:
Happy).

Image index 66 with
correct detection (Ground
Truth: Smile, Detector:
Sony).

Image index 66 with
correct detection (Ground
Truth: Smile, Detector:
Happy).

Total Detection Rate:
96.7%

Total Detection Rate:
100%

Total False Alarm Rate:
0%

Total False Alarm Rate:
0%

Table 5 Detection results of Person 1 in FGNET.

Compare Detection Rate

0

0.2

0.4

0.6

0.8

1

1.2

1 5 9 13 17 21 25 29 33 37 41 45 49

Index

D
et

ec
ti

on
 R

at
e

Sony

Ours

Figure 21: Comparison of detection rate.

Compare False Alarm Rate

0

0.2

0.4

0.6

0.8

1

1 5 9 13 17 21 25 29 33 37 41 45 49

Index

F
al

se
 A

la
rm

 R
at

e

Sony

Ours

Figure 22: Comparison of false alarm rate.

7. CONCLUSION

We have proposed a relatively simple and accurate real-
time smile detection system that can easily run on a
common personal computer and a webcam. Our
program just needs an image resolution of 320 by 240
pixels and minimum face size of 80 by 80 pixels. We
have an intuition that the feature around the mouth
right corner and left corner would have optical flow
vectors pointing up and outward. The feature which has
the most significant flow vector is right on the corner.
Meanwhile, we can support a small head rotation and
user’s moving toward and backward from camera. In
the future, we would try to update our mouth pattern
such that we can support larger head rotation and face
size scaling.

REFERENCES

[1] J. Y. Bouguet, “Pyramidal Implementation of the Lucas

Kanade Feature Tracker Description of the Algorithm,”
http://robots.stanford.edu/cs223b04/algo_tracking.pdf,
2009.

[2] G. R. Bradski, “Computer Vision Face Tracking for Use
in a Perceptual User Interface,” Intel Technology Journal,
Vol. 2, No. 2, pp. 1-15, 1998.

[3] J. L. Crowley, T. Cootes, “FGNET, Face and Gesture
Recognition Working Group,” http://www-
prima.inrialpes.fr/FGnet/html/home.html, 2009.

[4] B. Fasel and J. Luettin, “Automatic Facial Expression
Analysis: A Survey,” Pattern Recognition, Vol. 36, pp.
259-275, 2003.

[5] Y. Freund and R. E. Schapire, “A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting,” Journal of Computer and System Sciences, Vol.
55, No. 1, pp. 119-139, 1997.

[6] HumanScan, “BioID-Technology Research,”
http://www.bioid.com/downloads/facedb/index.php, 2009.

[7] R. E. Kalman, “A New Approach to Linear Filtering and
Prediction Problems,” Transactions of the American
Society of Mechanical Engineers — Journal of Basic
Engineering, Vol. 82, pp. 35-45, 1960.

[8] B. D. Lucas and T. Kanade, “An Iterative Image
Registration Technique with an Application to Stereo
Vision,” Proceedings. of International Joint Conference
on Artificial Intelligence, Vancouver, pp.674-679, 1981.

[9] S. Millborrow and F. Nicolls, “Locating Facial Features
with an Extended Active Shape Model,” Proceedings of
European Conference on Computer Vision, Marseille,
France, Vol. 5305, pp. 504-513,
http://www.milbo.users.sonic.net/stasm, 2008.

[10] OpenCV, Open Computer Vision Library,
http://opencv.willowgarage.com/wiki/, 2009.

[11] Omron, “OKAO Vision,”
http://www.omron.com/r_d/coretech/vision/okao.html,
2009.

[12] M. Pantic, S. Member, and L. J. M. Rothkrantz,
“Automatic Analysis of Facial Expressions: The State of
the Art,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 22, pp.1424-1445, 2000.

[13] M. J. Swain and D. H. Ballard, “Color Indexing,”
International Journal of Computer Vision, Vol. 7. No. 1,
pp. 11-32, 1991.

[14] J. Shi and C. Tomasi, “Good Features to Track,” IEEE
Conference on Computer Vision and Pattern Recognition,
pp. 593-600, 1994.

[15] P. Viola and M. J. Jones, “Robust Real-Time Face
Detection,” International Journal of Computer Vision,
Vol. 57, No. 2, pp. 137-154, 2004.

[16] P. Wanga, F. Barrettb, E. Martin, M. Milonova, R. E.
Gur, R. C. Gur, C. Kohler, and R. Verma, “Automated
Video-Based Facial Expression Analysis of
Neuropsychiatric Disorders,” Neuroscience Methods, Vol.
168, pp. 224-238, 2008.

[17] Wikipedia, “Histogram Equalization,”
http://en.wikipedia.org/wiki/Histogram_equalization,
2009.

[18] Wikipedia, “Optical Flow,”
http://en.wikipedia.org/wiki/Optic_flow, 2009.

[19] M. H. Yang, D. J. Kriegman, and N. Ahuja, “Detecting
Faces in Images: A Survey,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 24, No. 1,
pp. 34-58, 2002.

[20] C. Zhan, W. Li, F. Safaei, and P. Ogunbona, “Emotional
States Control for On-Line Game Avatars,” Proceedings
of ACM SIGCOMM Workshop on Network and System
Support for Games, Melbourne, Australia, pp. 31-36,
2007.

