Fundamental Analysis of Securities Trading
(IV) Pairs Trading A

Kuan-Lun WANG1,2

National Taiwan University

Preliminary Draft: February 9, 2020

1E-mail: polyphonicared@gmail.com
2Home Page: https://www.csie.ntu.edu.tw/~d06922002/

Short Biodata

\begin{itemize}
 \item Research interests:
 \begin{itemize}
 \item time series models.
 \item simulation modeling.
 \item portfolio choice.
 \end{itemize}
 \item Central themes of my application:
 \begin{itemize}
 \item multivariate pairs trading in real time.
 \item assets searching with a long-run equilibrium.
 \item riskless portfolio building.
 \end{itemize}
 \item Current work:
 \begin{itemize}
 \item cointegration test.
 \item structural change analysis.
 \item the probability estimation of mean reversion.
 \end{itemize}
\end{itemize}
Assumption (1/2)

Consider two asset prices has only one same principal factor. That is,

\[
\begin{align*}
\text{price}_A(t) &= a_A + b_A \text{factor}(t) + \epsilon_A(t); \\
\text{price}_B(t) &= a_B + b_B \text{factor}(t) + \epsilon_B(t).
\end{align*}
\]

Assume \(\epsilon_A\) and \(\epsilon_B\) are stable.

Warning

Arbitrage pricing theory shows this assumption is not good. But why we assume the above? (Hint: see the first slide.)

https://en.wikipedia.org/wiki/Arbitrage_pricing_theory

Assumption (2/2)

Wiki: Arbitrage Pricing Theory

Risky asset returns are said to follow a factor intensity structure if they can be expressed as:

\[
r_j = a_j + b_{j1} F_1 + b_{j2} F_2 + \cdots + b_{jn} F_n + \epsilon_j
\]

where

- \(a_j\) is a constant for asset \(j\),
- \(F_n\) is a systematic factor,
- \(b_{jn}\) is the sensitivity of the \(j\)-th asset to factor \(n\), also called factor loading,
- and \(\epsilon_j\) is the risky asset’s idiosyncratic random shock with mean zero.
If we buy \(b_B \) A and short \(b_A \) B at time \(t_0 \), then our cash flow is

\[
\begin{align*}
&= -b_B \text{price}_A(t_0) + b_A \text{price}_B(t_0) \\
&= -b_B (a_A + b_A \text{factor}(t) + \epsilon_A(t)) \\
&\quad + b_A (a_B + b_B \text{factor}(t) + \epsilon_B(t)) \\
&= (-a_A b_B + a_B b_A) \\
&\quad + (-b_A b_B \text{factor}(t) + b_A b_B \text{factor}(t)) \\
&\quad + (-b_B \epsilon_A(t_0) + b_A \epsilon_B(t_0)) \\
&= (-a_A b_B + a_B b_A) + (-b_B \epsilon_A(t_0) + b_A \epsilon_B(t_0)).
\end{align*}
\]

In fact, our cash flow is

\[
- b_B \text{price}_A(t_0) - b_A \text{price}_B(t_0).
\]

Remark: Our Assumptions

The prices process in the following form

\[
\begin{align*}
\text{price}_A(t) &= a_A + b_A \text{factor}(t) + \epsilon_A(t), \\
\text{price}_B(t) &= a_B + b_B \text{factor}(t) + \epsilon_B(t),
\end{align*}
\]

where \(\epsilon_A \) and \(\epsilon_B \) are stable.

That is, the portfolio value is

\[
\text{price}_{\text{portfolio}}(t) = (a_A b_B - a_B b_A) + (b_B \epsilon_A(t) - b_A \epsilon_B(t)).
\]

Moreover, the value is independent of \(\text{factor}(t) \).
So, if we know the values b_A and b_B, then we can build a portfolio independent of principal factor. Similarly, we can consider any number of factor.

