
Displacement field estimation and image segmentation 

using block matching enhanced by a neural network 

YONG-SHENG CHEN and CHIOU-SHANN FUH* 

Department of Computer Science and Information Engineering, National Taiwan University, 
Taipei, Taiwan 

Received 10 August 1995; accepted 30 October 1995 

Abstract-The block-matching method plays an important role in displacement field estimation due to 
its simplicity, achievement of long-range motion, and robustness to noise. In this paper, a single-layer 
feedback neural network model is proposed that enhances block matching, estimates the displacement 
field, and simultaneously performs image segmentation from consecutive images. In this paper, image 
segmentation is defined as partitioning each image into a set of moving objects and the background. For 
any two consecutive images, a neural network is created that learns the connection relationship of the 
pixels in an object from the displacement field and stores the relationship in the network. A modified 
block matching is used to compute a more accurate displacement field by utilizing the segmentation 
information embedded in the neural network. The displacement vector at the edge of an object or 
occluding boundary is hard to estimate, but the proposed model performs satisfactorily because it learns 
and uses the connection information. Furthermore, a flood-fill algorithm is used to compute the dense 
displacement field more efficiently and correctly than the exhaustive search does. The most important 
aspect of this paper is that image segmentation is performed simultaneously with the displacement-field 
estimation by the neural-network model. The novel idea of the work is to embed the segmentation 
information (connection relations) in the neural network and to perform the displacement-field estimation 
and image segmentation simultaneously. Two methods for retrieving segmentation information from the 
neural network with any two consecutive images are also presented. 

1. INTRODUCTION 

l.l. Motivation 

The abundance of attributes in information of time-varying images allows visual mo- 
tion analysis to provide surface structure, 3D-translation and rotation parameters, and 
other useful information. With this ability, visual motion analysis can be applied 
to target tracking, video coding, passive navigation, automatic surveillance, remote 
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sensing, and many other real-life applications. There are four major tasks in motion 

analysis as Fig. 1 shows. The first one is to estimate the optical flow field, which 
is the apparent motion of brightness patterns observed as the sensor moves relative 
to the objects being imaged. Second, we can estimate the motion parameters and 
surface structure from the optical flow field by writing a set of linear equations in 
the unknown parameters of the motion and surface structure. We can also divide 
the image into parts with coherent optical flow in order to extract object shapes by 
finding the rapidly varying part of the optical flow field. The optical flow field is thus 
used as an intermediary for recovery of successive motion and surface structure and 
for segmentation. The accuracy of the optical flow field hence determines the overall 

accuracy of the motion analysis. 
There is, however, a dilemma concerning optical flow-field estimation and segmen- 

tation. If we can first divide the images well, we can extract the objects separately 
to reduce the complexity of the images and produce a better optical flow field. On 
the other hand, if we have a good optical flow field, we can locate the boundary of 

the segmentation where optical flow varies rapidly. The way to resolve this dilemma 
is to combine the estimation of the optical flow field and segmentation in an iterative 

manner as Fig. 2 shows; that is, segmenting the image from the previously estimated 

optical flow field and estimating the optical flow field according to the previous seg- 
mentation information. 

Figure 2. The iterative steps of motion analysis. 
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In this paper, we will concentrate on an iterative method for estimating the displace- 
ment field, that is, the optical flow field after being divided by the interframe time 
and latting the interframe time tend to zero, and obtaining image segmentation for 

regions in which all pixel displacement vectors are coherent. We create a single-layer 
feedback neural-network model that obtains information about segmentation from the 

displacement field using an enhanced block-matching method. This block matching in 
turn uses information about segmentation embedded in the neural network to enhance 
the accuracy of the displacement field. 

Many methods have been proposed estimating the displacement field and perform- 
ing image segmentation from the motion field. We briefly survey these methods in 
Section 1.2. 

1.2. Background 

There are three major groups of methods estimating the optical flow field or displace- 
ment field. These are the gradient methods, correspondence methods, and block- 

matching methods. Each group of methods has its own advantages, disadvantages, 
and limitations in different situations. 

