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ABSTRACT 

 

A method of data augmentation for 3D face model and 

using it for 3D face identification is proposed in our 

work. In the past few years, researchers had achieved 

significant progress on 2D face identification and 

verification through neural network approaches, such as 

VGG (Visual Geometry Group) Face, GoogleNet 

Inception, and ResNet (Residual Network). Since there 

are so many hyper parameters that need to be optimized 

in neural networks, large data must be provided for 

training. In 2017, FaceID was proposed by Apple Inc. 

Face identification has been scaled up from 2D to 3D. 

However, training a 3D face classifier is difficult. 3D 

face datasets nowadays are so small that even a large set 

of 3D faces contains only 4,666 faces of 105 identities. 

In order to solve the lack of data, we use transfer 

learning [13], and several data augmentation methods 

by generating face mesh from different views to make 

the classifier more robust and discriminative. 

 

Keywords: 3D Face Identification, 3D Face Generation, 

Convolutional Neural Networks. 

 

1. INTRODUCTION 

 

1.1. Overview 

 

Our approach consists of two parts, feature extraction 

and data augmentation. They will be introduced in the 

following sections. Base on VGG Face descriptor, and 

3D face reconstruction, we provide a revised 3D face 

identification workflow, in order to solve small amount 

of training data, which is the main contribution of this 

paper. 

 

1.2. Feature Extraction 

 

Descriptors play an important role in face identification 

because the performance of a classifier is greatly 

affected by the representation of features extracted by 

descriptors. Descriptors play an important role in face 

identification because the performance of a classifier is 

greatly affected by the representation of features 

extracted by descriptors. 

 

Recently, neural network approaches are getting popular 

with the successful pre-trained models such as VGG, 

ResNet, and GoogleNet Inception. Inheriting the benefit 

of SIFT descriptor, CNNs are also scale-invariant and 

shift-invariant. Furthermore, CNNs use relatively less 

preprocessing than conventional hand-crafted 

descriptors, that is, CNN learns filters independent of 

prior knowledge and effort, which is the major 

advantage. 

 

Our approach to feature extraction is to fine-tune a VGG 

Face descriptor with augmented data. We use 

representative features of VGG Face descriptor 

extracted for ensuing 3D face identification. 

 

1.3. Data Augmentation through Synthesized Faces 

 

The past works have focused on exploring robust 

features and descriptors on the image geometry of a 3D 

face by hand-crafted methods. Although these 

researches achieve good performance on recognition, 

some of them still suffer from the relatively complex 

mathematical operations that may cause more 

computation. Recently, researchers use neural networks 

to learn better representations. However, many 

parameters need to be optimized in a model, but due to 

the lack of data, data augmentation is an important 

process to solve this problem. The two main benefits of 

data augmentation are: (1) to generate more data for 

training and (2) to prevent model from overfitting. D. 

Kim et al. [6] proposed a training workflow for 3D face 

identification with relatively small dataset.  

 



There are two key points in this workflow: (1) Using 

one morphable face model to generate more faces with 

different poses (pitch), expressions, add-on noises for 

each identity. With this process on the original dataset, 

there are approximately infinite data for the training 

phase. (2) Use pre-trained models instead of training 

from scratch, which is called transfer learning. The 

intuition of transfer learning is to use the knowledge 

from other tasks with the similar structure. The process 

of training a model using different data is called fine-

tuning. 

 

For the part of face model generation, we use the 

method that A. Tran et al. [24] proposed, which 

generates 3D face models using CNNs for foundation 

model and bump maps for detailed texture, and the 

second part is to fine-tune the pre-trained VGG Face 

descriptor for face identification. 

