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ABSTRACT 

 

Because Magnetic Resonance Imaging (MRI) scans 

often take too much time, how to save time has 

become a major issue for studying MR images.  

Usually  MR  scan  time  is  highly  positively 

correlated  with  resolution  and  Number  of  

EXcitation (NEX) of images. As long as a map with 

a low NEX number can be reconstructed into a map 

with a high NEX number,  the  scanning  time  can  be  

effectively reduced. In this article, the post-processing 

method of Convolutional Neural Network (CNN) will 

be used to reconstruct the image. Let low-NEX 

images have the same quality as high-NEX images.  

Important image parameters used in this article are 

Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise 

Ratio (PSNR), Structural SIMilarity (SSIM). 
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1. INTRODUCTION 

 

In medicine, MRI is an indispensable source of human 

images, but long scanning time is the major problem. It 

is sometimes necessary to wait in line to scan the MRI, 

thus causes delays the diagnosis. Many factors affect 

MR scanning, such as resolution, NEX times, and so on. 

Of course, research on resolution is in full swing, such 

as super resolution. This article hopes to reduce the SNR 

of the image produced by the machine to speed up the 

scan. Then use CNN post-processing to reduce image 

noise to get high-quality images. Of course, not only is it 

easy to restore the interpretation of the image, MRI-

related analysis is also expected to be similar to the 

original image. 

 

In order to solve the problem that MR scanning is too 

time-consuming, this article starts from the NEX 

number of images. Low NEX will cause low SNR 

problems, so it is necessary to reconstruct from low 

SNR images to high SNR, and try to avoid image errors 

in the process. 

 

2. Method 

In this paper, we regard image denoising as a common 

discriminant learning problem, that is, to separate noise 

from noisy images by convolutional neural network 

(CNN) instead of using explicit images to learn 

discriminant models.  
 

2.1 Model Based Network 

 
There are three reasons for using CNN. First, CNN with 

a very deep architecture is effective in improving the 

ability and flexibility to utilize image features. Secondly, 

considerable progress has been made in the 

regularization and learning methods used to train CNNs, 

including Rectifier Linear Unit (ReLU), batch 

normalization and residual learning. CNN can use these 

methods to speed up the training process and improve 

denoising performance. Third, CNN is very suitable for 

parallel computing on modern powerful GPU, which 

can be used to improve runtime performance. 

 

2.2 Related Work 

 

In 2016, DnCNN proposed to use conventional 

traditional filters to denoise images. Because the 

structure of medical imaging is too complicated and 

there is almost no room for fault tolerance, the 

traditional filter is somewhat inadequate. The reason is 

that traditional filtering will use a filter for the entire 

image, but for medical images with complex structures, 

using only one filter will cause part of the image 

structure to become blurred. For example, using BM3D 

has very good results in smooth areas, but complex 

structure areas (such as the cerebellum) will appear to 

be insufficient, so this is why we chose the neural 

network architecture this time. 

 

In the past literature, the based-CNN network 

architecture proposed in the field of image denoising is 

not often used directly in medical imaging. Therefore, 

we access and retrain some mainstream and novel 

network architectures on medical images. 
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In the past, FCN, DnCNN, IRCNN, and BRDNet were 

commonly used in the mainstream, and they have good 

performance in general image denoising, but the 

problem of typical small data sets such as medical 

imaging needs to be corrected, including network 

bandwidth and complex background noise of medical 

imaging. The network bandwidth needs to be increased 

to accurately learn the boundary and uniformity on the 

image.  

 

Networks with narrow bandwidths, such as DnCNN and 

IRCNN, will still have problems like traditional filters. 

Although they have been relatively corrected, they still 

seem to be insufficient. 

 

Therefore, we will try our best to widen the width of the 

network when designing the network to avoid past 

problems. However, although BRDNet has tried to 

widen the width of the network, the selected networks 

are all similar to DnCNN. We believe that this will 

make the network unable to exert the best results, and 

the subnet of one party should be modified. 

 

2.3 Data Pre-porcessing 

 

The data set used this time is the actual images collected 

from the MRI machine, a total of 1576 images, of which 

1400 are training data, 100 are validation data, 76 are 

test data, and the data size is 256 * 256. In addition, the 

data sets collected this time are MR T1 images, and are 

concentrated in the middle slice, which is the slice that 

covers part of the brain. On the one hand, we think that 

the general interest is in this area. After all, the CNN 

architecture is a good way to extract image features. On 

the other hand, it is to obtain better training results. 

 

Using deep learning methods, deep architectures can 

provide competitive results, but usually the premise is 

that a large amount of data can be obtained for training. 