1.2.1. Gradient methods. Gradient methods depend on certain assumptions and 

constraints, such as the surface shape, the existence of rigid-body motion, constant 

intensity of corresponding pixels between consecutive images, and smoothness of 

optical flow over neighboring pixels. 
Horn and Schunck ( 1981 ) define optical flow to be the apparent motion of brightness 

patterns. They assume that the intensity I (x, y, t) of pixel (x, y) at time t will remain 
the same at time t + 8t at pixel (x -f- 6x , y + 8y). That is, 

After expanding Eqn (1) into a Taylor series and discarding the second- and higher- 
order terms, we can get the optical flow constraint equation: 

where (u, v) is the optical flow of pixel (x, y) at time t. 

We cannot solve for these two variables (u, v) uniquely from just this equation 
because there is only local information derived by each pixel. Schunck and Horn 

(1981) introduce a smoothness constraint containing global information which as- 
sumes neighboring pixels of the same object have similar optical flow: they minimize 
the change (magnitude of the derivative) of the optical flow along both the X and Y 
:1XI":\;;' 1 
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We can thus use the discrete first-order derivative to compute ailax, allay, and 

al/at of each pixel and iteratively over-estimate (u, v) at each pixel with these two 

constraint equations. 
In general, gradient methods are effective and they can compute the dense optical 

flow field at subpixel accuracy. But they require derivatives, are sensitive to noise, 
and have difficulty with long-range optical flow. The smoothness constraint is not 

valid at the occluding boundary, so the optical flow field is blurred near the occluding 
boundary. 

1.2.2. Correspondence methods. Correspondence methods extract the interesting 

parts of consecutive images to match and track them according to similarity, defined 

by the displacement field. The interesting part of an image depends on the application, 
and may be an isolated point, edge, comer, peak, valley, blob, or suchlike. 

Using pixels at such interesting parts makes it hard to solve the correspondence 

problem, so Fuh and Maragos (1989, 1990, 1991c) used a region-based correspon- 
dence method. Four kinds or regions were extracted, matched, and tracked among 
consecutive images to estimate the displacement field via the criterion of centroid 

distance, region identity, area difference, and intensity difference. 

Although this method can only compute a sparse displacement field, it can achieve 

long-range displacement while eliminating the disturbance due to noise, so this method 
is useful in target tracking and can be applied to the correspondence problem in stereo 

images. But it is difficult to solve the correspondence problem and there is another 

consistency problem: the extracted interesting parts may have inconsistencies over 

the consecutive images. 

1.2.3. Block-matching methods. The simplest block-matching method is to find 
in two images the corresponding pair of pixels and their surrounding blocks that 

minimize the sum of squares of intensity differences. This method is feasible if 

there are only translations but no rotations. Fuh and Maragos ( 1991 a, b) devel- 

oped a 2-D affine model to estimate the displacement field allowing affine intensity 
transformations and shape deformations. Dufaux and Kunt (1992) used a multi- 

grid block matching refined by an adaptive local mesh to obtain a more accu- 
rate motion field efficiently. Seferidis and Chanbari (1992) proposed a general- 
ized block-matching method allowing affine, perspective, and bilinear transforma- 
tions. 

Although block-based methods are simple and easy to implement, there are two 
drawbacks that diminish the accuracy of estimation. First, there may be some regions 
appearing or disappearing between the two corresponding blocks of the two consecu- 
tive images, as in Fig. 3. The block-matching error using the sum of the squares of the 

intensity differences will depend on the intensity differences between the appearing 
and disappearing regions. Second, if there are several similar regions appearing in 
one image, there may be several blocks in the second image similar to some blocks 
in the first image. Using an inefficient and exhaustive block matching may lead to 

incorrect displacement vectors. 
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Figure 3. Region D is the disappearing region and Region A is the appearing region in these two corre- 
sponding blocks. The intensities of Region D and A are different. 