 

2. BACKGROUND 
 

2.1. Reconstruct Human Face with Deep 

Convolutional Neural Network and 3D Morphable 

Model (3DMM) 

 

There are many works on 3D face reconstruction with 

multiple images, such as S. Liang et al. [9] reconstruct 

heads from Internet photos and O. M. Parkhi et al. [12] 

uses deep convolutional neural work for face 

reconstruction. Although these methods achieve great 

accuracy on reconstruction, they still suffer from the 

difficulty of data acquisition from different identities in 

different poses.  

 

Recently, researchers prefer using only one image to 

reconstruct human face. A. Tran et al. [24] proposed a 

work of regressing 3DMM face in deep neural network 

described as bellow.  

 

2.1.1. Generating Training Data 

To generate training data, A. Tran et al. use multi-image 

3DMM generation method proposed by M. Piotraschke 

et al. [17]. The dataset applied to the method is CASIA 

(Chinese Academy of Sciences, Institute of Automation) 

Web Face dataset, which is a constrained dataset with 

faces in different postures. These 3DMM faces trained 

by CASIA Web Face dataset are then used as ground 

truth for the CNN 3DMM regressor. 

 

To regress a detailed face, they simply regress a face 

shape and its texture with two generative models: 

 

S′ = �̂� + 𝑊𝑆𝛼 , T′ = �̂� + 𝑊𝑇𝛽. 
 

Here, �̂� and �̂� represent the mean face shape and mean 

texture of all the aligned 3D facial scans in the 3DMM, 

respectively. Matrices 𝑊𝑠  and 𝑊𝑡  are principal 

components computed from the same facial scans. 

Vectors 𝛼  and 𝛽  are used for the linear combinations 

with 𝑊𝑆 and 𝑊𝑇 for face reconstruction. 

 

2.1.2. Pooled 3DMM 

Instead of using multiple images for face generation, 

they use a pooling method for 3DMM parameters with 

better efficiency. Specifically, 3DMM parameters γ𝑖 =
[𝛼𝑖 , 𝛽𝑖], 𝑖 ∈ 1 … 𝑁  for N views belong to the same 

identity, and the pooling function is  

 

γ = ∑ 𝜔𝑖
𝑁
𝑖=1 ⋅ 𝛾𝑖 ,     ∑ 𝜔𝑖 = 1𝑁

𝑖=1 , 

 

where 𝜔𝑖 are the normalized confidences for each image 

provided by Constrained Local Neural Fields (CLNF) 

facial landmark detector [7]. 

 

2.1.3. Learning to Regress Pooled 3DMM 

To achieve this, they use a very deep CNN which is 

ResNet with 101 layers trained for face recognition. 

After substituting the last fully connected output layer 

for the 198 dimensional feature vector γ, they fine-tune 

the network on CASIA face images using the pooled 

3DMM estimations as target values. 

 

2.2. 3D Face Recognition Methods 

 

H. Patil et al. [14] proposed an overview of face 

recognition topics in 3D faces. The challenges in 3D 

face recognition including different expressions, 

occlusions, noise (such as uneven surface). We will 

briefly describe some 3D face recognition approaches in 

the following sections. 

 

2.2.1. Curvature-Based Approaches 

Curvature-based methods are based on the curvature 

information associated with the facial structure. The 

curvature information includes level curves and radial 

curves. Level curves are extracted by determining the 

distance from the surface to a reference point. The radial 

curves are extracted by the radial lines from the center 

of a face model (nose-tip), and it is very compact in 

comparison with level curves approaches. 

 

2.2.2. Morphable Model-Based Approaches 

Morphable models, known as deformable models, vary 

their shapes according to some extracted features.  

 

To compare the probe face and gallery faces, the first is 

to register the probe with the morphable model so that 

the coordinate system is aligned, and then calculate the 

point-to-point feature correspondence of a probe and the 

morphable model. Next, the morphable model can be 

fitted by conditioning the deformation parameters 

obtained.  

 

Generally, a morphable model is built by extracting 

features of training data. The benefits of this type of 

approaches are that a morphable model can generate 

various poses, scales, or even occlusions. 



