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ABSTRACT

Generating videos with content and motion variations is a
challenging task in computer vision. While the recent devel-
opment of GAN allows video generation from latent represen-
tations, it is not easy to produce videos with particular content
of motion patterns of interest. In this paper, we propose Dual
Motion Transfer GAN (Dual-MTGAN), which takes image
and video data as inputs while learning disentangled content
and motion representations. Our Dual-MTGAN is able to per-
form deterministic motion transfer and stochastic motion gen-
eration. Based on a given image, the former preserves the
input content and transfers motion patterns observed from an-
other video sequence, and the latter directly produces videos
with plausible yet diverse motion patterns based on the input
image. The proposed model is trained in an end-to-end man-
ner, without the need to utilize pre-defined motion features
like pose or facial landmarks. Our quantitative and qualitative
results would confirm the effectiveness and robustness of our
model in addressing such conditioned image-to-video tasks.

Index Terms— Generative Adversarial Networks, Repre-
sentation Disentanglement, Image-to-Video Synthesis.

1. INTRODUCTION

Producing video sequences with desirable information is
among active research topics in computer vision and machine
learning. In general, a video sequence can be generated based
on different corresponding conditioned inputs, such as an in-
put image, another video sequence, or a combination of both,
depending on the information of interest. In this work, we
address conditional video generation given an input image,
which either allows transfer of deterministic motion patterns
from another video sequence of interest, or exhibits the abil-
ity to produce realistic video outputs with diverse motion pat-
terns.

Several existing works [1, 2, 3] generate video sequences
by randomly sampling latent vectors from some prior dis-
tributions (e.g., Gaussian prior), which are observed from

training videos. To better manipulate video contents, re-
cent works consider a single image [4, 5] or consecutive
video frames [6, 7, 8, 9, 10, 11, 12, 13] as inputs to produce
videos. Via modeling motion information in a probabilistic
manner, diverse motion patterns may be observed in their out-
put videos (e.g., [4, 9, 10]). Despite promising performances,
the above methods cannot easily capture and transfer motion
information from another video sequence of interest, which
would limit the use of their video generation models.

Aiming at transferring motion patterns across videos,
some recent works either extend Generative Adversarial Net-
works (GANSs) [14] for video retargeting in a frame-by-frame
manner[15], or leverage explicit information (e.g., pose skele-
ton, 3D facial model, or key-point) from video sequences of
interest with input frames to perform video-to-video transla-
tion [16, 17, 18, 19, 20, 21, 22, 23, 24]. Nevertheless, the
above models are specifically designed to transfer determin-
istic motion patterns from particular video inputs, and thus
lack the flexibility in showing motion stochasticity in the out-
put videos.

In this paper, we propose a Dual Motion Transfer GAN
(Dual-MTGAN), which addresses image-to-video synthesis
with joint capabilities of stochastic motion generation and
deterministic motion transfer (as depicted in Figure 1). Our
Dual-MTGAN disentangles input image and video data into
latent representations of content and motion features, which
describe visual appearance and model dynamic motion pat-
terns, respectively. While we advance inherent temporal co-
herence as self-supervision for content feature disentangle-
ment, the motion features are learned via cycle-consistency
of motion features during translation. With the decomposed
content/motion representations, our model animates the target
image with the transferred motion patterns of the source video
in a deterministic manner by combining the content/motion
features extracted from image/video inputs. Moreover, to fur-
ther exploit the stochasticity of motion dynamics in video se-
quences, the motion latent space encoded from source videos
would fit a prior distribution. This allows out Dual-MTGAN
to synthesize realistic yet diverse output videos by sampling
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Fig. 1. Tllustration of our Dual-MTGAN for image-to-video synthesis. Given a target image of interest, the goal is to either
produce video outputs with motion diversity, or to generate a video sequence with motion patterns matching those of the source
video. Note that motion stochasticity is modeled from source video data during training.

motion features. We note that, our Dual-MTGAN utilizes ad-
versarial learning strategies, which further preserve the plau-
sibility and continuity of the generated video outputs. In the
experiments, we show that our model not only transfers mo-
tion patterns across videos, but is also able to synthesize real-
istic videos with motion diversity given a single input image.
The contributions of this paper are highlighted below:

e We address image-to-video generation with flexibility
in controlling motion information. Given an input im-
age, our proposed model allows transfer of motion pat-
terns from video data, or synthesis of video sequences
with motion diversity.

e By enforcing appearance coherence and motion consis-
tency, our Dual-MTGAN factorizes visual latent repre-
sentations into disjoint features describing content and
motion features in a self-supervised manner.

e Our proposed model is simply trained by observing a
sourced-domain video and a target-domain image in an
end-to-end manner. No auxiliary information or super-
vision like facial landmarks or shape models.