These two drawbacks reveal themselves in the choice of the size of the matching 
block. If we choose a small block size, the result is more accurate near the boundary 
of the object, due to the small size of the appearing and disappearing regions, as 
in Fig. 3. But small block size increases the probability of ambiguity and reduces 
the total accuracy. Although large block size may reduce the ambiguity, it causes 

inaccuracy near the boundary. 
Block matching can produce a long-range, dense displacement field and it is robust 

to noise. But it cannot estimate displacement vectors at the subpixel level, and it has 

difficulty in accurately estimating displacement vectors near the occluding boundary. 

Choosing the size of matching block is also a problem. 

1.2.4. Image segmentation. Image segmentation is an important preliminary step 
in pattern recognition and scene analysis. Segmentation is based on similarity and 

discontinuity. In this section, we survey some methods for segmenting images into 

regions in which pixels have coherent and similar optical flow. The discontinuity 
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in the optical flow field will define the boundary between two different neighboring 
regions. 

Fran?ols and Bouthemy (1990) used a likelihood test to divide the motion field into 

areas containing coherent motion. Thompson et al. (1985) used an edge-detection 
algorithm to locate the discontinuities in the optical flow, that is, the occluding bound- 

aries. Irani et al. (1994) used temporal integration to divide and track the moving 

objects. Pal and Pal (1993) have reviewed some other segmentation techniques based 
on gray level, color, and range images. 

Using optical flow field as an intermediary to divide images will inherit the noise 
and error of the optical flow field although this method modularizes and simplifies 
the problem of motion analysis. 

1.2.5. Single-layer feedback neural network. In the past four decades, neural net- 
works have attracted the attention of engineers and scientists from a variety of dis- 

ciplines. Among the varieties of neural networks, a discrete-time, recursive, and 

single-layer feedback network can be treated as a recurrent network; that is, it pro- 
cesses the initial-condition information and moves through a sequence of states over 

time in a synchronous or asynchronous manner. This kind of neural network can pro- 
vide associations or classifications, optimal solutions, restoration of patterns, mapping 
functions, and model dynamic systems. There is, however, a drawback inherent in 

modelling dynamic systems; it is difficult to explain how the solution is derived and 

to trace it back to its causes in view of the many random factors contributing to its 

evolution. 

1.3. Computational model 

In this paper, we put forward a single-layer feedback neural network model that es- 

timates the displacement field and simultaneously performs image segmentation for 
each pair of consecutive images. The novel idea of the work is to embed the seg- 
mentation information (as a connection relation) in the neural network and to perform 
the displacement-field estimation and image segmentation simultaneously. Recall that 
the dilemma of motion analysis is whether we should first get a good estimate of 

the displacement field and then use it to divide an image, or first divide an image 
and then estimate the displacement field. We solve the problem by using this neural- 
network model for both estimation of the displacement field and segmentation. Every 
time we compute a displacement vector of some pixel, we modify the segmentation 
result in the neural network. According to the most recent segmentation result, we 

divide the image and compute the next displacement vector of another pixel with 

correspondingly less influence from occluding boundary. 
In the following sections, we introduce the neural model, the method of manipulation 

of the synapses between neighboring neurons, and how the modified error function 
for block matching is made robust at the occluding boundary. Then, a flood-fill 

algorithm is used instead of exhaustive search to search for the matching block. The 

method of simultaneous segmentation is also presented. Some experimental results 

with real-world image sequences are also given. 
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2. DISPLACEMENT-FIELD ESTIMATION 

2.1. Neural model 

In this section, we create a single-layer feedback neural network to learn and record 
the segmentation information in each image. This neural network contains one neuron 
for each pixel in the image. Using the error function described in Section 2.2, each 
neuron contains information about the displacement vector, from which the block- 

matching error is computed. Each neuron also has eight synapses connected to the 

eight neighboring neurons. The construction of the neurons and synapses is shown 
in Fig. 4. The eight synapses of each neuron are ordered from 0 to 7 as the figure 
shows. 