Kakadiaris et al. [4] proposed an expression-invariant 

3D face recognition system using morphable model 

known as AFM (Annotated Face Model). The fitted 

AFM is sampled into 2D representation then 

transformed to a norm map. 

 

In the research that Haar and Veltkamp [3] proposed in 

2010, they built multi-resolution PCA (Principal 

Component Analysis) model with small collections of 

facial landmarks for neutral and other expression scans. 

A single morphable identity model and 7 isolated 

expression models are built. For face matching, they 

applied 𝐿1  distance to calculate similarity, and the 

expressions are neutralized because of the separated 

model. Although this approach is expression-invariant, 

it still needs human-labeled landmarks, and its 

performance highly depends on how accurate landmarks 

are localized. 

 

3. METHODOLOGY 
 

3.1. Overview 

 

Our detailed methods for 3D face identification are 

described in this section. In Section 3.2, data 

augmentation is demonstrated. It consists of (1) pose 

variation (Section 3.2.1), (2) add-on noises (Section 

3.2.2) and (3) occlusions (Section 3.2.3). After 

augmentation, a VGG Face pre-trained model is fine-

tuned through these data. Section 3.3 shows the detail of 

fine-tuning process and how we choose the parameters 

of our model. In Section 3.4, we will describe how the 

fine-tuned model is used in the identification problem. 

The whole workflow is shown in Figure 3-1. 

 

 
Fig. 3-1: Workflow for 3D face identification. 2D 

images collected from the subset of VGGFace2 Dataset 

[2] and CASIA-Face V5 [23] are used for augmentation. 

After fine-tuning VGG Face, the model will be applied 

to identification. 

 

3.2. Data Augmentation 

 

Basically, our augmentation method is simplified from 

[24]. For each 3D face model, we only use single 2D 

image as input. The output 3D face model is controlled 

by a foundation face model 𝑠 and an expression 𝑒 . A 

linear 3DMM, is presented as: 

 

𝑠 = �̂� + ∑ 𝛼𝑖𝑊𝑖

𝑘

𝑖=1

 

 

where, �̂�  is the mean face of 3D face models; 𝛼𝑖  is 

coefficient of 𝑊𝑖; and 𝑊𝑖 is the 𝑖th principal component 

of face 𝑠, where 𝑊 ∈ ℝ3𝑛×𝑘 ; 3𝑛 is the 3D coordinate 

for the 𝑛  points; and 𝑘  is number of elements in a 

principal component. Given a 2D image, 𝑠 generated by 

regressing 𝛼. Expression model is also represented as a 

linear equation as: 

 

𝑒 = ∑ 𝛽𝑗𝑀𝑗

𝑚

𝑗=1

 

 

where 𝑒  is expression combined by 𝑚  principal 

components of expression 𝑀𝑗 ; 𝑀 ∈ ℝ3𝑛×𝑚 ; 3𝑛  is the 

coordinates of 𝑛  points; and 𝑚  is the number of 

elements in 𝑀 . After we estimate 𝑠  and 𝑒 , the 

foundation face 𝐹  is derived by adding expression on 

the regressed face model: 

 

𝐹 = �̂� + ∑ 𝛼𝑖𝑊𝑖
𝑠
𝑖=1 + ∑ 𝛽𝑗𝑀𝑗

𝑚
𝑗=1 = 𝑠 + 𝑒. 

 

Since the foundation face 𝐹 consists of a general shape 

and expression, the next step is to add detailed texture to 

it. To achieve this, we need a bump map derived from 

2D image. Given the coordinate of an input image 

𝑐(𝑥, 𝑦), the depth map of a detailed face model 𝑑′(𝑐), 

the depth map of foundation face 𝑑(𝑐), and the bump 

map 𝐵(𝑐), we get 𝑑′(𝑐) = 𝑑(𝑐) + 𝐵(𝑐). 

