
Face Beautification and Color Enhancement with Scene Mode Detection

Da-Yuan Huang

Dept. of Computer Science and Information

Engineering

National Taiwan University

Taipei, Taiwan

r97022@csie.ntu.edu.tw

Chiou-Shann Fuh

Dept. of Computer Science and Information

Engineering

National Taiwan University

Taipei, Taiwan

fuh@csie.ntu.edu.tw

Abstract—Auto photo beautification algorithms play important

roles of promoting the quality of photograph because of the

popularity of digital image production such as digital camera

and printer.

 In this thesis, we develop a pipeline which combines

automatic human face beautification and automatic color

enhancement. The goal of this thesis is to beautify human faces

and enhance the detail and color of the background of photos.

The enhancement methods must produce steady and

harmonious results quickly, so that our methods can be

implemented on printer and used by users.

 Finally, we will select the best-match scene mode based on

the color distribution of input image. The printer can use the

corresponding profile with the information of the scene; it will

make the print-out photos more colorful and vivid.

Keywords-face; color; beautification; enhancement

I. INTRODUCTION

 Nowadays, digital cameras replace film cameras

gradually. Users can not only capture scenes but also

modify it easily. People use digital still camera and other

image recorder to capture scenes and convert to digital

image information. Printers or monitors on the other hand,

are used to display the image information. In order to

display pleasing effect for printers or monitors, image

enhancement is essential for users.

 Humans use above digital instrument to record their

activity and daily life, but they also want to make their

photographs or image data can be displayed with beauty and

elegance. Due to the progress of hardware, today we can get

clear image information easily, and advanced image

enhancement method such as human face beautification and

image color enhancement become more and more important

because they can help users get pleasing image from the raw

image information.

 We will transform input image from RGB color space to

HSV color space and use Value channel as the information

of luminance. The following methods of enhancement

transform the luminance into luminosity, and will process

the Value channel only.

 Figure 1. presents the pipeline of our proposed method.

Figure 1. Our pipeline of our proposed method.

 We will transform input image from RGB color space to

HSV color space and use Value channel as the information

of luminance. The following methods of enhancement

transform the luminance into luminosity, and will process

the Value channel only.

II. RELATED WORKS

A. Logarithm Curve

 Logarithm curve obeys the Weber-Fechner law of JND

response in human vision. The following is the formula of a

simple logarithm curve form.

(1)

where I’(x, y) is processed image; I(x, y) is original image;

and is the parameter which controls the brighten level.

B. Bilateral Filter

 A bilateral filter is an edge-preserving smoothing filter.

Whereas many filters are convolutions in the image domain,

a bilateral filter also operates in the image's range—pixel

values. Rather than simply replacing a pixel's value with a

weighted average of its neighbors, as for instance the

Gaussian filter does, the bilateral filter replaces a pixel's

value with a weighted average of its neighbors in both space

and range (pixel value). This preserves sharp edges by

systematically excluding pixels across discontinuities from

consideration [14].

(2)

where is the intensity of processed pixel; is the

neighbor intensities of pixels in domain S; p, q are the

positions of processed pixel and neighbor pixels;

measures the spatial closeness between p and q;

determines the intensity closeness between p and q; and

is the normalization term which makes sure that the total

sum of the weight of all pixels in domain S equals one.

 The fast versions of bilateral filter are many, in this thesis,

we implement [10]’s version of fast bilateral filter to speed

up our processing time.

C. β Map

 S. C. Tai et al [6] used the information of edge and

logarithmic curve to enhance LDR images. The following

equations are Step 1 of their proposed method for LDR

image input:

(

3

)

 (

4

)

where is the processed pixel data; is the

original pixel data; mean is the average of intensity; Sobel(x,

y) is the Sobel edges calculated with Sobel filter; th is the

threshold of the value of Sobel edges; and is the parameter

used by logarithmic function.

 In Step 2, the undefined is a pixel where Sobel(x, y) is

larger than th. In the second step, if the β value of edge pixel

is undefined, a mask will be centered around the pixel, and

the neighbors of center pixel will be found. We will set β

value to the center pixel from one of th neighbor pixels

whose luminance value is the closest to the center pixel.

 After Steps 1 and 2, “β map” is set. We can use the

map and logarithmic curve to complete the local contrast

enhancement.

 Figure 2. is an example of creating a β map of an image

and the enhancement result.

Original Image

 map

Result

Figure 2. An example of creating a β map of an image and

the enhancement result.