The weight of synapse stands for the strength of the connection, so if two neigh- 
boring pixels belong to the same object, the weight of the synapse between the two 

corresponding neurons should be large. As Fig. 5 shows, if the matching error s (r, c) 
of neuron N(r, c) using displacement vector d(r, c) is calculated, the feedback con- 
nection will adjust the weights of the synapses connecting neuron N(r, c) and its eight 
neighboring neurons to reveal the new state of the connection strengths. 

Figure 4. (a) The eight synapses of the neuron N(r, c) with the number on the synapses at the kth 
iteration. This order of synapses is just for the convenience of implementation. (b) The neuron N(r, c) 
contains the information of block matching error e(r, c), calculated by using the displacement vector 
d(r, c) and eight synapses connected to its neighbors. 
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Figure 5. Single-layer feedback neural network model for the feedback connection of Neuron(r, c) only. 

According to the smoothness assumption of Horn and Schunk (1981), the displace- 
ment field is continuous almost everywhere, except at the occluding boundaries of 

objects in the images. In other words, neighboring pixels of the same object have sim- 

ilar displacements but those pixels on opposite sides of the occluding boundary have 

different displacements. Thus we can expect that if PI, p2 are two pixels on opposite 
sides of an occluding boundary, then displacement vectors d(pl ), d(p2) should be 

different and the matching error E(pl, d(p2)) of neuron N(pj ) using the displacement 
vector d(p2) and matching error E(p2, d(pl)) of neuron N(p2) using the displacement 
vector d(pj ) are both larger than £(p¡, d(pl )) and E(P2, d(p2)). 

The relationship presented above can be transformed into the weight of the synapse. 

According to the assumption above, if the matching error d(p2)) is large, then 

pl , p2 should belong to different objects and the weight of the synapse between 
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neurons N(pl) and N(p2) should be small. If, on the contrary, 8(PI, d(p2)) is small, 
and d(pl) and d(p2) are coherent and similar, then pal, p2 should belong to the same 

object and the weight of synapse between neurons N(pj ) and N(p2) should be large. 
The i th goal weight Wg(Pl, i, k) of neuron N(pl ) at the kth iteration is defined as the 

reciprocal of exponential error E(pl, d(p2)) scaled by 

where p2 = neighbor, (pi) is the i th neighboring neuron of pi, i x 7, as Fig. 4 

shows, and the scaling factor X depends on whether d(pl) is similar to d(p2) or not. 

Weight Wg will increase to 1 if d(p2)) approaches 0 signifying that N(pl) and 

N(p2) belong to the same object, since d(pi) is similar to d(p2). In this case, a 

smaller value of k is used to speed up the increase in Wg. Weight War will decrease 
to 0 if E(pl, d(p2)) is large, which means the displacement vectors d(Pl) and d(p2) 
are different and that N(pl ) and N(p2) may belong to different objects. In this case, 
a larger value of k is used to speed up the decrease in Wiz. From our experiments, 
we choose 0.0003 and 0.003 for the values of À in both cases. 

The connection relationship of the pixels is learned iteratively. At the kth iteration, 
the ith weight W(p, i, k) of neuron N(p) is determined by an adaptive algorithm: 

where k is the number of the iteration and i is the direction, 0 < i < 7, as Fig. 4 
shows. Consider pixel p at iteration k - 1: using the learning rate r, 0 < r x 1, 
we want to upgrade the weight of the i th synapse of the neuron N(p) at iteration k 

toward WM based on the weight of the ith synapse of the neuron N(p) at iteration 

k - 1. When r is 1, W (p, i, k) will be Wg (p, i, k) at every iteration and may produce 
a bounce effect. If r is 0, W(p, i, k) will stay constant at the initial value, W(p, i, 0). 
From the analysis in Table I and our experiments, 0.4 was chosen as a stable learning 
factor. 