In other words, in order to provide better model 

performance, a large number of data sets are required, 

and the acquisition of data is a difficult problem when it 

comes to medical images. Therefore, in addition to 

seeking suitable noise reduction techniques, the size of 

the data set must also be considered, and the designed 

model must be able to adapt to small data sets. So 

before starting training in this article, we used some 

common techniques to expand the training data set. 

 

After collecting clean images, different noise masks 

were added, and the STDs were 10, 15, and 25, 

respectively. The input image is a noise image with a  

mask, and the output is noise, rather than taking a clean 

image as the output. The reason for this is that we found 

that the high-frequency signal of the image can be more 

perfectly retained. Although using noise as an output 

can avoid this problem, the quality of SSIM and PSNR 

parameters also needs to be considered. 

 

3. Network Design 

 

The model architecture is based on CNN. The most 

commonly used ones are BRDnet, IRCNN and DnCNN. 

All three are CNN-based model architectures. 

 
There are different effects for different model 

architectures, and some of these model features are 

complementary. We found that although DnCNN has 

good noise reduction performance, there is still a 

problem of blur at the image boundary. The reason we 

guess is that the surface information will be lost when it 

is transmitted to the deep layer. Therefore, we 

connected the surface information with the deep 

information (similar to U-net) and found that the 

characteristics of the image boundary can be preserved 

after sacrificing part of the anti-aliasing effect. 

 
3.1  Network Architecture 

 
The network architecture we designed is divided into 

two parts, we call it MDNet as shown in Fig. 1. The 

upper layer of MDNet is the connected DnCNN, and the 

lower layer is the use of deep DnCNN. Using this to 

connect the upper and lower layers can increase the 

width of the model and can effectively improve the 

performance of reducing noise. We use Batch 

Normalization (BN) and ReLU to avoid the problem of 

gradient vanishing and gradient explosion, and can 

speed up the model convergence speed, more effectively 

used in the application of small data sets. For example, 

this application is used in medical imaging. 

 

 
Fig. 1. Architecture of our proposed MDNet 
network. Conv = Convolutional layer, BN=Batch 

Normalization, RL = ReLU 
 

In the upper layer network, we use a 26-layer CNN. 

After deducting the first and last layers, the rest are 

connected one after the other to ensure the retention of 

surface information. Here we use channel first, so the 

size of the first and last layer is 1 * C * 256 * 256, the 

rest are 32 * C * 256 * 256, the number of filters used is 

32, and C is the number of channels. The MR image is a 

grayscale image, so here  C = 1. 

 

3.2  Boundary Artifact 

 

Past literature has shown that deep CNN network 

architecture often causes boundary artifacts. Because in 
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many vision applications, it is usually required that the 

output image size should be the same as the input image 

size. This may cause border artifacts. Therefore, we 

directly fill zeros before convolution to ensure that each 

feature map of the middle layer has the same size as the 

input image. We found that a simple zero-fill strategy 

does not cause any boundary artifacts. 

 

3.3  Loss Function 

 

For the convenience of calculation, we used the mean 

square error (MSE) as the loss function. Take x as a 

noise image, y as a clean image, and z as noise. Can 

be obtained as Eq. (1). 

X - Y = Z                                (1) 

Use residual learning to make the model predict the 

noise Z and then calculate the difference between the 

clean image and the original image to obtain the MSE 

value of the image. As seen in Eq. (2). In this way, the 

loss value of the model can be found, so that the model 

can be successfully trained . 

                 (2) 

 

We also tried to use SSIM as a loss function. It is 

expected that more visually complete images will be 

obtained. The SSIM formula is divided into three parts. 

Compare image brightness Eq. (3), contrast Eq. (4), and 

structural similarity Eq. (5). We found that the training 

results often make the proportions of the three lose their 

balance. For a good training effect, additional weights 

may need to be added. Therefore, it is not used here. But 

it is undeniable that SSIM is an extremely important 

parameter. 

                        (3) 

                         (4) 

                           (5) 

 

In addition, this optimization function uses Adam, a 

known convenient and effective method. It can more 

effectively allow the model to extract features and 

accelerate the training speed of the model. 

 

In summary, the network architecture we proposed this 

time has the following main advantages: (1) Using two 

sub-networks to connect instead of deepening the 

network can enhance the denoising performance. (2) 

Use BN and ReLU to realize the application of small 

data sets and avoid gradient explosion and vanishing. (3) 

Connect the network back and forth to preserve the 

image boundary information. (4) Get better PSNR and 

mathematical metric in the experiment. 

