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Section 1

Estimation
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Statistical Inference

@ Given a random sample with sample size n
(X, Xap ooy Xy}~ £(x;0)

where 0 is an unknown population parameter.

@ For example, suppose we are interested in 6, which is the
(unknown) population proportion of NTU students, who have a

significant other.

(X, X,y ..., X, } ~*4 Bernoulli(0)
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Statistical Inference

@ We would like to find a good guess of the parameter 8: a point

estimator.

@ That is, we would like to come up with a random variable

A

0=06(X,X,...,X,)

that we expect to be close to 6.
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Estimator

Definition

Let {X,, X,,...,X,} be a random sample from the joint distribution
indexed by a parameter 8 € ®. A function 6 = (X, Xs,. .., X,) is
called a point estimator of the parameter 6.

@ O is called a parameter space.

@ When X, =x,, X, =x,,....X, = x, are observed, then

0(x,, x5, ...x,) is called the point estimate of 6.

@ Every estimator is also a statistic (by nature of being a function
of a random sample).
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Estimator

@ There can be more than one unknown parameter:

{Xi}?=1 i f(x’ 91> 62> e ek)

e For example, (0,, 6,) = (u, 0?) denotes the (unknown)
population mean and variance of the S&P500 stock returns.

(X, X5y X}~ N(p, 02)

@ Estimators:
él = ['Al = 81(X1)X2> e )Xn)

0,=6"=6,(X), X, ..., X,)
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How to Guess?

@ Analogy Principle ($8LE/REN)
o Method of Moments (E)Z)%)
@ Method of Maximum Likelihood (&RAMLLE)
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Analogy Principle

@ To estimate the population mean p = E(X), use the sample mean

M:

Xi

:IH

i=1
@ To estimate the population variance
0> = Var(X) = E(X - E(X))?, use the sample variance

Az_ln Y )2 2:;’1 v )2
o —HZ(X, X,)* or S2 n_liz:;(x, X,)

@ In general, to estimate the population moments m; = E(X"), use
the sample moments

lzn:Xj
nio i
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Analogy Principle

@ To estimate distribution function Fx(x) = P(X < x), use the

empirical distribution function.

n
) 2N
Fn(X) - Zl—l ;Xzﬁ }
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Method of Moments

@ The method of moments is simply an application of analogy
principle.

@ Suppose that

(X}~ f(x,0,,0,,...,0;)

@ j-th population moment, which is a function of unknown
parameters
E(X') =mj(6,,6,,...,6k)
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Example

@ For example, let X ~ Uniform[0,, 6, ],

0 1 0,+6,
E(X)—m1(91,92)—f91 xez_eldx—
) . 1 _02+0,0,+ 02
E(X)—m2(91,92)—f61 X 92—91dx_ ;
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Method of Moments

@ We then find él, éz, ces ék to solve the following moment

condition
1S A A A
j _ :_
;ZX" = mij(0,,0,,...,0k) , j=1,2,...,k
=1
— population moments

sample moments

e The solutions: (él, éz,...,ék) are the MM estimators of
(01,0,,...,04)

e k unknown parameters with k moment conditions
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Method of Moments

@ The method of moments involves equating sample moments with
population moments.

@ We impose the condition so that the sample moment is equal to
the population moment: the moment condition

Moment Conditions

m;(8) = %ZLXJ —P L Ex)=mi(8)

30

where 0 = (6,,6,,...,0%), 0=(6,,0,,...,0,)
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Method of Moments

@ The basic idea behind this form of the method is to:

(1) Equate the first sample moment m, = = > X; to the first
theoretical moment E(X).

(2) Equate the second sample moment m, = + 7" X} to the second
theoretical moment E(X?).

(3) Continue equating sample moments m; with the corresponding
theoretical moments E(Xj), j=3,4,... until you have as many
equations as you have parameters.

(4) Solve for the parameters.
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Example

o Let
{Xi}, i U(b,,0.,)

find the MMEs for 6, and 6,

@ Recall that the moments are

0,+0,

E(X)=m,(6,,0,) =

E(X?) = my(6,,0,) = 02+ 6,0, + 0
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Example

@ The moment conditions are

A

1

n 61+é2
_Z E(X):T
i1

ml(él’éZ)

S

A

n 02+ 6,0, + 62
lZX,?:E(XZ):g
n 3

ml(él)éz)
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Example

@ We can solve for 6, and 8, as

élz;z-\ %i(xi—i{)z

éz=x+\ %zn:(xi—)'()z

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 17 /38



Method of Moments: Remarks

@ Note that the Method of Moment Estimator is not unique.

o Different moment conditions may obtain different estimators.

@ In general, we use the first few moments for simplicity.
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Method of Maximum Likelihood

@ Assume
{XibL, ~ f(x,0)
where f(-) is known but 6 is an unknown parameter.

e Joint pmf/pdf (function of random sample)
f(xe ey x030) = f(x30)f(x,30) = Hf(x,»;@)
@ We can also call it a likelihood function of 6:

£(6) = T1/(x:6)
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Maximum Likelihood Estimator (MLE)

@ The maximum likelihood estimator 6

A

0= argn(}e%xﬁ(e)

e To find the value of 8 such that the random sample
{Xi=x,X,=%,,..., Xy = x,} is most likely to be observed.
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Example

@ There are 5 balls in the urn.