2.2. Modified error function for block matching 

Block-matching methods use criteria such as minimizing the sum of squared or abso- 
lute intensity differences or maximizing an intensity cross-correlation to match blocks 

Table 1. 
The value of W(p, i, k) for the first five iterations of the weight updated from W(p, i, 0) = 1.0 
to W(p, i, k) = 0.0 via an adaptive method with the learning factor r from 0.0 to 1.0. 
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in the next image against blocks in the current image. The displacement between these 

two matched blocks in the two images is the displacement vector of the matched block 

in the current image. 
As an example, in Fig. 6, we use the criterion of minimizing the sum of squared 

intensity differences to calculate the matching error of pixel p33 in the first image 
I, and the corresponding pixel p33 + d(p33) in the second image 12 with candidate 

displacement vector d(p33). The matching error is 

Figure 6. Block matching error of pixel p33 in image II and pixel p33 + d(p33) in image 12 where d 
is d(p33). 
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where block(p33) is the block centered at p33. The estimated displacement vector 

d(p33 ) minimizes the matching error £(P33, d(p33)). In this case, pixels p42 , ... , 

ps5 are inside the disappearing region in image Il; pixels P41 +d(p33), p42+d(p31 ) , ... , 

P55 d-d(p33) are inside the appearing region in image 12. Their intensities are different 

and s(p33, d(p33)) is large. So there may be some other displacements d'(p33) satis- 

fying e(p33, d'(p33)) < s(p33, d(p33)) that lead to an incorrect displacement vector. 

To solve the problem of estimating the displacement vector at the occluding bound- 

ary, as mentioned above, one approach is initially to divide the images into regions 

containing only one object and to use the matching block bounded by regions to 

exclude the disturbance of appearing and disappearing regions. 
Instead of setting a threshold on the weights, the weights of the synapses are used 

as weighting values for the squares of the intensity differences because it is difficult 

to select a correct threshold for every application. Using fuzzy set theory, the weights 
of the synapses stand for the degree of the connection between the two neighboring 

pixels instead of the discretized true or false result. The degree of connection can be 

represented by the square of the intensity differences. If two pixels are on opposite 
sides of an occluding boundary, the synaptic weight between them will be small and 

lead to a small weighted square of the intensity differences, thus eliminating their 

disturbance on each other. 

Therefore, the matching error becomes the weighted sum of the squares of the 

intensity differences: 

where q is one of eight neighbors of P33. Weight Wpath(p, P33) is the product of 
the weights of the synapses along the shortest path from p to the center pixel p33 of 

the block as shown in next equation; thus, pixels on the other side of the occluding 
boundary will have little influence on the error. 

As in the example of Fig. 6, the error of iteration k is 
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Because p41, P42, ... , p45 and p3i, p32 , ... , p35 are at opposite sides of the occlud- 

ing boundary, W (p41, 2, k - 1), W(P42, 29 k - 1), W (p43, 1, k - 1 ), W(P44, 0, k - 1 ), 

W(P45, 0, k - 1) will approach zero and thus p41, p42,..., p55 have little influence on 

s(p33, d(q)). Therefore, the errors of the differences between p4[, ..., P55 in image 
Ii and P41 + d(q), p42 + d(q),..., p55 + d(q) in image 12 will not affect e(p33, d(q)) 
because they have to be multiplied by W(P4l,2,k - 1), W (p42, 2, k - 1), ..., or 

W(p45, 0, k - 1). Using this we can compute a more accurate displacement vector at 

the occluding boundary. 

2.3. Flood-fill algorithm 

In the standard block-matching method, the dense displacement field is obtained by 

exhaustively matching all the possible corresponding blocks within a predefined range. 
This kind of matching is very inefficient and may not compute a smooth displacement 
field because every pixel is estimated separately. In this section, a flood-fill algorithm 
is used to estimate the dense displacement field efficiently. Another implementation 
issue is for the neural network computation which is performed in parallel on a dense 

mesh of computing neurons and synapses. Instead of monitoring all the neurons 

and synapses to determine if they have to be updated or not, the flood-fill algorithm 
maintains and processes through a queue of neurons and synapses which have to be 

adjusted. All the affected neurons and synapses are appended to the queue. 

