Convolutional Neural Network for MR Image Noise Removal

Po-Ting Chen(f&4#8%E) Chiou-Shann Fuh ({&##%&) Jyh-Horng Chen(f&E7R)

! The Graduate Institute of Biomedical Electronics and Bioinformatics,
National University of Taiwan,
E-mail: r07945040@ntu.edu.tw fuh @csie.ntu.edu.tw jyhhchen2 @ gmail.com

ABSTRACT

Because Magnetic Resonance Imaging (MRI) scans
often take too much time, how to save time has
become a major issue for studying MR images.
Usually MR scan time is highly positively
correlated  with  resolution and  Number of
EXcitation (NEX) of images. As long as a map with
a low NEX number can be reconstructed into a map
with a high NEX number, the scanning time can be
effectively reduced. In this article, the post-processing
method of Convolutional Neural Network (CNN) will
be used to reconstruct the image. Let low-NEX
images have the same quality as high-NEX images.
Important image parameters used in this article are
Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise
Ratio (PSNR), Structural SIMilarity (SSIM).
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1. INTRODUCTION

In medicine, MRI is an indispensable source of human
images, but long scanning time is the major problem. It
is sometimes necessary to wait in line to scan the MRI,
thus causes delays the diagnosis. Many factors affect
MR scanning, such as resolution, NEX times, and so on.
Of course, research on resolution is in full swing, such
as super resolution. This article hopes to reduce the SNR
of the image produced by the machine to speed up the
scan. Then use CNN post-processing to reduce image
noise to get high-quality images. Of course, not only is it
easy to restore the interpretation of the image, MRI-
related analysis is also expected to be similar to the
original image.

In order to solve the problem that MR scanning is too
time-consuming, this article starts from the NEX
number of images. Low NEX will cause low SNR
problems, so it is necessary to reconstruct from low
SNR images to high SNR, and try to avoid image errors
in the process.

2. Method
In this paper, we regard image denoising as a common
discriminant learning problem, that is, to separate noise
from noisy images by convolutional neural network
(CNN) instead of using explicit images to learn
discriminant models.

2.1 Model Based Network

There are three reasons for using CNN. First, CNN with
a very deep architecture is effective in improving the
ability and flexibility to utilize image features. Secondly,
considerable progress has been made in the
regularization and learning methods used to train CNNSs,
including Rectifier Linear Unit (ReLU), batch
normalization and residual learning. CNN can use these
methods to speed up the training process and improve
denoising performance. Third, CNN is very suitable for
parallel computing on modern powerful GPU, which
can be used to improve runtime performance.

2.2 Related Work

In 2016, DnCNN proposed to use conventional
traditional filters to denoise images. Because the
structure of medical imaging is too complicated and
there is almost no room for fault tolerance, the
traditional filter is somewhat inadequate. The reason is
that traditional filtering will use a filter for the entire
image, but for medical images with complex structures,
using only one filter will cause part of the image
structure to become blurred. For example, using BM3D
has very good results in smooth areas, but complex
structure areas (such as the cerebellum) will appear to
be insufficient, so this is why we chose the neural
network architecture this time.

In the past literature, the based-CNN network
architecture proposed in the field of image denoising is
not often used directly in medical imaging. Therefore,
we access and retrain some mainstream and novel
network architectures on medical images.
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In the past, FCN, DnCNN, IRCNN, and BRDNet were
commonly used in the mainstream, and they have good
performance in general image denoising, but the
problem of typical small data sets such as medical
imaging needs to be corrected, including network
bandwidth and complex background noise of medical
imaging. The network bandwidth needs to be increased
to accurately learn the boundary and uniformity on the
image.

Networks with narrow bandwidths, such as DnCNN and
IRCNN, will still have problems like traditional filters.
Although they have been relatively corrected, they still
seem to be insufficient.

Therefore, we will try our best to widen the width of the
network when designing the network to avoid past
problems. However, although BRDNet has tried to
widen the width of the network, the selected networks
are all similar to DnCNN. We believe that this will
make the network unable to exert the best results, and
the subnet of one party should be modified.

