A Simplified Guide Ruler for Rotational Corrective Osteotomy

Presented by

Chen-Kun Liaw, M.D., Ph.D.

Tao-Yuan General Hospital, Taiwan.

Tai-Yin Wu, Rong-Sen Yang, Chiou-Shann Fuh, Sheng-Mou Hou

BMC Musculoskeletal Disorders

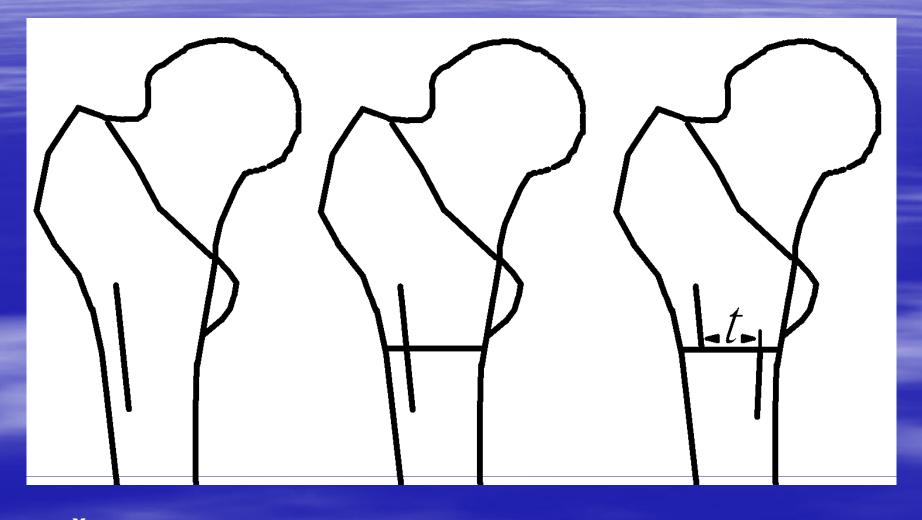
This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon.

A simplified guide ruler from numeric table method in doing rotational osteotomy

BMC Musculoskeletal Disorders 2008, 9:87 doi:10.1186/1471-2474-9-87

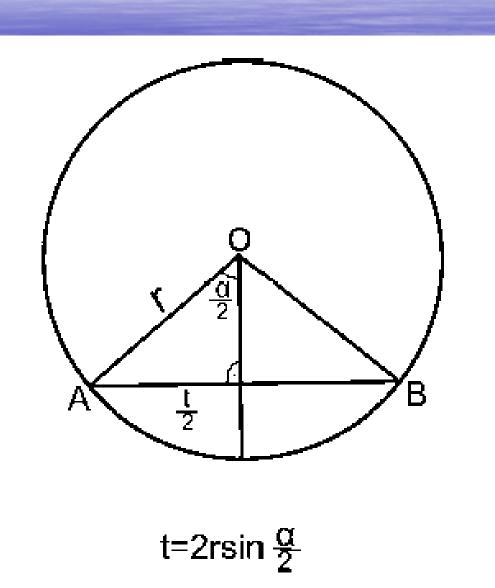
Chen-Kun Liaw (d92008@yahoo.com.tw)
Rong-Sen Yang (rsyang@ntuh.gov.tw)
Sheng-Mou Hou (shengmou@ntuh.gov.tw)
Tai-Yin Wu (dienewu@yahoo.com.tw)
Chiou-Shann Fuh (d92008@csie.ntu.edu.tw)

Rotational Corrective Osteotomy


- Used for treating rotational mal-alignment of bones.
- Femur: most common
- Tibia
- Humerus
 - Proximal: alternative to shoulder instability
 - Distal

Previous Methods

- Kirschner wires method
- Place two Kirschner wires.
- Correction angle is between the wires.
- Do the osteotomy.
- Rotate the two fragments until the two Kirschner wires are parallel.
- Fix the osteotomy.
- Lasserre G., Saint-Supery J.. *Ann Chir Infant*. 1966;7:165–170.

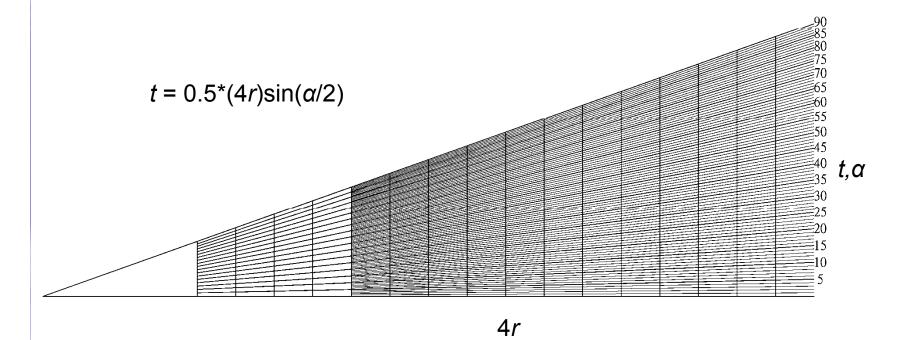

- Advantage: directly correct the angle.
- Disadvantages:
 - Additional trauma
 - Hard to place two Kirschner wires in correct angle.
 - Kirschner wires may interfere with fixation.
 - Hard to use in intra-medullary fixation method.