However, the iterative displacement-field estimation and segmentation procedure 

requires an initial value. When matching any two consecutive images of sequence, 
we assume all pixels are stationary, that is, their displacements are all zero, and the 

initial matching error using zero displacements are calculated. Further, we regard the 

whole image as one object, that is, the weights of the synapses of the first neural 

network are all 1. A recursive flood-fill search algorithm is used to produce a dense 

displacement field: 

Step 1: All pixels in the two consecutive images are set to be unmarked. 

Step 2: Randomly choose an unmarked pixel pi in I,. Exhaustively search an area 

surrounding pi in 12. Choose the pixel p2 which gives the minimum matching error 

c(Pi P2 - Pi) Let p = pl , d(p) = P2 - Pl. 

Step 3: For every pixel p' of the neighbors of pixel p, calculate the matching error 

e(p\ d(pl)) and modify the weight of the synapse between p and p' by displacement 
d(P). 

Step 4: If s(p', d(pj ) + (i, j)) is less than the previous matching 
error of p', let d(p') d(Pl) + (i, j); mark p' ; let p = p'; and go to Step 3. 

Step 5 : If there are unmarked pixels, go to Step 2, or else stop. 

Every object in the image will have a displacement seed to flood fill the whole 

region of the object, according to the assumption that neighboring pixels have similar 

displacements within objects and pixels across occluding boundaries have dissimilar 

displacements. 
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3. IMAGE SEGMENTATION 

3.1. Introduction 

Image segmentation is usually the first step of image analysis, after some preprocess- 
ing or enhancement. The resultant regions are typically matched with, recognized or 

interpreted with respect to a knowledge base to obtain the descriptions of objects in 

the image. The result of segmentation plays an important role in the overall success 

of an imaging problem. If the segmentation result is good, the complexity and diffi- 

culty is reduced because the whole image is partitioned into regions and each region 
contains only one object. 

Segmentation algorithms are based on two properties: similarity and discontinuity. 
Pixels in the images are grouped together if they have some similar attributes. Bound- 

aries of the regions are located at the discontinuous part according to these attributes. 

Most segmentation algorithms work on intensity and spatial attributes such as inten- 

sity, similarity, and discontinuity, detecting regions including isolated points, lines, 

edges, regions with peaks or valleys in intensity, and texture. Gradient operators, the 

Laplacian of a Gaussian operator, zero-crossing detection, thresholding, and region 

growing are the most often used segmentation algorithms. Some corner-detection 

algorithms trace the line which is detected by another segmentation algorithm and 

detect the corner by using the attribute of curvature. 

In this work, image segmentation is defined as partitioning each image into a set 

of moving objects and background and we use an iterative displacement-field esti- 

mation and segmentation algorithm to do these two operations simultaneously. All 

the segmentation information is already embedded in the neural network. The re- 

maining problem is to retrieve and represent the segmented regions from the neural 
network. One segmentation algorithm is based on region growing to aggregate all the 

neurons connected by strong synapses. This algorithm uses the similarity of activa- 
tion criterion property because the neurons connected by strong synapses have similar 

displacement vectors. Another approach to retrieving segmentation information is 

to locate the boundary at the weak synapses. This algorithm uses the discontinuity 

property because the neurons connected by weak synapses have different displacement 
vectors. We present these two segmentation algorithms in Sections 3.2 and 3.3. 

3.2. Region growing segmentation 

In this section, a segmentation algorithm based on region growing is presented. Neu- 
rons are aggregated via the weights of the synapses connecting neighboring neu- 

rons. Neurons of similar high synaptic weight (see Step 4 below) arc aggregated 
together. Because the large weights of some synapses mean the neurons connected 

by this synapse have coherent displacement vectors, the resulting segmentation will 

partition the image into regions with the same motion. This algorithm is as fol- 

lows. 

Input: Neural network. 

Output: Segmented regions. 
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Step l: Initialize an empty queue. 

Step 2: Append the queue with an ungrouped neuron in the neural network; assign a 

new region number for it. 

Step 3: Retrieve the neuron N from the head of the queue. 