 

4. Result 

 

The loss function in the model used in this article is 

MSE, and the optimization function is Adam, a method 

that can effectively and quickly allow the model to 

converge. In addition, batch normalization is often used 

in the previous literature. If batch normalization is not 

used, it may cause the loss of loss or disappear. 

However, batch normalization may also lead to poor 

learning performance. In the past literature, it is 

mentioned that batch normalization is best used together 

with residual learning. 

 

4.1 Model with ReLU Compared 

 

Fig. 3 is a comparison graph of the results of batch 

normalization and residual learning. 

 
Fig. 3. It can be seen ReLU is used to allow the model 

to converge more quickly and efficiently. 

 

The noise of the model used this time is Gaussian noise. 

We chose three different standard deviation noise masks, 

st. dev. = 10, 15, 25. The SNR of the original image is 

118, and the SNRs obtained after adding Gaussian noise 

are 20.6, 13, and 7.2 dB, respectively.  And the Fig.4 

shown 3 different St.dev noise were added at clear brain 

image. 

 

 
(a)                           (b)                         (c) 

Fig.4 Dataset in each st. dev.  (a) st. dev=10 (b) st. 

dev=15 (c) st. dev=25 

 

4.2 Model PSNR 

 

In Fig. 5, we can see the comparison between the PSNR 

of MDNet and the mainstream image denoising model 

in the past. Although higher results can be obtained, 

high PSNR does not necessarily mean an absolute 

improvement in image quality. There are many ways to 

get high PSNR (such as smooth), which is also a blind 

https://www.sciencedirect.com/science/article/pii/S0893608019302394#fd1


spot that often falls into when using PSNR as an 

indicator, so we will use other image quality indicators 

for more verification in the future. 

 

 
Fig. 5. It can be shown that MDNet can perform better 

than other models and get higher PSNR. And std=10 

 

In Fig. 6, we could see the PSNR results of the four 

networks under three different standard deviations of 

Gaussian noise. It can be seen that MDNet has quite 

good training results, which can get 34.01dB at st. 

dev.=10 and 31.37dB at st. dev.=15, st. dev.=25 gets 

28.18, which is higher than other network results. 

 

 

Fig. 6 Comparison of network training results under 

Gaussian noise of different st. dev. 

 

4.3.1 Model output St. dev. = 10 

 

In Fig.7, we can see that compared with the previous 

model, MDNet can present better details (such as the 

cerebellum). In a large area where the signal is strong 

(such as the gyrus and brainstem), the background noise 

can be more effectively eliminated, providing a more 

effective denoising effect.  

 
(a)                                          (b) 

 
(c)                                            (d) 

 
(e)                                            (f) 

 
(g)                                             (h)               

Fig. 7 (a) The noise image as input.(noise std=10) (b) 

The original simple FCN model output. (c) The DnCNN 

model output. (d)The IRCNN model output (e) The 

BRDNet model output. (f) The MDNet model output. (g) 

The original clear image. (h) The noise map obtained 

MDNet.  

 

4.3.2 Model output st. dev. = 15 

 

Fig. 8 shown each model output in noise st. dev.=15.  

 
(a) 

 DnCNN IRCNN BRDNet MDNet 

Std=10 33.70 33.76 33.84 34.01 

Std=15 31.13 31.14 31.20 31.37 

Std=25 27.79 27.84 27.83 28.18 



 
(b)                                         (c) 

 
(d)                                           (e) 

 

 
(f)                                            (g) 

Fig. 8 (a) The noise image as input.(noise std=15) (b) 

The DnCNN model output. (c)The IRCNN model 

output (d) The BRDNet model output. (e) The MDNet 

model output. (f) The original clear image. (g) The noise 

map obtained MDNet.  

 

4.3.3 Model output st. dev. = 25 

 

Fig. 9 shown each model output in noise st. dev.=25.  

 
(a) 

  
(b)                                          (c) 

 
(d)                                           (e) 

 
(f)                                            (g) 

Fig. 9 (a) The noise image as input.(noise std=25) (b) 

The DnCNN model output. (c)The IRCNN model 

output (d) The BRDNet model output. (e) The MDNet 

model output. (f) The original clear image. (g) The noise 

map obtained MDNet.  

 

 

4.4 SSIM Evaluation on Real Images 

 

Although the image with noise added is easy to restore 

and explain, it does not necessarily work on real images. 

Because the background noise of real images is very 

complicated, it is not only Gaussian noise. Therefore, 

when using real images, we will use SSIM, which is 

closer to the visual effect, to measure the image quality. 

In the past, many documents suggested that PSNR does 

not completely represent the visual effect of the image. 