Why do we need to know this?
If we buy one this portfolio at time t_0 and sell it at time t_1, then our cash flow is

$$\begin{align*}
- \text{price}_{\text{portfolio}}(t_0) + \text{price}_{\text{portfolio}}(t_1) \\
= & -((a_A b_B - a_B b_A) + (b_B \epsilon_A(t_0) - b_A \epsilon_B(t_0))) \\
& + ((a_A b_B - a_B b_A) + (b_B \epsilon_A(t_1) - b_A \epsilon_B(t_1))) \\
= & -(a_A b_B - a_B b_A) + (a_A b_B - a_B b_A) \\
& + (- (b_B \epsilon_A(t_0) - b_A \epsilon_B(t_0)) + (b_B \epsilon_A(t_1) - b_A \epsilon_B(t_1))) \\
= & -(b_B \epsilon_A(t_0) - b_A \epsilon_B(t_0)) + (b_B \epsilon_A(t_1) - b_A \epsilon_B(t_1)).
\end{align*}$$

Remark: Return of This Portfolio

Return of this portfolio over $[t_0, t_1]$ is

$$\text{Return}_{[t_0, t_1]} = -(b_B \epsilon_A(t_0) - b_A \epsilon_B(t_0)) + (b_B \epsilon_A(t_1) - b_A \epsilon_B(t_1)).$$

That shows we only trade a stable noise. We can wait for the low value to buy it or wait for the high value to sell it.
Definition: Matrix

A rectangular arrangement

\[A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix} \]

of elements \(a_{ij}, \ i = 1, \ldots, m, \ j = 1, \ldots, n \), in \(m \times n \) rows and \(n \) columns is called an \(m \times n \) matrix \(A \).

Example: Matrix [1]

Some examples of matrices are

\[\begin{pmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{pmatrix}, \begin{pmatrix} 2 & 1 & 0 & -3 \end{pmatrix}, \begin{pmatrix} e & \pi & -\sqrt{2} \\ 0 & \frac{1}{2} & 1 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix}, (4). \]
Definition: Matrix Product [1]

If A is an $m \times r$ matrix and B is an $r \times n$ matrix, then the product AB is the $m \times n$ matrix whose entries are determined as follows:

To find the entry in row i and column of AB, single out row i from the matrix A and column j from the matrix B. Multiple the corresponding entries from the row and column together, and then add up the resulting products.

Example: Multiplying Matrices [1]

Consider the matrices

$$A = \begin{pmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{pmatrix}$$

Since A is a 2×3 matrix and B is a 3×4 matrix, then product AB is a 2×4 matrix. To determine, for example the entry in row 2 and column 3 of AB, we single out row 2 from A and column 3 from B.
Example: Multiplying Matrices—Continued [1]

Then, as illustrated below, we multiply corresponding entries together and add up these products.

\[
\begin{pmatrix}
1 & 2 & 4 \\
2 & 6 & 0
\end{pmatrix}
\begin{pmatrix}
4 & 1 & 4 & 3 \\
0 & -1 & 3 & 1 \\
2 & 7 & 5 & 2
\end{pmatrix}
= \begin{pmatrix}
? & ? & 26 & ?
\end{pmatrix}
\]

The computations for the remaining entries are

\[
\begin{align*}
(1 \cdot 4) & + (2 \cdot 0) + (4 \cdot 2) = 12 \\
(1 \cdot 1) & - (2 \cdot 1) + (4 \cdot 7) = 27 \\
(1 \cdot 4) & + (2 \cdot 3) + (4 \cdot 5) = 30 \\
(2 \cdot 4) & + (6 \cdot 0) + (0 \cdot 2) = 8 \\
(2 \cdot 1) & + (6 \cdot 1) + (0 \cdot 7) = -4 \\
(2 \cdot 3) & + (6 \cdot 1) + (0 \cdot 2) = 12
\end{align*}
\]

and

\[
AB = \begin{pmatrix}
12 & 27 & 30 & 13 \\
8 & -4 & 26 & 12
\end{pmatrix}
\]
The System of Equations (1/14)

Consider one equation

\[y(t) = a + bx(t) \]

\[\Rightarrow y(t) = (1 \times x(t)) \begin{pmatrix} a \\ b \end{pmatrix} \]

\[\Rightarrow y(t) = X(t)\beta \]

Then, we have the following equations

\[
\begin{cases}
\text{price}_A(t) \approx (1 \text{ factor}(t)) \begin{pmatrix} a_A \\ b_A \end{pmatrix} \\
\text{price}_B(t) \approx (1 \text{ factor}(t)) \begin{pmatrix} a_B \\ b_B \end{pmatrix}
\end{cases}
\]

The System of Equations (2/14)

Definition: Linear Equation [1]

We define a linear equation in the \(n \) variables \(x_1, x_2, \ldots, x_n \) to be one that can be expressed in the form

\[a_1x_1 + a_2x_2 + \cdots + a_nx_n = b, \]

where \(a_1, a_2, \ldots, a_n \) and \(b \) are constants, and the \(a \)'s are not all zeros.