Step 4: For each Nfl (0 < n x 7) of the eight ungrouped neighboring neurons of N, 
if the weight of synapse W between neuron N,1 and N is larger than ) of the 72 

synapses of neuron N and its 8 neighbors, Nfl is grouped by the same region number 

of N and is appended to the queue. 

Step 5 : If the queue is not empty, go to Step 3. 

Step 6: If there is any ungrouped neuron, go to Step 2. 

Step 7: Output the regions in which all the neurons in the same region have the same 

region number. 

3.3. Boundary segmentation 

Instead of aggregating neurons as regions, the segmentation algorithm presented in 

this section draws the boundaries using the connection information stored in the 

synapses of the neural network. If the weight of some synapse is small, the neurons 

connected by this synapse have different displacement vectors and should belong to 

two different objects and thus a boundary exists between these two neurons. There 

are six cases when we draw boundaries between any four neighboring pixels as shown 

in Fig. 7. 

If the weights of the three or four synapses between the four neighboring neurons 

are all smaller than the threshold value, we draw the boundary indicated. This method 

cannot produce a clear-cut boundary but is a satisfactory indicator. The output of the 

boundary will depend on the choice of the threshold value, which is 0.75 in these 

experiments. 

Figure 7. The six cases of drawing boundaries between the four neighboring neurons. 
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4. RESULTS OF EXPERIMENTS 

In this section, we will demonstrate some results of the experiments using these 

methods with two image sequences. The first image sequence is a cube sequence 

consisting of a magic cube on a round plate, as shown in Fig. 8. The round plate 

Figure 8. (a)-(e) Consecutive images of a rotating plate with a cube on it. 
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Figure 9. (a)-(d) Displacement fields between two consecutive images. 

is rotating counter-clockwise with the magic cube. The displacement fields of this 

sequence are shown in Fig. 9 without showing the zero displacement vectors (e.g. 
inside the round plate). Three major partitions and the boundary of the first two 

images are shown in Fig. 10 by using the region-growing and boundary-segmentation 

algorithms. The magic cube and the round plate are grouped together because they 
have the same motion: rotation. 

The next image sequence is the taxi sequence, as shown in Fig. 11. There are 

three cars moving in this image sequence: the white taxi turning right around the 
street comer, the black sedan at the left side of the road moving toward the right 
side, and the truck at the right side of the road moving toward the left. Except for 

the white taxi, the sedan and the truck are somewhat blurred and thus it is hard 

to estimate the displacement vectors and to divide them, as Fig. 12 shows. The 

segmentation result in Fig. 13 shows that the white taxi is partitioned into three 

parts as the taxi is turning right and the taxi displacement vectors are not all the 

same. 
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Figure 10. Segmentation result for the first two consecutive images produced by (a) the region-growing 
segmentation algorithm and (b) the boundary-segmentation algorithm. 

5. CONCLUSION 

In this paper, we put forward a block-matching method enhanced by a single-layer 
feedback neural network to estimate the motion-displacement field and segment the 

image simultaneously in an iterative manner. This neural network is trained by and 
maintains the segmentation information during estimation of the displacement field. 
The enhanced block matching uses the segmentation information embedded in the 

neural network to estimate the displacement vectors accurately. These algorithms were 

applied to various indoor and outdoor real-world image sequences; the experimental 
results showed that the displacement vectors and object boundaries were accurately 
located even near the occluding boundary. Indeed, using synaptic weights and the 
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Figure 11. (a)-(e) Consecutive images of moving cars. 

displacement fields from previous images as initial values improved displacement-field 
estimation and image segmentation. 

Throughout this work, we have assumed that the objects in the consecutive images 
only go through the motion of 2D translation in the X-Y plane. If the objects in 
the images have motion such as rotation, scaling, or intensity change, our algorithm 
cannot achieve subpixel accuracy and has to be refined. 