@ Let u denote the portion of blue balls in the urn, and 1 -y be the
portion of green balls in the urn.

e u is the unknown parameter

@ The random sample is {X,, X,,..., X, }, where

1 If the ball is blue,
o If the ball is green.

i
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Example

@ It is clear that
X; ~"4- Bernoulli(u)

o Let .
Yo=Xi+Xo++ X0 = ZXi

i=1

Y, represents the number of blue ball, and

Y,, ~ Binomial(10, )
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Likelihood Function

Consider the following two possible samples

@ Sample 1: Y, =7

P(Yio=7) = ()W (1-p)}

1/5
2/5
3/5
4/5
5/5
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Likelihood Function

@ Sample 2: Y, =2
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u | P(Yio=2) = ()p*(1—p)®
0 0

1/5 0.301990

2/5 0.120932

3/5 0.010617

4/5 0.000074

5/5 0
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Likelihood Function

Sample 1: Yo =7 Sample 2: Y, =2
b P(Sy=7) = ()W a-p) | P(S;=2) = ()w(-u)®
0 0 0
1/5 0.000786 0.301990
2/5 0.042467 0.120932
3/5 0.214991 0.010617
4/5 0.201327 0.000074
5/5 0 0

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 25/38



Maximum Likelihood Estimator

e If £(0) is differentiable, then the MLE is the solution to:
0L(0)
a0 °

@ Note that

A

0 = argmax £(0) = argmaxlog £(6)
@ So the MLE is also the solution to:

dlog L(6) o
0

where log £(8) is called the log likelihood function
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Examples

o Let {X;}" ~"d Bernoulli(#), then the likelihood function is

/.:([4) - H#Xi(l _ lu)l*xi - ‘uZz'xi(l _ #)H*Zixi

i=1

@ The log likelihood function is

logL(u) = (Zx,»)logy + (n - Zx,-)log(1 - u)

e It can be shown that the estimate is ji = izix,», and hence the

estimator is
s 1 .
= YXi=X

i
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. L

Important Property of MLEs: Invariance

Theorem

If § is the MLE of 0, and let T(8) be a function of 8, then = 7(6)
is the MLE of 7(0).

e Example:

o Given

{X; 3~ Bernoulli( )

o The MLE of Var(X,) =u(1—pu) is

Var(X,) = i1 - i) = X(1- X)
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Evaluating Estimators

Section 2

Evaluating Estimators
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Evaluating Estimators

Criteria for Evaluating Estimators

@ Unbiased
o Efficient

@ Consistent
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Evaluating Estimators

Unbiasedness

Definition (Unbiasedness)
0 is unbiased if E(§) =0 J

@ Hence, bias can be defined as

B(0) =E(9)-6
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Evaluating Estimators

Unbiasedness

e Given {X;}" ~id. (¢, 0*). By analogy principle,

o X = Zimki

n -
6'2 — Z?:l():'_x)z

]
@ |t can be shown that
o E(X)=u
o E(6%)="20>#0"
@ Hence, to obtain unbiased estimator for o2, let
(1) im0
n

-1 n-1

so that E(8?) = o2.
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Evaluating Estimators

Minimum Variance Unbiased Estimator (MVUE)

Definition (MVUE)

0 is an MVUE of 6 if and only if

o E(0)=6

o Var() < Var(6*) for all §* such that E(8*) =6

Shiu-Sheng Chen (NTU Econ)

Statistics

Fall 2019

33/38



Evaluating Estimators

Efficient

Definition (Relatively Efficient Estimator)

Given two unbiased estimators: 6 and 6. We say that 6 is more
efficient than 0 if
Var(0) < Var(0)

o {X;} ~id (u,0?)
@ Consider the following two estimators

X = X, + Xio0

e Both X and X are unbiased
o But Var(X) < Var(X) when n > 2.
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Evaluating Estimators

Unbiased vs. Efficient

@ Given two unbiased estimators, the one with smaller variance is
better.

@ How to compare

o Unbiased estimators with higher variance vs. Biased estimators

with lower variance
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Mean Squared Error (MSE)

Definition (Mean Squared Error)
Mean Squared Error (MSE) is defined by

MSE(8) = E[(6 - 6)?]

@ Note that
MSE(6,) = Var(8,) + (B(9))>

@ The estimator with smaller MSE is called an MSE efficient

estimator.
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Evaluating Estimators

Example

e Given {X;}", ~d Ny, 0%)
o Let

h n-1 "

@ |t can be shown that
MSE(6*) < MSE(S?)

@ That is, compared to S?, 62 is MSE efficient.
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Evaluating Estimators

Consitent

Definition (Consistent Estimator)

An estimator @ is a consistent estimator of 0, if

6, 20

o Example: {X;}r ~'d (u,0?),

e By WLLN
X, Loy
e By WLLN and CMT
2 p 2
S — o0
A2 p 2
0 — 0
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