2. RELATED WORKS

Stochastic Video Synthesis. Based on GAN [14] architec-
ture, several works [1, 2, 3] generate video frames from prior
distributions observed from training data. For example, Von-
drick et al. [1] and Saito et al. [2] proposed VGAN and TGAN
respectively, to learn a mapping between video data and the
associated latent spaces. While they can produce video se-
quences similar to real ones, they cannot synthesize videos
conditioned on the content of interest. With the aim of con-
trolling the content of synthesis videos, recent works [4, 5]
further perform image-to-video generation, which produce
plausible video outputs based on a single image. For exam-
ple, Li et al. [4] proposed a two-stage training framework in-
corporating generative models with optical flow supervision

to generate video frames with diversity. Nevertheless, these
works typically require pre-defined motion priors like optical
flow, which hampers the motion diversity and cannot be easily
extended to motion transfer.

Deterministic Motion Transfer. The goal of motion transfer
is to translate a source video into an output one, in which the
motion information is derived from the source video while the
visual appearance is preserved in the target output. Video-to-
video translation is among the solutions, which directly learns
mapping across videos. For example, Bansal et al. [15] ex-
tended CycleGAN [27] and combined spatiotemporal con-
straints to translate one video into another in a frame-by-
frame manner. Vid2vid [16] aims to translate a sequence of
semantic representation to consecutive video frames. While
satisfactory results have been reported, the above methods
are only applicable to translation between two domains (e.g.,
John Oliver to Stephen Colbert). Thus, they have limited flex-
ibility in practical scenarios. Another group of works learned
to use explicit information as prior information like skeleton
or keypoints [20, 21, 22, 23] to address this task. For ex-
ample, Monkey-Net [23] incorporated keypoints information
to realize motion transfer and also applied the extracted key-
points to generate videos from an image. However, the above
assumptions with deterministic settings cannot perform video
generation with sufficient motion diversity.

Representation Disentanglement for Video Synthesis.
Aiming at learning interpretable data representations [28, 29,
30, 31, 32], the idea of representation disentanglement has
been applied to video generation [25, 26, 33]. For exam-
ple, Tulyakov et al. [3] presented MoCoGAN to generate
videos from decomposed random noise representing motion
and content information respectively. Note that, while MoCo-
GAN present an extension version for image-to-video syn-
thesis, they fail to capture and transfer the motion patterns
across videos. Moreover, DRNet [26] disentangled the la-
tent representation into content and pose, and performed mo-
tion transfer across videos. Despite promising prediction and
motion transfer results, the above methods lack the ability to
exhibit motion stochasticity during the transfer process, and
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cannot be directly applied to transfer motion across videos. In
Table 1, we compare the state-of-the-art methods with ours,
showing the robustness of our model.

3. PROPOSED METHOD

3.1. Problem Definition and Model Overview

With the goal of generating videos with plausible content and
motion information, we propose a novel Dual-Motion Trans-
fer GAN (Dual-MTGAN) to produce video sequences via ob-
serving a combination of source video V' = [xt]f with T in-
put frames and a target image v, or only a given target image
y. With the content observed from either input domain, our
output video would directly transfer motion information from
V' or exhibit sufficiently realistic motion patterns.

As illustrated in Figure 2, our Dual-MTGAN utilizes F¢
and Ej; as content and motion encoders, producing time-
invariant content features z. and video dynamic motion fea-
tures z,y, respectively. For dual motion transfer purposes, we
generate frame-based motion features z}, ; or z,, by either
directly decoding z,; via a RNN-based motion generator G,
or utilizing feature sampled from the motion latent space as
input to Gr. Moreover, the decomposed content and motion
representations are learned with both data recovery and plau-
sibility objectives, which are realized by an image generator
(1, avideo-based discriminator Dy, and an image-based dis-
criminator Dj. With such adversarial learning strategies, we
are able to produce a video sequence based on the target im-
age y, with motion patterns either encoded from the source
video V' or sampled from prior distributions.

3.2. Self-Supervised Disentanglement of Content/Motion
Features

As illustrated in Figure 2, we have a content encoder E¢ to
extract content features from either source video or target im-
age data. As the appearance in a video sequence is temporally

coherent across all frames, we leverage this property as a self-
supervision to ensure that content features extracted from the
source video are time-invariant (i.e., 2}, = 2z..). In other
words, we enforce temporal consistency between cross-frame
content features z! , and z/%', which correspond to the loss

function Lo defined as follows:

Le = ||Ec(a') — Ec(z")]]1. (1)

By enforcing the above loss, our E¢ extracts time-invariant
content features from input frames, and thus can be applied to
extract content features from (target) images as well.