 

After several transforms and noises, occlusions are then 

added to these synthesized face models. For rigid 

transform, we apply rotation and translation on a face 

mesh as follows: 

 

𝐹′ = 𝐹[ 𝑅(𝜃𝑥 , 𝜃𝑦)| 𝑡(𝑥, 𝑦, 𝑧) ] 

 

where 𝑅  is the rotation matrix, and 𝑡  is translation 

vector, −10.8° < 𝜃𝑥, 𝜃𝑦 < +10.8° . Translation scale 

𝑥, 𝑦, and 𝑧 are in the range of ±10% of √𝑃 where 𝑃 is 

the resolution of depth map. The type of noise we add 

on face models is salt-and-pepper noise [6]. We 

generate random occlusions to prevent overfitting on 



specific patterns. Furthermore, the occlusion on training 

data increases the robustness of our model when 

accessories are on face. 

 

We select 1,740 subjects from CASIA-Face V5 (476 

subjects) and VGG Face 2 dataset (1264 subjects) by the 

size of image and pass them into the augmentation 

pipeline for face model generation. We render the depth 

map of each face model from 25 different viewpoints 

and split them into training/validation set with ratio of 

80% and 20%. 

 

The augmented data vary from different views; hence 

our model is pose-invariant. 

 

 
Fig. 3-1: Face generation pipeline of our method. (a) 2D 

input image passed to the face generator (b). (c) 

Synthesized face mesh. For each face mesh, we render it 

into a depth map (d), and add random occlusions on it to 

enhance the robustness of our recognition model. 

 

 
Fig. 3-2: Depth maps render from single face mesh with 

25 different views. For a depth map, the adjacent (four-

neighbor) depth maps are ±5.4°  on 𝑥 − axis and 𝑦 −
axis. 

3.3. Fine-Tuning 

 

To construct a 3D face recognition model, we use the 

pre-trained VGG Face model [12]. All layers in VGG 

Face except the output layer (a fully connected layer 

with softmax activation function, 2,622-dimensional 

feature vector) are transferred into our model. In other 

words, we replace the last layer of VGG Face with a 

fully connected layer in 1,740 dimensions (number of 

subjects we want to classify) with a softmax activation 

function.  

 

The softmax function, or normalized exponential 

function, is a generalization of logistic function that 

normalizes the summation of a 𝐾-dimensional vector to 

1. It is used in multi-class classification, and represented 

as: 

 

𝜎(𝑣) 
 

All input images (depth maps) are linearly resized to 

224 pixels × 224 pixels × 3 channels , and rescaled 

from [0, 255] to the range of [0, 1]. 
 

While fine-tuning the VGG Face network, we first fix 

the weights transferred from VGG Face. Specifically, 

we set the gradients to zero to fix weights. The main 

reason is that the weights of the last fully connected 

layer are randomly initialized with normal distribution, 

and they are not tuned, yet. If the transferred weights are 

not fixed at first while training, they will be destroyed 

by the meaningless gradients back-propagated from the 

last layer. 

 

After all the weights of last layer are converged (by 

observing the loss), we unlock the entire model but set 

different learning rates to transferred layers and last 

layer. Here, refer to [6], we set learning rate for the 

transferred layers to 0.001 and 0.01 for the last layer.  

 

For optimization, we use the Stochastic Gradient Decent 

(SGD) with momentum set to 0.9 and learning rate 

decay over each updated. Our loss function is cross 

entropy: 

 

𝐻(𝑝, 𝑞) = − ∑ 𝑝(𝑥)log (𝑞(𝑥))𝑥 , 

 

where 𝑝(𝑥) and 𝑞(𝑥) are two probability distributions. 

Notice that 𝑝(𝑥)  is the true distribution of data, and 

𝑞(𝑥) is the predicted distribution. The intuition [27] of 

cross entropy is to determine the expected message 

length per datum under 𝑞(𝑥) while the real distribution 

is 𝑝(𝑥). 