III. OUR PROPOSED METHOD

 Our algorithm aims to reach three goals. First is to

beautify human faces in photographs, reduce their wrinkles,

pores, and other blemishes without causing obvious artifacts.

 Second is to enhance image contrast without losing

details of image. Although some contrast enhancement

methods can produce strong effect on local contrast

enhancement, they are not suitable for most cases.

 Sometimes the contrast becomes too strong and loses

details of result image and looks unnatural. Such methods

are unsuitable for printer or monitor to use, because they

cannot always provide improved results. We want our

algorithm suitable for most cases, enhancing image with

harmony.

 Figure 3. is the pseudo code of our whole proposed

method, where PhotoEnhancer is the function containing all

of our proposed method; img is input image; RGB2HSV(hsv,

img) transforms img from RGB color space to HSV color

space to hsv; ColorDescriptor(hsv) calculates HSV color

histogram of hsv; Split(hsv, h, s, v) separates hsv into its

corresponding channels h, s, v; luminance is the luminance

information of img;

BilateralFilteringAndFaceFinding(luminance, base, detail,

faces_pos) applies bilateral filter on luminance and

calculates base layer to base and detail layer to detail; faces

restores the positions of human faces in luminance;

FaceBeautification(luminance, base detail, faces_pos)

beautifies faces of luminance with information base and

detail; ColorEnhancement(luminance, base, detail) modifies

luminance with information base and detail; Merge(h, s, v)

merges h, s, v into hsv; HSV2RGB(hsv) transforms hsv from

HSV color space to RGB color space; and

DetectSceneMode(descriptor) finds the best match mode by

descriptor and returns the result to mode.

PhotoEnhancer(img){

 hsv = RGB2HSV(img)

 Split(hsv, h, s, v)

 descriptor = ColorDescriptor(h, s, v)

 luminance = v

 BilateralFilteringAndFaceFinding(luminance, base,

detail, faces_pos)

 luminance = FaceBeautification(luminance, base, detail,

faces_pos)

 luminance = ColorEnhancement(luminance, base, detail)

 v = luminance

 hsv = Merge(h, s, v)

 HSV2RGB(hsv, img)

 mode = DetectSceneMode(descriptor)

 return (img, mode)

}

Figure 3. Pseudo code of our whole proposed method.

A. Human Face Beautification

1) Separate Image Layers and Detect Human Faces

 We usually separate image into many layers. The goal of

our enhancement methods is to enhance the quality of image

without losing harmony. Inspired by S. Bae [3], we separate

an image into base layer and detail layer by using bilateral

filter [].

 The following equation (5) and (6) define the meanings of

layers, where presents the result after Image processed

bilateral filter, and presents fast bilateral filter

algorithm [], presents the result of subtraction

between Image and Base

 (5)

 (6)

 Lienhart et al. [15] proposed Haar-like features for object

detection. Moreover, we apply Lienhart’s frontal face

classifier to set the positions of human faces.

2) Human Face Beautification

 To beautify faces, we extract the faces found by Haar-like

features. The next steps are finding skin map, smoothing

skin, and blending faces back to luminance.

 Figure 4. is the pseudo code of human face beautification

where Extract extracts faces of image by using faces_pos, a

set which records all of the positions of human faces; faces

is the set which extracts faces from luminance; faces_base

and faces_detail are the sets extracted from base layer and

detail layer; FindSkinMap(faces[i], th_x, th_y) finds the skin

pixels of one of faces and stores it to skin_map; th_x and

th_y are the thresholds to find skin pixels;

Smoothing(faces[i], face_base[i], face_detail[i], skin_map)

smoothes faces[i] with face_base[i], face_detail[i] and

skin_map; and Blending(luminance, faces[i]) blends

beautified face face[i] back to luminance.

FaceBeautification(luminance, base, detail, faces_pos){

 faces = Extract(luminance, faces_pos)

 faces_base = Extract(base, faces_pos)

 faces_detail = Extract(detail, faces_pos)

 for(i=1, i<faces.number, ++i){

 skin_map = FindSkinMap(faces[i], th_x, th_y)

 Smoothing(faces[i],

faces_base[i],faces_detail[i],skin_map)

 Blending(luminance, faces[i], faces_pos[i],

faces_detail[i])

 }

 return luminance

}

Figure 4. The pseudo code of human face beautification.

3) Generating Skin Map:

 After setting the positions of human faces, we have to

select and modify possible skin pixels.