In order to encode motion information observed from
video data, we utilize a separate motion encoder Fj; with
spatial-temporal convolutional architectures (i.e., 3D convo-
lution) [34] in our proposed framework. Moreover, to bet-
ter exploit the motion features and allow stochastic sampling
during inference, we train our network module in a generative
manner, and establish a motion latent space to model the dis-
tribution of inherent motion dynamics. More precisely, this is
realized by enforcing the Kullback-Leibler divergence to en-
courage the distribution of extracted video motion feature z,
to fit a prior Gaussian distribution A/(0,I). Thus, the corre-
sponding objective function L, is defined as:

Lxr = E[KL(P(za)|IN(0,1))]. @)

where P(z)s) denotes the distribution of zj;. Note that, with
the learned motion latent space, we are able to perform dual
deterministic and stochastic motion transfer by using motion
representations that are either directly encoded or stochasti-
cally sampled.

To generate frame-based motion features for each output
frame, we then apply recurrent neural network modules of
LSTM [35] as our frame-based motion generator G, which
learns the distribution of motion latent feature trajectories and
outputs 2/, ;or z},  across frames from encoded or sampled
motion as input of G'r, respectively.

By deploying image generator G to synthesize the output
frames via concatenating zfn g or 2k .. we perform image-

m,s?



Source Video

M o
ﬂ Deterministic

\rransfer

Cirp

.. Stochastic 2,
Transfer

t
zm,d

Motion Space
,S

Target Image

g B | Zc,y

Y

-

& ¥
sV

—> Reconstruction

Real/Fake

Conditioned
Real/Fake

Motion Consistency

[ Self-Supervised Content/Motion Disentanglement

] [ Motion Consistency Guided Adversarial Learning ]

Fig. 2. The network architecture of our proposed Dual-MTGAN, which consists of a content encoder F ¢, a motion encoder
Ejs, a RNN-based motion generator G, and an image generator G, with video and image-based discriminators Dy, and Dj.
Note that z., zps, and zfn denote time-invariant content, video motion, and frame-based motion features, respectively. Note that
@ indicates concatenation of content and motion features. Best viewed in color.

to-video generation conditioned on either content vector z.
(from source video) or z., (from target image). We denote
the recovered video sequence from z as V., and the generated
videos from y with encoded or sampled motion as V, 4 and
IN/% s, respectively. To be more specific, the output videos are
expressed as:

Vm = Gl([zz,x]{7 [an,d]{% 3)
Vy,d = Gl(zc,ya [thmd]{)’ Vy,s = GI(Zc,yv [an,s]{)a

The plausibility of the generated output V%d and V%s 3)
is enforced via adversarial training (detailed in the next sub-
section), while the recovered output V, in (3) can be con-
strained by the reconstruction loss L,... defined as:

»Crec: ||Vz_v‘|1 (4)

Through L,..., we not only guarantee (G; with the abil-
ity of reconstruction, but also enforce the derivation of dis-
joint time-variant motion information from the input video to
achieve disentanglement of latent representations.

3.3. Motion-Consistency Guided Adversarial Learning

With our derived time-invariant content feature z. and time-
variant motion feature z,;, we advance adversarial learning
strategies to ensure realistic video outputs with appearance
guarantees. Moreover, cycle-consistency for motion repre-
sentations is enforced to facilitate the preservation of learned
motion information. We now describe the details below.
Appearance-Aware Visual Realism. We note that, when
generating output videos with the appearance of interest, there
is no guarantee that the output video would adequately sat-
isfy the appearance information based on the given target im-

age. Hence, as shown in Figure 2, we deploy in our pro-
posed network an image-based discriminator D; which takes
a pair of images as input, and a video-based discriminator D+
which observes an entire video. Inspired by [36], we design
our D; as a conditional discriminator by introducing an ad-
versarial loss with appearance-aware terms to further confirm
that content information can be properly encoded/recovered.
This loss function encourages image-based discriminator Dy
to not only distinguish the generated video outputs from real
ones, but also let D; identify the mismatch between the gen-
erated and the conditioned inputs. In this way, we guarantee
the plausibility of generated video frames, while ensuring the
content of the output to match the conditioned image (i.e., the
first frame of the source video (x!), or the target image (y)).
For the sake of simplicity, we use f/y to denote either one of
V,.a or V, 5. The objective functions for the above learning
process can be defined as follows:

LEan = LGan e + Lban ., where )

LéAN,ax =log(Dy(z', S1(V))) + %[log(l = Di(a, 81(Va))
+log(1 — Dy (y, S1(V)))]

£hany =108(D1(y,9)) + 3 llog(1 — Dy (y, 51(7,)))
+log(1— Dy(a, 5:(V,),

where S is an access function which randomly samples a
frame from the output video, and V, is the real video with
the same appearance as y. We note that, in both £ , N, and
cL, N,y the first term indicates the “real” pairs. The second
term represents the “fake” pairs, where the first subterm en-
sures the plausibility and the second subterm avoids content
mismatch.