Even though PSNR is still an important reference, we 

still first pursue the visual effect of the image on the real 

image. 

 

4.4.1 Real Image Resolution=1*1*1(cm) 

 

In order to verify the effectiveness of the model on real 

images, we obtained an additional set of T1 images 

from the machine (the detailed parameters are 

TR=2300ms, TE=2.4ms, Matrix size=256*256 pixels, 



Average=1, resolution=1*1*1cm). Put it directly into 

the model without adding noise and compare the results 

with the images with high NEX times. 

 

It can be seen in Fig. 10 that the background noise at the 

brainstem position can be effectively removed. It can 

also become clearer in places with complex structures 

such as the cerebellum. Another interesting thing is that 

the brain boundaries are also vaguely seen in the noise 

map trained by the model. This coincides with the 

Rician noise generated by the common background 

noise of MRI. In Fig. 11, the 152 sections of the whole 

brain are listed in SSIM, and most of them fall from 

0.965 to 0.990. The destructuring effect of the middle 

section is slightly lower than that of the head and tail 

sections. We believe that the structure of the middle 

section is more complicated. This will cause SSIM to  

have some errors in calculations. 

 

 
(a)                                             (b) 

        
(C)                                             (d) 

Fig. 10(a) Real MRI T1-weighted brain image (NEX=1) 

without any additional noise. (b) The subtraction result 

of the model after (a) after learning through the 

residuals. (c) Real MRI T1-weighted brain image 

(NEX=4). (d) The noise map obtained by model 

learning. 

 

 

Fig. 11 Denoising results for 152-slice NEX=1 images 

of the whole brain. 

 

4.4.2 Real Image Resolution=0.5*0.5*1(cm) 

 

Next, we tested the real image with more detailed 

resolution. In the principle of MR imaging, increasing 

the resolution will cause the signal intensity to decrease, 

and the overall SNR will become lower. In principle, it 

will reduce the SNR by 2 times the previous set of data. 

Our goal is also to reconstruct high-quality images. 

 

The data and parameters used this time are TR = 

2300ms, TE = 2.4ms, matrix size = 512 * 512 pixels, 

average value = 1, resolution = 0.5 * 0.5 * 1cm. 

 

This time we add a comparison of other methods to 

actually take a look at the visual effects produced by 

each method. Comparison methods include BM3D, 

simple FCN, and our model MDNet. In Fig. 12,  could 

see the original image, the products of each method and 

the drawing of partial enlargement. 

 

It could be seen that MDNet still has better results in 

detail than the other two. Although BM3D can have a 

good denoising effect, it will make the image slightly 

blurred and distorted. General FCN will have residual 

noise. MDNet can completely remove the noise cake 

and retain the characteristics of the original image. 

 

 
(a)                                       (b) 

 
(c)                                        (d) 



 
(e)                                        (f) 

 
(g) 

Fig.12 (a)High resolution real MRI T1-weighted brain 

image (NEX=1) without any additional noise. (b) 

BM3D denoising results. (c) Simple FCN denoising 

results. (d) MDNet denoising results. (e) Drawing of 

partial enlargement by BM3D. (f) Drawing of partial 

enlargement by simple FCN (g) Drawing of partial 

enlargement by MDNet 

 

5. Disscussion 

 

In the simulation results, we have tested the results of 

several different methods, which are not very different 

from each other, and MDNet is not particularly 

prominent. This means that each model can effectively 

and completely deal with Gaussian noise. Although 

MDNet has achieved significant advantages in real 

images. But we still found two big problems. 

 

The first is that our results are cleaner than the target 

image (NEX=4). Whether this is also an image 

distortion must be considered. The second is that our 

data is a healthy brain image. It remains to be 

considered whether it is capable of denoising without 

affecting the imaging of the diseased area when 

encountering a patient's brain image. 

 

6. Conclusions 

 

In this paper, we proposed a new model called MDNet, 

which uses upper and lower two-layer network 

connections, respectively connected to the front and 

back DnCNN and general DnCNN, to enhance the 

denoising performance. In addition, MDNet uses BN 

and ReLU to enhance learning ability and avoid the 

gradient explosion and vanishing problems common in 

deep networks. And solve the problem of small data sets. 

The experimental results show that MDNet is very 

competitive in medical image denoising compared with 

other methods. In the future, we hope that we could 

develop a network architecture with better performance 

on this basis. 

 

In addition, as mentioned earlier, we chose MSE rather 

than SSIM in the setting and selection of loss function. 

We would continue to try to find the balance weights of 

the three sub-functions of SSIM in the future, and look 

forward to making better models to remove the MR 

Image background noise. 
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