Definition: System of Linear Equations [1]

A finite set of linear equations is called a system of linear equations or, more briefly, a linear system.
Example: a General Linear System [1]

A general linear system of \(m \) equations in the \(n \) unknowns \(x_1, x_2, \ldots, x_n \) can be written as

\[
\begin{align*}
 a_{11}x_1 &+ a_{12}x_2 + \cdots + a_{1n}x_n = b_1 \\
 a_{21}x_1 &+ a_{22}x_2 + \cdots + a_{2n}x_n = b_2 \\
 \vdots & \quad \ Quad
This is, we have the following equation

\[
\begin{align*}
\begin{pmatrix}
\text{price}_A(1) \\
\vdots \\
\text{price}_A(T) \\
\text{price}_B(1) \\
\vdots \\
\text{price}_B(T)
\end{pmatrix}
&=
\begin{pmatrix}
1 & x(1) \\
\vdots & \vdots \\
1 & x(T)
\end{pmatrix}
\begin{pmatrix}
a_A \\
b_A \\
a_B \\
b_B
\end{pmatrix},
\end{align*}
\]

Consider two equations

\[
\begin{align*}
y_A(t) &= a_A + b_A x(t), \\
y_B(t) &= a_B + b_B x(t)
\end{align*}
\]

\[\implies \begin{pmatrix} y_A(t) \\ y_B(t) \end{pmatrix} = \begin{pmatrix} 1 & x(t) \end{pmatrix} \begin{pmatrix} a_A & a_B \\ b_A & b_B \end{pmatrix} \]

\[\implies y(t) = X(t)\beta.\]

That is, we have the following equation

\[
\begin{pmatrix}
\text{price}_A(t) \\
\text{price}_B(t)
\end{pmatrix}
\approx
\begin{pmatrix} 1 & \text{factor}(t) \end{pmatrix}
\begin{pmatrix} a_A & a_B \\ b_A & b_B \end{pmatrix}.
\]
We can rewrite the above equation as

\[
\begin{pmatrix}
\text{price}_A(t) \\
\text{price}_B(t)
\end{pmatrix} \approx
\begin{pmatrix}
1 \text{ factor}(t) & 0 & 0 \\
0 & 0 & 1 \text{ factor}(t)
\end{pmatrix}
\begin{pmatrix}
a_A \\
\beta_A \\
a_B \\
\beta_B
\end{pmatrix}
\]

OK, this form is \(y = X\beta \).
Example: An Example for Kronecker Product [3]

The Kronecker product of $A = \begin{pmatrix} 3 & 4 & -1 \\ 2 & 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & -1 \\ 3 & 3 \end{pmatrix}$ is

$$A \otimes B = \begin{pmatrix} 15 & -3 & 20 & -4 & -5 & 1 \\ 9 & 9 & 12 & 12 & -3 & -3 \\ 10 & -2 & 0 & 0 & 0 & 0 \\ 6 & 6 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Example: An Example for Kronecker Product–Continued [3]

The Kronecker product of $B = \begin{pmatrix} 5 & -1 \\ 3 & 3 \end{pmatrix}$ and $A = \begin{pmatrix} 3 & 4 & -1 \\ 2 & 0 & 0 \end{pmatrix}$ is

$$B \otimes A = \begin{pmatrix} 15 & 20 & -5 & -3 & -4 & 1 \\ 10 & 0 & 0 & -2 & 0 & 0 \\ 9 & 12 & -3 & 9 & 12 & -3 \\ 6 & 0 & 0 & 6 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 15 & 20 & -5 & -3 & -4 & 1 \\ 10 & 0 & 0 & -2 & 0 & 0 \\ 9 & 12 & -3 & 9 & 12 & -3 \\ 6 & 0 & 0 & 6 & 0 & 0 \end{pmatrix}.$$
Definition: vec Operator [3]

Let \(A = (a_1, \ldots, a_n) \) be an \((m \times n)\) matrix with \((m \times 1)\) columns \(a_i\). The **vec operator** transforms \(A \) into an \((mn \times 1)\) vector by stacking the columns, that is,

\[
\text{vec}(A) = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}.
\]

Example: An Example for vec Operator [3]