 The pseudo code of generating Skin Map is in Figure 5.

where Sobel is the function of applying Sobel filter on

face in x and y directions; face is the facial region of

luminance; sobel_x and sobel_y are the results after the

face applied Sobel filter in x-direction and y-direction;

th_x and th_y are the thresholds of smooth pixels; and

skin_map records the result of our skin detection method.

In our thesis, we set th_x = th_y = 15.0 by default. Figure

6. is the result after our skin detection method.

FindSkinMap(face, th_x, th_y){

 sobel_x = Sobel(face, x-direction)

 sobel_y = Sobel(face, y-direction)

 for(row=1; row <= face.height; ++row){

 for(col=1; col <= face.width; ++col){

 x_value = sobel_x(row, col)

 y_value = sobel_y(row, col)

 if(x_value<th_x & y_value<th_y &

x_value
2+y_value

2<th_x
2+th_y

2)

 skin_map(row, col) = 1.0

 else

 skin_map(row, col) = 0.0

 }

 }

 return skin_map

}

Figure 5. The pseudo code of human face beautification.

Luminance Information

Face Image after Haar Face

Detection
Skin Map

Figure 6. The result after our skin detection method.

4) Beautification and Blending:

 In our previous work [5] [8], we separate human faces

into two layers: smooth skin layers and blemish layers.

Therefore, we can assume that the base layer of human

faces contains smooth skin pixels, while detail layer

presents blemishes on human faces.

 To reach the goal of human face beautification, we can

reduce the magnitude of detail. The pseudo code of our

smoothing method is in Figure 7. Moreover, Figure 8. is a

result of this process where α is the ratio parameter. We

set α = 0.3 by default in this thesis.

Figure 7. The result after our skin detection method.

Before Face Beautification After Face Beautification

Figure 8 A result of face beautification.

 Figure 9. is our pseudo code for blending where center

records the central position of face; mask_map records the

ratio of linear blending, our blending method prevents

artifacts of the facial edge after blending beautified faces

back to original image.

Blending(luminance, face, face_pos, , faces_detail){

 center = face.center

 for(row=face_pos.y, row<(face_pos.y+face.height),

++row){

 for(col=face_pos.x, row<(face_pos.x+face.width,

++col){

 mask_map(row, col) = 1.0-(row-

center.y)/(face.height/2.0)*(col-center.x)/(face.width/2.0)

 luminance(row, col) = face(row-face_pos.y, col-

face_pos.x)+(1.0- mask_map(row, col))*face_detail(row,

col)

 }

 }

}

Figure 9 The pseudo code for blending.

B. Image Color Enhancement

 Since we already know that separating image into layers

is convenient for image enhancement, we try to use this

spirit on generating map.

 S. C. Tai [12] use Sobel edge pixels to achieve local

contrast enhancement, which means its map separates

image into edge pixel layer and non-edge pixel layer. We

extended this approach by using base layer and detail layer.

Since base layer already contains the information of

neighbors due to Gaussian Blur of space and intensity of

each pixel, we can find best match intensity value by

checking value on base layer for detail pixels without

checking all the neighbor pixels.

 Figure 10. is our pseudo code of generating β map. We

separate β map into four layers to observe:

• pixels with weak base and weak detail

• pixels with strong base and weak detail

• pixels with weak base and strong detail

• pixels with strong base and strong detail

 where avg and sdv are the average and standard deviation

of luminance calculated by function CalAvgSdv;

Smoothing(faces[i], face_base[i], face_detail[i], skin_map)

{

 for(row=0, row < face.height, ++row){

 for(row=0, row < face.width, ++col){

 if(skin_map(row, col) == 1)

 face(row, col) = face_base(row,

col)+α*(face_detail, row, col)

 else

 /* remain the same*/

 }

 }

}

beta_default is the default ; max_beta and min_beta are

the lower bound and the upper bond of β; beta is the final β

value of β map; and p1 and p2 are the constants to adjust

min_beta and max_beta. In this thesis, we set p1 = 1.2, p2 =

1.5 by default.