 

3.4. Identification 

 

For identification, fine-tuned model is used for feature 

extraction. Here, instead of using the entire model, we 

remove the last layer and use the 4096-dimensional 

vector as the representation for a face. 



The feature vectors are normalized by applying square 

root element-wise. After transform all images in the 

gallery and probe set into feature vectors, we use PCA 

to reduce the dimension of feature vector from 4096 

dimensions to 99 dimensions because the 4096-

dimensional feature vector is very sparse. The reduced 

features are then matched by cosine distance between 

probe and gallery sets, and we take the closest identity 

as our prediction result for each probe subject. 

 

4. EXPERIMENTAL RESULT 

 

4.1. Overview 

 

In this section, we show the experimental results of our 

algorithm under different circumstances. In Section 4.2, 

we briefly introduce the datasets used for training and 

testing and also show how we evaluate the performance 

for our identification model in Section 4.3. The results 

are shown in Section 4.4. The system information of our 

device is as follow. 

 

System Environment 

OS Ubuntu 16.04 LTS 

CPU Intel® Core™ i7-7700K 4.2 GHz 

RAM 32 Gigabytes 

Language Python, Matlab 

GPU Nvidia Geforce GTX1080 

Frameworks Keras, TensorFlow 

 

4.2. Datasets 

 

4.2.1. VGG Face2 Dataset [2] 

VGGFace2 Dataset is a large-scale face dataset 

containing 3.31 million images over 9131 identities, 

with average 362.6 images/identity. The images are in 

large variations of pose, age, illumination, ethnicity, and 

profession. We use a subset of VGGFace2 Dataset 

(1,264 identities) for training data augmentation by 

selecting images with the largest size. 

 

4.2.2. CASIA-Face V5 [23] 

CASIA-Face V5 is Version 5 for the CASIA Face 

Image Database. It contains 2,500 color images over 

500 subjects in pose variations. All face images are 16-

bit BMP (BitMaP) at resolution 640𝑥480 pixels . We 

use the subset of CASIA-Face V5 with frontal faces for 

training data augmentation, 476 identities totally. 

 

4.2.3. Bosphorus Database [18, 19] 

The Bosphorus Database is a 3D face database for 

testing. It contains 4,666 color images and depth maps 

over 105 identities. Each identity has 9 classes: 

 

1) Neutral Pose & Expression 

2) Lower Face Action Unit 

3) Upper Face Action Unit 

4) Action Unit Combination 

5) Emotional Expression 

6) Yaw Rotation 

7) Pitch Rotation 

8) Cross Rotation 

9) Occlusion 

 

For our experiment, we use 105 neutral faces as gallery 

set and the remaining 3,098 faces in various expressions 

and occlusions as probe set. 

 

4.3 Evaluation 

 

Here we use receiver operating characteristic (ROC) [29] 

as our evaluation metric. A receiver operating 

characteristic is a plot for diagnosing a binary classifier. 

The ROC curve plots the true positive rate against the 

false positive rate at different settings of thresholds.  

 

For instance, in a problem of face verification, the true 

positive rate is the rate that the number of faces 

correctly predicted over all predictions, and the false 

positive rate means the ratio of the number of faces 

wrongly predicted over all predictions.  

 

4.4. Analysis on Validation Set and Bosphorus 

Dataset 

 

In this section, we will discuss how our face 

identification model performs under various 

circumstances on Bosphorus face dataset. After 

comparison, we can see how expressions affect the 

performance of our model. 

 

Figure 4-1 shows ROC curve in the neutral to neutral 

case. In this case, it has the best performance on 

Bosphorus dataset using our model. In Figure 4-2 

(neutral to non-neutral) and Figure 4-3 (neutral-all), we 

can observe that if the variation of expression increases, 

the performance of our model will degrade. 