For instance, if \(A = \begin{pmatrix} 3 & 4 & -1 \\ 2 & 0 & 0 \end{pmatrix} \) and \(B = \begin{pmatrix} 5 & -1 \\ 3 & 3 \end{pmatrix} \), then

\[
\text{vec}(A) = \begin{pmatrix} 3 \\ 2 \\ 4 \\ 0 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 4 \\ 0 \\ -1 \\ 0 \end{pmatrix} \quad \text{and} \quad \text{vec}(B) = \begin{pmatrix} 5 \\ 3 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \\ -1 \\ 3 \end{pmatrix}.
\]
Definition: Identity (or Unit) Matrix

A matrix $I = I_n$ is called identity (or unity) matrix if

$$
\begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}
$$

Rule: the \otimes and vec Operator [3]

Let A, B, C be matrices with appropriate dimensions. We have

$$
\text{vec}(AB) = (I \otimes A) \text{vec}(B).
$$

That is, we have the following equation

$$
\text{vec} \left((\text{price}_A(t) \ \text{price}_B(t))\right) \approx (I \otimes (1 \ \text{factor}(t))) \text{vec} \left(\begin{pmatrix} a_A & a_B \\ b_A & b_B \end{pmatrix}\right)
$$

and

$$
\text{vec} \left(\begin{pmatrix} \text{price}_A(1) & \text{price}_B(1) \\ \vdots & \vdots \\ \text{price}_A(T) & \text{price}_B(T) \end{pmatrix}\right) \approx (I \otimes (1 \ \text{factor}(1))) \cdots (I \otimes (1 \ \text{factor}(T))) \text{vec} \left(\begin{pmatrix} a_A & a_B \\ b_A & b_B \end{pmatrix}\right)
$$
Definition: Transpose

The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A', which is obtained from A by writing the rows of A as the columns of A'.

Example

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \text{ and } A' = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix}$$

Definition: Invertible Matrix [1]

If A is a square matrix, and if a matrix B of the same size can be found such that $AB = BA = I$, then A is said to be invertible (or non-singular) and B is called the inverse of A. If no such matrix B can be found, then A is said to be singular.
Example: Invertible Matrix [1]

Let

\[A = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} \text{ and } B = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix} \]

Then

\[AB = \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \]

\[BA = \begin{pmatrix} 3 & 5 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & -5 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \]

Thus, \(A \) and \(B \) are invertible and each is an inverse of the other.

Theorem: Exactly One Solution [1]

If \(A \) is an invertible \(n \times n \) matrix, then for each \(n \times 1 \) matrix \(b \), the system of equations \(Ax = b \) has exactly one solution, namely, \(x = A^{-1}b \).

Notation

If \(A \) is not an invertible, then the equation has not solutions or has at least two solutions.
Solution vs. Estimator (5/8)

Consider

\[
\begin{pmatrix}
y_1 \\
\vdots \\
y_T
\end{pmatrix} =
\begin{pmatrix}
1 & x_1 \\
\vdots & \vdots \\
1 & x_T
\end{pmatrix}
\begin{pmatrix}
a \\
b
\end{pmatrix}
\]

\[\Rightarrow \quad y = X\beta\]
\[\Rightarrow \quad X'y = X'X\beta\]
\[\Rightarrow \quad X'\beta = X'y\]
\[\Rightarrow \quad (X'X)^{-1}X'\beta = (X'X)^{-1}X'y\]
\[\Rightarrow \quad \beta = (X'X)^{-1}X'y\]

Definition: Matrix Addition and Matrix Subtraction [1]

If \(A\) and \(B\) are matrices of the same size, then the sum \(A + B\) is the matrix obtained by adding the entries of \(B\) to the corresponding entries of \(A\), and the difference \(A - B\) is the matrix obtained by subtracting the entries of \(B\) from the corresponding entries of \(A\). Matrices of different size cannot be added or subtracted.
Example: Matrix Addition and Matrix Subtraction [1]

Consider the matrices

$$A = \begin{pmatrix} 2 & 1 & 0 & 3 \\ -1 & 0 & 2 & 4 \\ 4 & -2 & 7 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -4 & 3 & 5 & 1 \\ 2 & 2 & 0 & -1 \\ 3 & 2 & -4 & 5 \end{pmatrix}, \quad C = \begin{pmatrix} 1 \\ 2 \end{pmatrix}. $$

Then

$$A + B = \begin{pmatrix} -2 & 4 & 5 & 4 \\ 1 & 2 & 2 & 3 \\ 7 & 0 & 3 & 5 \end{pmatrix} \quad \text{and} \quad A - B = \begin{pmatrix} 6 & -2 & -5 & 2 \\ -3 & -2 & 2 & 5 \\ 1 & -4 & 11 & -5 \end{pmatrix}. $$

The expressions $A + C$, $B + C$, $A - C$, and $B - C$ are undefined.