2.3 Data Pre-porcessing

The data set used this time is the actual images collected
from the MRI machine, a total of 1576 images, of which
1400 are training data, 100 are validation data, 76 are
test data, and the data size is 256 * 256. In addition, the
data sets collected this time are MR T1 images, and are
concentrated in the middle slice, which is the slice that
covers part of the brain. On the one hand, we think that
the general interest is in this area. After all, the CNN
architecture is a good way to extract image features. On
the other hand, it is to obtain better training results.

Using deep learning methods, deep architectures can
provide competitive results, but usually the premise is
that a large amount of data can be obtained for training.
In other words, in order to provide better model
performance, a large number of data sets are required,
and the acquisition of data is a difficult problem when it
comes to medical images. Therefore, in addition to
seeking suitable noise reduction techniques, the size of
the data set must also be considered, and the designed
model must be able to adapt to small data sets. So
before starting training in this article, we used some
common techniques to expand the training data set.

After collecting clean images, different noise masks
were added, and the STDs were 10, 15, and 25,
respectively. The input image is a noise image with a
mask, and the output is noise, rather than taking a clean
image as the output. The reason for this is that we found
that the high-frequency signal of the image can be more
perfectly retained. Although using noise as an output
can avoid this problem, the quality of SSIM and PSNR
parameters also needs to be considered.

3. Network Design

The model architecture is based on CNN. The most
commonly used ones are BRDnet, IRCNN and DnCNN.
All three are CNN-based model architectures.

There are different effects for different model
architectures, and some of these model features are
complementary. We found that although DnCNN has
good noise reduction performance, there is still a
problem of blur at the image boundary. The reason we
guess is that the surface information will be lost when it
is transmitted to the deep layer. Therefore, we
connected the surface information with the deep
information (similar to U-net) and found that the
characteristics of the image boundary can be preserved
after sacrificing part of the anti-aliasing effect.

3.1 Network Architecture

The network architecture we designed is divided into
two parts, we call it MDNet as shown in Fig. 1. The
upper layer of MDNet is the connected DnCNN, and the
lower layer is the use of deep DNCNN. Using this to
connect the upper and lower layers can increase the
width of the model and can effectively improve the
performance of reducing noise. We use Batch
Normalization (BN) and ReLU to avoid the problem of
gradient vanishing and gradient explosion, and can
speed up the model convergence speed, more effectively
used in the application of small data sets. For example,
this application is used in medical imaging.
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Fig. 1. Architecture of our proposed MDNet
network. Conv = Convolutional layer, BN=Batch
Normalization, RL = ReL U
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In the upper layer network, we use a 26-layer CNN.
After deducting the first and last layers, the rest are
connected one after the other to ensure the retention of
surface information. Here we use channel first, so the
size of the first and last layer is 1 * C * 256 * 256, the
rest are 32 * C * 256 * 256, the number of filters used is
32, and C is the number of channels. The MR image is a
grayscale image, so here C=1.

3.2 Boundary Artifact

Past literature has shown that deep CNN network
architecture often causes boundary artifacts. Because in
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many vision applications, it is usually required that the
output image size should be the same as the input image
size. This may cause border artifacts. Therefore, we
directly fill zeros before convolution to ensure that each
feature map of the middle layer has the same size as the
input image. We found that a simple zero-fill strategy
does not cause any boundary artifacts.

3.3 Loss Function

For the convenience of calculation, we used the mean
square error (MSE) as the loss function. Take x as a
noise image, y as a clean image, and z as noise. Can
be obtained as Eq. (1).

X-Y=2 1)
Use residual learning to make the model predict the
noise Z and then calculate the difference between the
clean image and the original image to obtain the MSE
value of the image. As seen in Eg. (2). In this way, the
loss value of the model can be found, so that the model
can be successfully trained .

MSE = 3 (v - 3/)°
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We also tried to use SSIM as a loss function. It is
expected that more visually complete images will be
obtained. The SSIM formula is divided into three parts.
Compare image brightness Eq. (3), contrast Eq. (4), and
structural similarity Eq. (5). We found that the training
results often make the proportions of the three lose their
balance. For a good training effect, additional weights
may need to be added. Therefore, it is not used here. But
it is undeniable that SSIM is an extremely important
parameter.
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In addition, this optimization function uses Adam, a
known convenient and effective method. It can more
effectively allow the model to extract features and
accelerate the training speed of the model.