 

 
Fig. 4-1: ROC curve of neutral to neutral set. Here we 

use 105 neutral faces as the gallery, and the remaining 

191 neutral faces as the probes. 



 
Fig. 4-2: ROC curve of neutral to non-neutral set. 

Gallery consists of 105 neutral faces, and the probe 

consists of 2,908 non-neutral faces. 

 
Fig. 4-3: ROC curve of neutral to all set. Gallery 

consists of 105 neutral faces, and there are 3,204 other 

faces of the database in the probe set. 

 

Here, by observing the Area Under Curve (AUC), we 

can easily realize that expression highly affects the 

performance of our model. Our model is not expression-

invariant, because we did not generate different 

expressions for subjects, and CNN cannot learn how to 

adapt to variation on expressions.  

 

In spite of the low robustness on adapting expression 

variation, our model can easily handle transforms such 

as rotation, translation, and serious occlusions are also 

tolerated. 

 

To test the robustness of our model, we randomly 

sample five non-frontal faces as validation set, which is 

not seen by the model. Here, we have two settings. The 

first is faces with rotation and translation but without 

occlusion. The second setting is faces with rotation, 

translation, and occlusions.  

 

Figure 4-4 is the ROC curve of the first setting, the area 

under curve score is perfect. Even with occlusions, our 

model still performs very well, and we cannot even 

notice the difference between the results. 

 

 
Fig. 4-4: ROC curve of non-occluded validation set. The 

validation set here contains 8,700 images with five 

different poses.  

 
Fig. 4-5: ROC curve of validation set with occlusions. 

Compared with the ROC curve in Figure 4-4, there is 

almost no difference. 

 

Accuracy over different cases on Bosphorus dataset and 

Validation set. Our model is mainly trained in 

augmented data, so its accuracy is lower when applied 

in real-world data. Expression variations cause serious 

degrade on accuracy, but pose variations and occlusions 

do not affect accuracy much. 

 

By this observation, we can claim that our model has 

great robustness to rotation and translation. To make our 

model expression-invariant, we need to change the 

augmentation method and generate face meshes with 

different expressions. 

 

 

Boshporus Dataset Validation Set 

Case 
Neutral 

Neutral 

Neutral 

Non-Neutral 

Neutral 

All 

Frontal 

Non-Occluded 

Frontal 

Occluded 

Accuracy 80.10% 44.50% 48.53% 100.00% 99.70% 

Table 4-1: Accuracy over different cases on Bosphorus 

dataset and Validation set. Our model is mainly trained 

in augmented data, so its accuracy is lower when 

applied in real-world data. Expression variations cause 

serious degrade on accuracy, but pose variations and 

occlusions do not affect accuracy much. 



4.5. Visualization Views of Convolutional Kernels 

 

In this section, we will visualize kernels in both the 

original VGG Face descriptor and our 3D face 

descriptor. In a convolution-pooling block, we take 

filters in the first convolution layer for visualization. 

 

4.5.1. Gradient Ascending 

To achieve this, we activate all kernels in different 

layers by gradient ascending. Initially, we generate an 

image with normal distribution as our input image, and 

feed the image into pre-trained models (VGG Face and 

our 3d face descriptor) and apply gradient ascending on 

the image instead of the model itself. 

 

The intuition of this approach is to find an image that 

activates a specific convolution kernel the most. For an 

input image 𝑥 , and a kernel 𝑘  with 𝑚  rows and 𝑛 

columns, we define how the kernel activated by the 

mean value of the kernel as follows: 

 

𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 =
1

𝑚𝑛
∑ 𝑘𝑖𝑗

0< 𝑖< 𝑚
0<𝑗<𝑛 

 

 

and the image 𝑥′ that activates the kernel the most:  

 

𝑥′ = arg max
𝑥

(𝑘𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑(𝑥)) 

 

4.5.2. Visualization 

In this section, we will demonstrate what convolutional 

layers learned. For each layer, we sample 49 images 

among all kernels in a layer.  