However,

$$\begin{pmatrix} y_1 \\ \vdots \\ y_T \end{pmatrix} = \begin{pmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_T \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \vdots \end{pmatrix} \quad \Rightarrow \quad y = X\beta + \epsilon$$

$$X'y = X'X\beta + X'\epsilon$$

$$\Rightarrow \quad (X'X)^{-1}X'y = \beta + (X'X)^{-1}X'\epsilon$$

$$\Rightarrow \quad \beta = (X'X)^{-1}X'y - (X'X)^{-1}X'\epsilon$$
Definition: Full Column Rank

Let \(A = (a_1, \ldots, a_n) \) be an \((m \times n)\) matrix with \((m \times 1)\) columns \(a_i\). Given an index \(i\), there exist \(b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n\) such that

\[
a_i = b_1a_1 + \cdots + b_{i-1}a_{i-1} + b_{i+1}a_{i+1} + \cdots + b_na_n
\]

Then, the matrix \(A\) is not of full column rank.

This section is based on [2].

Fundamental Assumptions

The ordinary linear regression model is described by the equation

\[
y = X\beta + \epsilon,
\]

where

1. \(X\) is a non-stochastic \(n \times p\) matrix with \(p < n\);
2. the matrix \(X\) has rank \(p\), i.e. \(X\) is of full column rank;
3. the elements of the \(n \times 1\) vector \(y\) are observable random vectors;
4. the elements of the \(n \times 1\) vector \(\epsilon\) are non-observable random variables such that \(E[\epsilon] = 0\) and \(\text{Cov}[\epsilon] = \sigma^2I_n\) with \(\sigma^2 > 0\). We will write \(\epsilon \sim (0, \sigma^2I_n)\) for short.

The linear regression with fundamental assumptions is also called classical linear regression model.
Definition (3/4)

(a) Histogram Plot (b) 2-D Line Plot

Figure: A Classical Linear Regression Model Example

Definition (4/4)

Figure: This X can include commodities prices, product prices, etc.
Notation: Unsolvale Equation System

If we assume that the system of equations $y = X\beta_*$ is solvable with respect to β_*, then a solution β^0 clearly satisfies $\|y - X\beta^0\|^2 = 0$. On the other hand, when we assume that $y = X\beta_*$ is not solvable, then we can nonetheless determine a vector $\hat{\beta}$ such that

$$\|y - X\hat{\beta}\|^2 \leq \|y - X\beta_*\|^2$$

for every vector $\beta_* \in \mathbb{R}^p$.

Definition: Least-Squares Solution

A vector $\hat{\beta}$ is called least squares solution of $y = X\beta_*$ if

$$\|y - X\hat{\beta}\|^2 \leq \|y - X\beta_*\|^2$$

for every vector $\beta_* \in \mathbb{R}^p$.

If we consider $\epsilon_* = y - X\beta_*$ as the residual vector of the solution β_*, then the sum of squared residuals is minimized for $\beta_* = \hat{\beta}$, so that $\hat{\beta}$ has the smallest sum of squared residuals.
Theorem: Least-Squares Estimator

Under the linear regression model with fundamental assumptions, the function

$$f(\beta^*) = \|y - X\beta^*\|^2 = (y - X\beta^*)(y - X\beta^{'})$$

is minimized for $\beta^* = \hat{\beta}$, where $\hat{\beta} = (X'X)^{-1}X'y$. Moreover, the vector $\hat{\beta}$ is called ordinary least-squares estimator of β.

Proposition: Chain Rule for Vector Differentiation [3]

Let α and β be $(m \times 1)$ and $(n \times 1)$ vectors, respectively, and suppose $h(\alpha)$ is $(p \times 1)$ and $g(\beta)$ is $(m \times 1)$. Then, with $\alpha = g(\beta)$,

$$\frac{\partial h(g(\beta))}{\partial \beta'} = \frac{\partial h(\alpha)}{\partial \alpha'} \frac{\partial g(\beta)}{\partial \beta'}.$$
Proof.