As for video-level adversarial learning, we apply a video-
based discriminator Dy, to ensure both visual quality and tem-
poral continuity of the entire video output. Thus, the objective
function of Dy, is calculated as:

L&an = Léanw + LEan ., Where (6)

LEan.a = log(Dy(V)) +log(L — Dy (Va)),
LEany =1og(Dy (V) +log(1 — Dy (Vy)).

Cycle-Consistency for Motion Features. While the
quality and continuity of produced videos are enforced by the
above deployment of image and video-based discriminators,
they do not explicitly guarantee the disentanglement or mod-
eling of motion information from input videos. To further en-
rich the derivation of motion space, we additionally advance a
motion consistency constraint for preserving motion dynam-
ics between the encoded motion vector zp; and the recon-
structed video Vz (or the generated one f/y’d). We calculate
such consistency losses at feature level, which suggests the
associated objective function £, as:

Lo = |Exe(Va) = 2alls + | Exe(Vya) — 2alli. (D

3.4. Full Objectives

The full objective function of learning our Dual-MTGAN can
be summarized as below:
Ec7Er3}gT7GI Dr?yabxvﬁ B Al(ﬁc T Lrect £M)
+ AkLLixL + AiLEan + AvLE AN,
®
In all our experiments, we set the hyperparameters as follows:
A =10, Ak = 1072, /\V =1,and \; = 1074.

Once the learning process is complete, our Dual-MTGAN
can be applied to deterministic motion transfer and stochastic
motion generation:

1) Given a source video V' and a target image y, we utilize Ej,
and E¢ to capture the motion feature 2z, from V and visual
content z. ,, from y, respectively. We then derive frame-based
motion features z!, , through Gr. After concatenating with
Zc,y, the image generator G is applied to output a video with
visual appearance of y and motion patterns of V.

2) With the input of a target image y, we extract its content
feature z, by E¢, with a sampled motion feature z; for pro-
ducing frame-based motion trajectories from Gp. By com-
bining z! . with z., the image generator G; would output

m,s

videos with motion diversity.

4. EXPERIMENTS

4.1. Datasets

Facial expression. The UvA-Nemo dataset [37] contains
1240 videos of several identities. Following [23], each frame

is resized to 64 x 64 x 3 pixels and each video is divided
into 16-frame length sequences. Also, we use 1110 videos
for training and 124 for inference.

Human actions. The Weizmann Human Action dataset [38]
consists of 90 videos covering 10 action categories performed
by 9 people. We cropped each frame to center on the person
and resize the frames to the size of 64 x 64 x 3. Following [3],
we split the first % frames of each video for training, and the
remaining % frames of video for inference.

Robot pushing. The BAIR robot pushing dataset [39] is com-
posed of videos presented by a robotic arm pushing various
objects over a table. It contains 40960 videos for training and
256 videos for testing. Each frame is 64 x 64 x 3 pixels and
each video has 30 frames.

4.2. Deterministic Motion Transfer
4.2.1. Qualitative results and comparisons.

We demonstrate the ability of our Dual-MTGAN in realizing
deterministic motion transfer across videos using facial ex-
pression and human actions data. As described in Figure 2,
given a target image with a source video, our model is able to
synthesize a corresponding video with motion patterns trans-
ferred from those observed in the source video. In Figure 3,
we see that we were able to generate output videos whose ap-
pearances were properly preserved from the input target im-
age, while the motion patterns were consistent to those of the
source videos. Take the right part of Figure 3 for example,
despite the poses of target images were different from those
in the source videos (e.g., the person in the source video is
waving both of his hands, while a different person in the tar-
get image is raising one hand only), our model was able to
preserve the content of the target image and successfully ex-
tracted/transferred the motion pattern across videos (e.g., the
hand(s) waving up or down).