ColorEnhancement(luminance, base, detail){

 (avg, sdv) = CalcAvgSdv(luminance)

 min_beta = p1 + (sdv - avg);

 max_beta = min_beta + p2 * (1.0 + sdv - avg)

 for(row=0, row < luminance.height, ++row){

 for(row=0, row < luminance. width, ++col){

 if(base(row, col)<avg & abs(detail)<th)

 beta = luminance(row, col) * (max_beta–

min_beta) + min_beta

 else if(base(row, col)>avg & abs(detail)<th)

 beta = luminance (row, col) * (max_beta –

min_beta) + min_beta

 else if(base(row, col)<avg & abs(detail)>th)

 beta = base(row, col) * (max_beta – min_beta) +

min_beta

 else //base(row, col)>avg & abs(detail)>th

 beta = base(row, col) * (max_beta – min_beta) +

min_beta

 LogarithmicCurve(luminance, beta)

 }

 }

 return luminance

}

Figure 10. The pseudo code for color enhancement.

 Figure 11. is an example of generating map. After

generating  map, we simply use logarithmic curve

function to finish the color enhancement.

Original Image

Result Image

 Map

Figure 11. The pseudo code for color enhancement.

C. Scene Classification

 We are inspired by the ‘scene mode shooting’ in many

cameras. Users can select appropriate scene mode and take

pictures, such as forest mode, sunset mode, ocean mode, and

so on.

 Our goal is to automatically detect the best-match scene

mode for input image. After scene mode detection, displays

such as monitors or printers can use corresponding scene

modes or profiles to present the processed results.

 The flow of scene mode detection contains two parts:

training and classification.

1) Color Descriptor

 To present color histogram of an image efficiently, J. R.

Smith [11] provides a color descriptor by using the

information of HSV color space of an image. We calculate

3D color histogram of HSV with 18 bins in H channel, 3

bins in S channel, and 3 bins in V channel.

 Figure 12 is the pseudo code of creating Color Descriptor

where (h_pos, s_pos, v_pos) is the coordinate of 3D

histogram of HSV; h_bin, s_bin, and v_bin are the bins of

3D histogram; descriptor records the information of 3D

histogram of HSV; and Scale normalizes the 3D histogram

by dividing total pixel number of input image.

ColorDescriptor(h, s, v){

 for(row=0, row<hsv.height, ++row){

 for(col=0; col<hsv.width, ++col){

 h_pos = Floor(h(row, col) / 360.0 * h_bin)

 s_pos = Floor(s(row, col) / 1.0 * s_bin)

 v_pos = Floor(v(row, col) / 1.0 * v_bin)

 descriptor(h_pos, s_pos, v_pos) += 1.0

 }

 }

 Scale(descriptor, h.width * h.height)

 return descriptor

}

Figure 12 The pseudo code for color descriptor.

2) SVM Training and Scene Mode Classification

 To classify an image scene with high accuracy, we simply

use C. J. Lin’s [4] SVM libraries to train our database of

different scenes. We focus on three scenes: cool color mode,

warm color mode, and forest color mode.

 We download hundreds of images from flickr [17] for

each main theme. We first resize images to 700 pixels by

700 pixels, then calculate their color descriptor as training

data. Finally we use C. J. Lin’s program [4] to finish

training and complete its classification.

 Database are collected from flickr. Each image will have a

color descriptor, and each color descriptor will have a label.

SVM machines will use these descriptors and labels to

complete the training process.

IV. EXPERIMENTAL RESULTS

Here we introduce our experiment environment:

CPU Intel Core2 Duo

Memory 3.25 GB

Operating System Windows 7 Enterprise

Edition

Programming Language Visual Studio 2008 +

OpenCV 2.0

 Our method takes 1.71 second to complete total image

enhancement and scene mode detection on an image with

resolution 2592 by 1944 pixels. The following figures are

the comparison of original images and the results.

 Figures. 13 to 14 are the comparison between original

image and the results after our face color enhancement.

 To compare our color enhancement method, we

implement S. C. Tai’s LDR contrast enhancement method

[12]. We also download George DeWolfe’s Photoshop

Plug-in [6] called PercepTool and use its No-UI Filter to

complete his color enhancement method. Figures. 15 to 16

are the comparison between original image, our color

enhancement image, image after S. C. Tai’s [12] contrast

enhancement, and the result by using Percept Tool of

George Dewolfe.

 The test data are from database of Hiti Digital [7] and

flickr. Our correct rate of scene mode detection is about

87.10% from test database with 30 images totally.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

 Our proposed method provides faster and more effective

method than post-production.

 There are three major parts of our proposed method:

human face beautification, color enhancement, and scene

mode detection.

 We beautify human faces in the picture and enhance its

luminance information to luminosity. Finally we

automatically select scene mode for printer that can be

printed out by corresponding profile.