In summary, the network architecture we proposed this
time has the following main advantages: (1) Using two
sub-networks to connect instead of deepening the
network can enhance the denoising performance. (2)
Use BN and ReLU to realize the application of small
data sets and avoid gradient explosion and vanishing. (3)
Connect the network back and forth to preserve the
image boundary information. (4) Get better PSNR and
mathematical metric in the experiment.

4. Result

The loss function in the model used in this article is
MSE, and the optimization function is Adam, a method
that can effectively and quickly allow the model to
converge. In addition, batch normalization is often used
in the previous literature. If batch normalization is not
used, it may cause the loss of loss or disappear.
However, batch normalization may also lead to poor
learning performance. In the past literature, it is
mentioned that batch normalization is best used together
with residual learning.

4.1 Model with ReLU Compared
Fig. 3 is a comparison graph of the results of batch

normalization and residual learning.
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Fig. 3. It can be seen ReLU is used to allow the model
to converge more quickly and efficiently.

The noise of the model used this time is Gaussian noise.
We chose three different standard deviation noise masks,
st. dev. = 10, 15, 25. The SNR of the original image is
118, and the SNRs obtained after adding Gaussian noise
are 20.6, 13, and 7.2 dB, respectively. And the Fig.4
shown 3 different St.dev noise were added at clear brain
image.
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Fig.4 Dataset in each st. dev. (a) st. dev=10 (b) st.
dev=15 (c) st. dev=25
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4.2 Model PSNR

In Fig. 5, we can see the comparison between the PSNR
of MDNet and the mainstream image denoising model
in the past. Although higher results can be obtained,
high PSNR does not necessarily mean an absolute
improvement in image quality. There are many ways to
get high PSNR (such as smooth), which is also a blind
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spot that often falls into when using PSNR as an
indicator, so we will use other image quality indicators
for more verification in the future.
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Fig. 5. It can be shown that MDNet can perform better
than other models and get higher PSNR. And std=10

In Fig. 6, we could see the PSNR results of the four
networks under three different standard deviations of
Gaussian noise. It can be seen that MDNet has quite
good training results, which can get 34.01dB at st.
dev.=10 and 31.37dB at st. dev.=15, st. dev.=25 gets
28.18, which is higher than other network results.

DnCNN | IRCNN | BRDNet | MDNet

Std=10 33.70 33.76 33.84 34.01

Std=15 31.13 31.14 31.20 31.37

Std=25 27.79 27.84 27.83 28.18

Fig. 6 Comparison of network training results under
Gaussian noise of different st. dev.

4.3.1 Model output St. dev. =10

In Fig.7, we can see that compared with the previous
model, MDNet can present better details (such as the
cerebellum). In a large area where the signal is strong
(such as the gyrus and brainstem), the background noise
can be more effectively eliminated, providing a more

effective denoising effect.
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Fig. 7 (a) The noise image as input.(noise std=10) (b)
The original simple FCN model output. (c) The DnCNN
model output. (d)The IRCNN model output () The
BRDNet model output. (f) The MDNet model output. (g)
The original clear image. (h) The noise map obtained
MDNet.

4.3.2 Model output st. dev. = 15

Fig. 8 shown each model output in noise st. dev.=15.
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Fig. 8 (a) The noise image as input.(hoise std=15) (b)
The DNnCNN model output. (c)The IRCNN model
output (d) The BRDNet model output. () The MDNet

model output. (f) The original clear image. (g) The noise
map obtained MDNet.

50 100 250

4.3.3 Model output st. dev. = 25

Fig. 9 shown each model output in noise st. dev.=25.
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Fig. 9 (a) The noise image as input.(noise std=25) (b)
The DnCNN model output. (c)The IRCNN model
output (d) The BRDNet model output. (¢) The MDNet
model output. (f) The original clear image. (g) The noise
map obtained MDNet.
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4.4 SSIM Evaluation on Real Images

Although the image with noise added is easy to restore
and explain, it does not necessarily work on real images.
Because the background noise of real images is very
complicated, it is not only Gaussian noise. Therefore,
when using real images, we will use SSIM, which is
closer to the visual effect, to measure the image quality.
In the past, many documents suggested that PSNR does
not completely represent the visual effect of the image.
Even though PSNR is still an important reference, we
still first pursue the visual effect of the image on the real
image.