By the differentiating the function \(f(\beta_*) \) with respect to \(\beta_* \),
\[
\frac{\partial f(\beta_*)}{\partial \beta_*} = \frac{\partial (y - X\beta_*)'}{\partial \beta_*} \frac{\partial (y - X\beta_*)'}{\partial (y - X\beta_*)} = (-X')(y - X\beta_*)'(I' + I) = -2X'y + 2X'X\beta_*.
\]

and \(\frac{\partial^2 f(\beta_*)}{\partial \beta_*^2} = 2X'X \) is positive definite. The solution is given by \(\hat{\beta} = (X'X)^{-1}X'y \) if we put the right-hand side equal to 0 and solve for \(\beta_* \).

Theorem: Maximum Likelihood Estimator

Under the linear regression model with fundamental assumptions and assumption \(\epsilon \sim \mathcal{N}(0, \sigma^2 I_n) \), the likelihood function
\[
L_T(\beta_*, \sigma^2) = \prod_{t=1}^{T} \Pr(y_t, X_t; \beta_*, \sigma^2) = \prod_{t=1}^{T} \frac{1}{\sigma \sqrt{2\pi}} \exp \left\{ -\frac{(y_t - X_t\beta_*)^2}{2\sigma^2} \right\}
\]
is maximized for \(\beta_* = \tilde{\beta} \), where \(\tilde{\beta} = (X'X)^{-1}X'y \). Moreover, the vector \(\tilde{\beta} \) is called maximum likelihood estimator of \(\beta \).
Proof.

By the definition of likelihood function,

\[
\log L_T(\beta^*_*, \sigma^2) = -T \log \sigma \sqrt{2\pi} - \frac{1}{2\sigma^2} \sum_{t=1}^{T} (y_t - X_t \beta^*_*)^2
\]

\[
= -T \log \sigma \sqrt{2\pi} - \frac{(y - X \beta^*_*)'(y - X \beta^*_*)}{2\sigma^2}
\]

\[
= -T \log \sigma \sqrt{2\pi} - \frac{\|y - X \beta^*_*\|^2}{2\sigma^2}.
\]

Then the proof of ordinary least-squares estimator theorem implies this theorem.

Property (1/3)

Theorem: Unbiased for \(\beta \)

Under the linear regression model with fundamental assumptions,

\[
E [\hat{\beta}] = \beta \text{ and } \text{Cov} [\hat{\beta}] = \sigma^2 (X'X)^{-1}
\]

hold true for \(\hat{\beta} = (X'X)^{-1}X'y \).

Proof.

Since \(y = X\beta + \epsilon \) and \(\epsilon \sim (0, \sigma^2) \),

\[
E [\hat{\beta}] = E [(X'X)^{-1} X' \beta + (X'X)^{-1} X' \epsilon] = \beta
\]

and

\[
\text{Cov} [\hat{\beta}] = E [\hat{\beta}\hat{\beta}^T - \beta\beta^T] = \sigma^2 (X'X)^{-1}.
\]
Definition: Convergence in Probability

A series Y_1, \ldots, Y_n, \ldots of random vectors converges in probability to a fixed c, if

$$\forall i, \lim_{n \to \infty} \Pr [|Y_{n,i} - c| > \epsilon] = 0$$

for every $\epsilon > 0$. The symbol plim denotes convergence in probability.

Definition: Consistent

An estimator $\hat{\beta}$ of β is called consistent for β, if $\text{plim}_{n \to \infty} \hat{\beta} = \beta$ holds true.

Theorem: Consistency

Under the linear regression model with fundamental assumptions, if $\lim_{n \to \infty} \frac{1}{n} X'X = Q$, where Q is symmetric positive definite, then $\hat{\beta}$ is consistent for β. (We call this sufficient condition the asymptotic assumption.)

Proof.

Under the assumptions, $(X'X)^{-1} = O(n^{-1})$ and

$$\text{Cov} \left[\hat{\beta} \right] = \sigma^2 (X'X)^{-1} = O(n^{-1}).$$

Since $E[\hat{\beta}] = \beta$, $\hat{\beta}$ is consistent for β.

Kuan-Lun WANG Fundamental Analysis of Securities Trading