 After our proposed method, blemish on human faces will

be reduced, skin pixels on human faces become smooth and

natural. On the other hand, the contrast of luminance and

details will be enhanced. After all the proposed methods are

done, input photograph will make good result both on

human faces and luminosity efficiently.

B. Future Work

 The most important thing in our future work is to provide

a more precise face detection algorithm and blending

method.

 Furthermore, the accuracy of scene mode detection is not

satisfactory for practical use. We have to find more effective

color descriptor or classifier to improve the accuracy for

scene mode selection.

VI. REFERENCE

 [1] Adobe Labs, “Photoshop CS3,”

http://labs.adobe.com/technologies/photoshopcs3/, 2010.

[2] Anthropics Technology, “Portrait Professional,”

http://www.portraitprofessional.com/, 2010.

[3] S. Bae, S. Paris, F. Durand, “Two-Scale Tone

Management,”

http://people.csail.mit.edu/soonmin/photolook/, 2010.

[4] C. C. Chang, C. J. Lin, “LIBSVM -- A Library for

Support Vector Machines”,

http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html, 2010.

[5] C. W. Chen, D. Y. Huang, and C. S. Fuh, “Automatic

Skin Color Beautification”, Lecture Notes of the Institute for

Computer Sciences, Social Informatics and

Telecommunications Engineering, p. 157, 2009.

[6] G. Dewolf, “The Digital Fine Print,”

http://www.georgedewolfe.com/dfp.html, 2010.

[7] Hiti Digital, “Hiti,” http://www.hiti.com/us/, 2010.

[8] D. Y. Huang and C. S. Fuh, “Automatic Face Color

Enhancement,” Proceedings of IPPR Conference on

Computer Vision, Graphics, and Image Processing, Shitou,

Taiwan, D6-8, p. 175, 2009.

[9] Literate Programs, “RGB to HSV Color Space

Conversion (C),”

http://en.literateprograms.org/RGB_to_HSV_color_space_c

onversion_(C)#chunk def:compute hue, 2010.

[10] S. Paris, P. Kornprobst, J. Tumblin, and F. Durand, “A

Gentle Introduction

to Bilateral Filtering and its Applications,”

http://people.csail.mit.edu/sparis/bf_course/, 2010.

[11] J. R. Smith, “Chapter 11: Color for Image Retrieval,”

Image Databases: Search and Retrieval of Digital Imagery,

Wiley-Interscience, New York, 2001.

[12] S. C. Tai, N. C. Wang, Y. Y. Chang, and Y. C. Lu, “A

Two-Stage Contrast Enhancement Algorithm for Digital

Images,” Proceedings of the IEEE Congress on Image and

Signal Processing, Sanya, Hainan, China, Vol. 3 - Volume

03, pp. 256-260, 2008.

[13] Wikipedia, “HSL and HSV,”

http://en.wikipedia.org/wiki/HSL_and_HSV, 2010

[14] Wikipedia, “Bilateral Filter,”

http://en.wikipedia.org/wiki/Bilateral_filter, 2010.

[15] Wikipedia, “Haar-like features,”

http://en.wikipedia.org/wiki/Haar-like_features, 2010.

[16] Wikipedia, “Histogram Equalization,”

http://en.wikipedia.org/wiki/Histogram_equalization, 2010.

[17] Wikipedia, “Adaptive Histogram Equalization,”

http://en.wikipedia.org/wiki/Adaptive_histogram_equalizati

on, 2010.

[18] Wikipedia, “Flickr,” http://zh.wikipedia.org/zh-

tw/Flickr, 2010.

Original Image

(0 vote)

Our Result Image

(21 votes)

 Warm Color Mode

Figure 13. Our method smooth human wrinkles.

Original Image

(0 vote)

Our Result Image

(21 votes)

Warm Color Mode

Figure 14. Our method reduces blemishes on human face.

Original Image (0 votes)

Our Result Image (11 votes)

Result after S. C. Tai’s Method (3 votes)

Result after PercepTool with No-UI Filter (7 votes)

Cool Color Mode

Figure 15. Our color enhancement method keeps the details

of sky and grass, but S. C. Tai’s method and PercepTool

will lose some details of sky and grass.

Original Image (7 votes) Our Result Image (12 votes)

Result after S. C. Tai’s

Method (2 votes)

Result after PercepTool with

No-UI Filter (0 vote)

Figure 16. Our proposed method enhances local contrast of

details while others might reduce the contrast of details.