In the left part of Figure 5, we compare our model
with Monkey-Net [23] (a state-of-the-art deterministic motion
transfer model) to show superior visual realism achieved by
our Dual-MTGAN. Since Monkey-Net integrates keypoints
information to perform motion transfer, its output may exhibit
inferior visual realism when the appearance of the target im-
age is largely different from that of the source video. A num-
ber of frames in the output of Monkey-Net contain irrational
limbs resulted from keypoints extracted from the source video
(highlighted in red blocks), leading to unrealistic and blurry
outputs. From the above experiments, we see that our Dual-
MTGAN exhibits capabilities in performing image-to-video
generation with deterministic motion transfer.
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Fig. 4. Example results of stochastic motion generation using robot pushing (left) and human actions (right) video data. The
frame bounded in red denotes the input frame, and each row shows ground truth or video outputs with motion stochasticity. The
last row shows the video with the highest SSIM matching the ground truth video.

4.3. Stochastic Motion Generation
4.3.1. Qualitative results and comparisons.

In order to provide motion stochasticity in the produced video
outputs, our Dual MTGAN is able to generate frame-based
motion features 2, . by sampling the video motion represen-
tation z,; from a prlor Gaussian distribution, and then syn-
thesizes a corresponding output video based on a single in-
put image. Example results are shown in Figure 4 on robot
pushing (left) and human actions (right) datasets respectively,
in which diverse outputs can be produced based on differ-
ent sampled random vectors. From the above results, we see
that our model is capable of synthesizing a set of plausible
videos with reasonable motion by sampling different 2z, from
N(0,1).

To verify the plausibility of our stochastic motion gener-
ation model, we take the first frame of a video as the single
input image, and compute Structural Similarity (SSIM) be-
tween the generated videos and the ground truth video. We
show the output videos with the best SSIM in the bottom
rows of Figure 4, and observe both visual and motion simi-
larity between these outputs and their associated ground truth
ones. Therefore, we confirm that our model is able to produce
diverse yet realistic output videos.

As shown in the right part of Figure 5, we perform quali-
tative comparisons on robot pushing dataset using SVG [10],
Monkey-Net [23], and our model. Our model achieved im-
proved temporal continuity and video quality across frames

than [10] did and presented comparable visual fidelity as [23].
It is worth noting that SVG was not able to produce satisfac-
tory results under the condition that only an input image was
provided. In addition, Monkey-Net requires extra information
(i.e., keypoints) for video generation, while ours is capable
of synthesizing videos without the need to utilize pre-defined
motion information. The quantitative comparison is available
in supplementary material.

4.4. Ablation Study

We now provide ablation studies (more available in supple-
mentary). For stochastic motion generation, we consider the
human actions and robot pushing datasets, using our model
1) without Dy, 2) without Dy, 3) without L, and 4) without
L. For each model, we produce 25 output videos, then com-
pute the best Structural Similarity (SSIM) and Peak Signal-to-
Noise Ratio (PSNR) scores with respect to the ground truth.
As shown in Figure 6, our model surpassed others in terms
of both metrics, which confirms the video quality achieved
by Dual-MTGAN. Note that, without the presence of the Dy,
both scores dropped since there would be no guarantee for
preserving image quality and its property. Moreover, when
Dy was disabled, both scores dropped drastically. This ver-
ifies that our Dy, has the ability to ensure that the produced
videos exhibit both temporal continuity and visual quality.
Next, we further disable our temporal consistency L and
motion consistency L to verify the effectiveness of our de-
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sign for representation disentanglement. If the temporal con-
sistency is disabled, we observe a huge drop on both scores.
Without L, the extracted content features are not trained to
be time-invariant, and the image generator Gy would syn-
thesize frames with the entangled representations and ignore
the motion features. Hence, we cannot derive a rich motion
space to produce videos with sufficiently realistic dynamics
and stochasticity. Finally, if the motion consistency term is
not applied, the motion information would be omitted during
the generation process, and thus lead to worse visual quality
and lower SSIM and PSNR scores. With the above exper-
iments, we confirm the effectiveness and robustness of our
proposed Dual-MTGAN in performing image-to-video syn-
thesis.

5. CONCLUSION

In this paper, we proposed a unified deep learning model of
Dual Motion Transfer GAN (Dual-MTGAN). This unique
network addresses image-to-video synthesis, which is able
to perform deterministic motion transfer or stochastic motion
generation given an input image. This is realized by the de-
sign of encoders which disentangle temporal-coherent con-
tent and motion features, while the latter is modeled by a
generative recurrent network modules. In our experiments,
we successfully verified that our model performed promising
deterministic motion transfer and stochastic motion genera-

tion results using facial expression, human actions, and robot
pushing datasets with satisfactory visual quality and motion
stochasticity.
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