The problem of choosing the size of the matching block remains unsolved. Some 

systems use a variable size to adapt to different neighborhood intensity variations. One 

way to estimate the amount of variability in a region is to use the statistic entropy. If 

P (i ) denotes the probability of the appearance of intensity i, the information contained 

by the intensity i is - log P(i). The size of the matching blocks is chosen when 



49 

Figure 12. (a)-(d) Displacement fields between two consecutive images. 

Figure 13. Segmentation result for the first two consecutive images produced by (a) the region-growing 
segmentation algorithm and (b) the boundary-segmentation algorithm. 
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the total information - LiEblock log P(i) is large enough. Such issues need further 

exploration. 

Acknowledgement 

This research work was supported by National Science Council of Taiwan, under NSC 

Grants NSC 83-0422-E-002-010, NSC 84-2212-E-002-046, and NSC 85-2212-E-002- 

077, and by Cho-Chang Tsung Foundation of Education under Grant 84-S-26. 

REFERENCES 

Aggarwal, J. K., Davis, L. S. and Martin, W. N. (1981). Correspondence processes in dynamic scene 
analysis. Proc. IEEE 69, 562-572. 

Barnard, S. T. and Thompson, W. B. (1980). Disparity analysis in images. IEEE Trans. Pattern Analysis 
and Machine Intelligence 2, 333-340. 

Costa, M. S., Haralick, R. M. and Shapiro, L. G. (1990). Optimal affine invariant point matching. In: 
Proc. Intl. Conf. on Pattern Recognition. Atlantic City, pp. 233-236. 

Dufaux, F. and Kunt, M. (1992). Multigrid block matching motion estimation with an adaptive local mesh 
refinement. In: Proc. of Visual Communications and Image Processing. Boston, pp. 97-109. 

François, E. and Bouthemy, P. (1990). Derivation of qualitative information in motion analysis. Image 
and Vision Computing 8, 279-288. 

Fuh, C. S. and Maragos, P. (1989). Region-based optical flow estimation. In: Proc. IEEE Conf. on Com- 

puter Vision. and Pattern Recognition. San Diego, pp. 130-135. 
Fuh, C. S. and Maragos, P. (1990). Application of mathematical morphology to motion image analysis. 

In: Proc. Electronic Imaging EAST Conference. Boston, pp. 261-264. 
Fuh, C. S. and Maragos, P. (1991a). Affine models for image matching and motion detection. In: 

Proc. of International Conference on Acoustics, Speech, and Signal Prncessing. Toronto, Canada, 
pp. 2409-2412. 

Fuh, C. S. and Maragos, P. (1991b). Motion displacement estimation using an affine model for image 
matching. Optical Engineering 30, 881-887. 

Fuh, C. S., Maragos, P. and Vincent, L. (1991c). Region-based approaches to visual motion correspon- 
dence. Technical Report 91-98, Harvard Robotics Laboratory. 

Horn, B. K. P. and Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence 17, 185-203. 
Irani, M., Rousso, B. and Peleg, S. (1994). Computing occluding and transparent motions. International 

Journal of Computer Vision 12, 5-16. 
Lappe, M. and Rauschecker, J. P. (1993). A neural network for the processing of optic flow from ego- 

motion in man and higher mammals. Neural Computation 5, 374-391. 
Lippmann, R. P. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4-22. 
Pal, N. R. and Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition 26, 

1277-1294. 
Schnörr, C. (1992). Computation of discontinuous optical flow by domain decomposition and shape 

optimization. International Journal of Computer Vision 8, 153-165. 
Schunck, B. G. and Horn, B. K. P. (1981). Constraints on optical flow computation. In: Proc. Pattern 

Recognition and Image Processing Conference. Dallas, pp. 205-210. 
Seferidis, V. and Chanbari, M. (1992). Generalized block matching motion estimation. In: Proc. of Visual 

Communications and Image Processing. Boston, pp. 110-119. 
Thompson, W. B., Mutch, K. M. and Berzins, V. A. (1985). Dynamic occlusion analysis in optical flow 

fields. IEEE Trans. Pattern Analysis and Machine Intelligence 7, 374-383. 