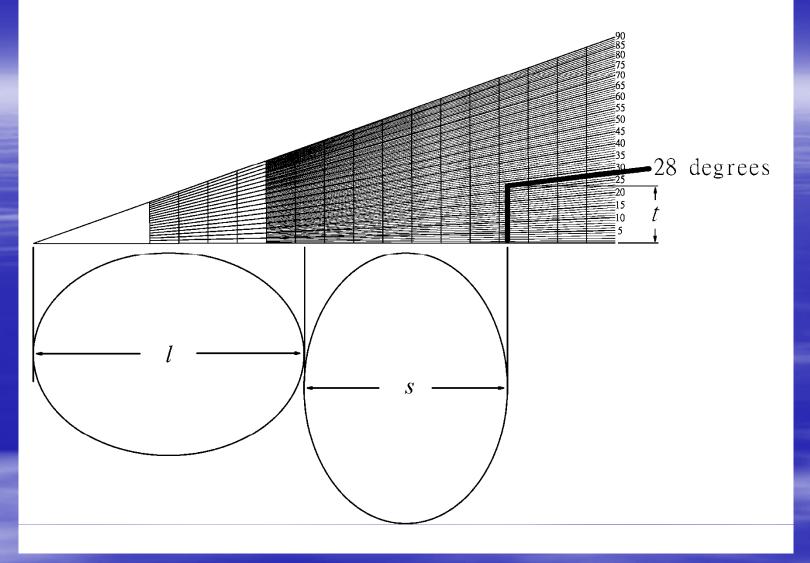
Lookup Table Method

Čobeljić et al.

Lookup Table Method

Lookup Table Method


- Part of the huge four-page-table
- Čobeljić et al. Femoral Derotation Osteotomy in Cerebral Palsy. CORR 2006:452,216–


TABLE 1. Value of Derotation Variables 2r = 10–29 mm and α = 1–45°																				
2r (mm) α angle (degree)	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
										t	(mm))								
1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3
2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.5
3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.4	0.5	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.7	8.0
4	0.3	0.4	0.4	0.5	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7	8.0	0.8	0.8	0.9	0.9	0.9	1.0	1.0
5	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.7	0.8	8.0	0.9	0.9	1.0	1.0	1.0	1.1	1.1	1.2	1.2	1.3
6	0.5	0.6	0.6	0.7	0.7	8.0	8.0	0.9	0.9	1.0	1.0	1.1	1.2	1.2	1.3	1.3	1.4	1.4	1.5	1.5
7	0.6	0.7	0.7	0.8	0.9	0.9	1.0	1.0	1.1	1.2	1.2	1.3	1.3	1.4	1.5	1.5	1.6	1.6	1.7	1.8
8	0.7	8.0	0.8	0.9	1.0	1.0	1.1	1.2	1.3	1.3	1.4	1.5	1.5	1.6	1.7	1.7	1.8	1.8	2.0	2.0
9	0.8	0.9	0.9	1.0	1.1	1.1	1.3	1.3	1.4	1.5	1.6	1.6	1.7	1.8	1.9	2.0	2.0	2.1	2.2	2.3
10	0.9	1.0	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.4	2.5
11	1.0	1.1	1.2	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8
12	1.0	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
13	1.1	1.2	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.1	3.2	3.3
14	1.2	1.3	1.5	1.6	1.7	1.8	2.0	2.1	2.2	2.3	2.4	2.6	2.7	2.8	2.9	3.0	3.2	3.3	3.4	3.5
15	1.3	1.4	1.6	1.7	1.8	2.0	2.1	2.2	2.3	2.5	2.6	2.7	2.9	3.0	3.1	3.3	3.4	3.5	3.7	3.8
4.0	4.4	4 6	47	4.0	4.0	0.4	0.0	0.4	0.5	0.0	0.0	0.0	0.4	2.0	2.2	2.5	0.0	2.0	2.0	4.0

Developing Our Method

- The four-page-table is too large.
- Require 3 measurements (two lengths-tonumber and one number-to-length).
- Need one calculation (average).
- We propose to do that in one step.

Our Method

- I: long axis of bone cross section ellipse
- s: short axis of bone cross section ellipse

Our Method

- Is still a proposal.
 - No real experience.
- We planned to print it on water- and heatproof material.
 - Stainless steel
 - Plastic

Disadvantages

- Correction angle in the ellipse is different from the circle.
- Hard to do such perfect correction in reality.

Results of Computer Model Verification

- 8 CT (Computer Tomography) slices
- Totally 1558 boundary points.
- Errors:
 - -+17% to -33%
 - mean ± SD: -6% ± 9%
 - 2.5 percentile: -25%
 - 97.5 percentile: 13%
 - That is 0.75 to 1.13.
- SD: Standard Deviation

Goran's Result

- 21 patients received rotational corrective osteotomy
- Errors: (achieved-planned)/planned*100%
 - +80% to -50%
 - mean ± SD: 6.7% ± 31.4%
 - 2.5 percentile: -37%
 - 97.5 percentile: 57%
 - That is 0.63 to 1.57.

Discussion

- Accetable results in computer model
- In reality, may cause more error.
- The numeric-table-method and our guide ruler are the only two methods which can be used in rotational corrective osteotomy fixed with intra-medullary implants.

Conclusion

- We invented a guide ruler for rotational corrective osteotomy.
- The computer model showed acceptable result in comparison with previous published numeric-table-method.