 

First Layer: 

For the first convolutional layer in Figs. 4-6 and 4-7, 

there is only a slight difference between the kernels 

from VGG Face and our model. Notice that in shallower 

layers, the kernels are not close to gray scale which 

means red, green, and blue channels have quite different 

behavior, weight distribution, or influence. 

 

 
Fig. 4-3: Visualization of the first layer of VGG Face. 

We can easily observe fine textures in kernels. 

 

 
Fig. 4-4: Visualization of our model. Most kernel colors 

are purple, green, or gray. Compared with the VGG 

Face, our model is flatter and has less information in the 

kernel. 

 

Third Layer: 

The third layers of two models are shown in Figs. 4-8 

and 4-9. Here, textures of kernels are more than the 

kernels from previous layer. Textures in this layer are 

similar to the texture of skin and leather in different 

directions. 

 

 
Fig. 4-5: Kernels from third layer of VGG Face. The 

texture is similar to skin, or materials such as leather. 

 

 
Fig. 4-6: Kernels from third layer of our model. 

Compared with kernels of VGG Face, the color of our 

filters tends to turn into gray scale. The texture with 

vertical and horizontal lines may be caused by the 

rectangular occlusions we added on. 

 

Fifth Layer: 

In the fifth layer, it is easy to see strong features that 

activate kernels in deeper layers. These kernels extract 



the higher features such as eyes, nose, ears, and mouth, 

and they are illustrated in Figs. 4-10, 4-11, 4-12, and 4-

13 respectively. 

 

  
                     (a)                                       (b) 

Fig. 4-7: High level kernels similar to eyes. (a) The eye 

texture from VGG Face. (b) Eye texture from our model.  

 

  
                    (a)                                       (b) 

Fig. 4-8: High level kernels similar to nose. (a) The nose 

texture from VGG Face. (b) The nose texture from our 

model. 

 

  
                    (a)                                        (b) 

Fig. 4-9: High level kernels similar to ears. (a) The ear 

texture from VGG Face. (b) The ear texture from our 

model. 

 

  
                   (a)                                        (b) 

Fig. 4-10: High level kernels similar to mouth. (a) The 

mouth texture from VGG Face. (b) The mouth texture 

from our model. 

 

With this observation, we know how convolutional 

networks understand the world. At shallow layers, 

convolutional kernels extract fine features that hard to 

distinguish by human eyes. With the layer goes deeper, 

features are more understandable, so the high-level 

features are combined by low-level features. In addition, 

we can see the same high-level features vary from 

multiple directions, which is a strong proof that our 

model is rotation-invariant. 

 

4.5. Implementation 

 

Our system consists of a range sensor (Bellus3D Face 

Camera) and an Android smart phone (Samsung Galaxy 

S8). First, a user uses the range sensor for 3D face 

capture, then the mesh is transmitted to our server for 

registration or identification. Our model is tested on 

additional dataset of 625 3D faces over 25 identities, 

and the accuracy is 96.91%. 

 

5. CONCLUSION AND FUTURE WORK 
 

In this work, we develop a face recognition method 

using depth maps with small amount of data. 

 

The recognition method works well in normal situations, 

even the images are occluded. In addition, range sensors 

are usually based on infrared patterns or time-of-flight, 

so 3D face recognition systems work in the dark. Due to 

the similarity of 2D face recognition and 3D face 

recognition, by using transfer learning technique, our 

model is very efficient at training. 

 

However, there are also drawbacks. First, the cost for a 

range sensor is expensive. For instance, commercial 

range sensor such as Kinect V1 or V2 costs about $300. 

Second, for face classification and identification, we 

need a high-performance Graphics Processing Unit 

(GPU) card for parallel computing on matrices. 

 

For these drawbacks, we hope to reduce the size of our 

network for efficiency, and collect more data in the real 

world for training in the future, instead of using 

augmented data. 
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