4.4.1 Real Image Resolution=1*1*1(cm)

In order to verify the effectiveness of the model on real
images, we obtained an additional set of T1 images
from the machine (the detailed parameters are
TR=2300ms, TE=2.4ms, Matrix size=256*256 pixels,



Average=1, resolution=1*1*1cm). Put it directly into
the model without adding noise and compare the results
with the images with high NEX times.

It can be seen in Fig. 10 that the background noise at the
brainstem position can be effectively removed. It can
also become clearer in places with complex structures
such as the cerebellum. Another interesting thing is that
the brain boundaries are also vaguely seen in the noise
map trained by the model. This coincides with the
Rician noise generated by the common background
noise of MRI. In Fig. 11, the 152 sections of the whole
brain are listed in SSIM, and most of them fall from
0.965 to 0.990. The destructuring effect of the middle
section is slightly lower than that of the head and tail
sections. We believe that the structure of the middle
section is more complicated. This will cause SSIM to
have some errors in calculations.
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Fig. 10(a) Real MRI T1-weighted brain image (NEX=1)
without any additional noise. (b) The subtraction result
of the model after (a) after learning through the
residuals. (c¢) Real MRI T1-weighted brain image
(NEX=4). (d) The noise map obtained by model
learning.
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Fig. 11 Denoising results for 152-slice NEX=1 images
of the whole brain.

4.4.2 Real Image Resolution=0.5*0.5*1(cm)

Next, we tested the real image with more detailed
resolution. In the principle of MR imaging, increasing
the resolution will cause the signal intensity to decrease,
and the overall SNR will become lower. In principle, it
will reduce the SNR by 2 times the previous set of data.
Our goal is also to reconstruct high-quality images.

The data and parameters used this time are TR =
2300ms, TE = 2.4ms, matrix size = 512 * 512 pixels,
average value = 1, resolution =0.5* 0.5 * 1cm.

This time we add a comparison of other methods to
actually take a look at the visual effects produced by
each method. Comparison methods include BM3D,
simple FCN, and our model MDNet. In Fig. 12, could
see the original image, the products of each method and
the drawing of partial enlargement.

It could be seen that MDNet still has better results in
detail than the other two. Although BM3D can have a
good denoising effect, it will make the image slightly
blurred and distorted. General FCN will have residual
noise. MDNet can completely remove the noise cake
and retain the characteristics of the original image.
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Fig.12 (a)High resolution real MRI T1-weighted brain

image (NEX=1) without any additional noise. (b)
BM3D denoising results. (c) Simple FCN denoising
results. (d) MDNet denoising results. (¢) Drawing of
partial enlargement by BM3D. (f) Drawing of partial
enlargement by simple FCN (g) Drawing of partial
enlargement by MDNet

5. Disscussion

In the simulation results, we have tested the results of
several different methods, which are not very different
from each other, and MDNet is not particularly
prominent. This means that each model can effectively
and completely deal with Gaussian noise. Although
MDNet has achieved significant advantages in real
images. But we still found two big problems.

The first is that our results are cleaner than the target
image (NEX=4). Whether this is also an image
distortion must be considered. The second is that our
data is a healthy brain image. It remains to be
considered whether it is capable of denoising without
affecting the imaging of the diseased area when
encountering a patient's brain image.

6. Conclusions

In this paper, we proposed a new model called MDNet,
which uses upper and lower two-layer network
connections, respectively connected to the front and
back DnCNN and general DnCNN, to enhance the
denoising performance. In addition, MDNet uses BN
and ReLU to enhance learning ability and avoid the
gradient explosion and vanishing problems common in

deep networks. And solve the problem of small data sets.

The experimental results show that MDNet is very
competitive in medical image denoising compared with

other methods. In the future, we hope that we could
develop a network architecture with better performance
on this basis.

In addition, as mentioned earlier, we chose MSE rather
than SSIM in the setting and selection of loss function.
We would continue to try to find the balance weights of
the three sub-functions of SSIM in the future, and look
forward to making better models to remove the MR
Image background noise.
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