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Moments
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Moments

@ Moments can help us to summarize the distribution of a random
variable.
e Analogy to: the height, weight, hair color...etc. of a person
o Essential but Concise
@ Two important moments:

o Expectation

e Variance
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Expectation

Definition (Expectation)
Let S = supp(X). The expectation of a random variable X is defined
as

YeesXf(x)  discrete

E(X) =
Jesxf(x)dx  continuous

e Expected value; Mean (value)
@ A probability-weighted sum of the possible values.

o Expectation is a constant.

o Conventional notation: E(X) =y
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Example: Fair Price for a Stock

@ An investor is considering whether or not to invest in a stock for
one year.
@ Let Y represent the amount by which the price changes over the

year with the following distribution

y -2 0o 1 4

f(y) 01 0.4 03 o2

@ Then the expected earning is
E(Y)=0.9

That is, “on average, the investor expects to earn 0.9." < What

does this mean?
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Simulation Results and Interpretation

@ If you invest in this stock N years. Let Y; denote the price change

for year i, and the average earning is thus
=N lYi

@ We can see that
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Expectation

Theorem (The Rule of Lazy Statistician)

Let X be a random variable, and let g(-) be a real-value function.
Then

Xx §(x)f(x)
/. 8(x)f(x)dx

E(¢(X)) ={

e Example:
2 with P(X=2)=1/3
X=4 1 withP(X=1)=1/3
-1 with P(X =-1) =1/3

o Consider g(X) = X?, find E(g(X)) =7
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Variance and Standard Deviation

Definition (Variance/SD)
The variance of a discrete random variable X is defined by

Yx(x - E(X))*f(x)

Var(X) = E[(X - E(X))*] =
(X) = E[(X-E(X))’] [ (5~ B f(x)dx

@ It describes how far values lie from the mean.
e Conventional notation: Var(X) = 02

@ The standard deviation is SD(X) =+/Var(X), and denoted by
SD(X) =o.
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Constant as a Random Variable

@ Given a constant ¢, then
E(c) =c,

and
Var(c) =o.

@ Therefore,
E(E(X)) = E(X)
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Some Important Properties

@ Given constants a and b:

E(aX+b)=aE(X)+b
Var(aX +b) = a*Var(X)

@ |t can shown that
E(X-E(X))=o0

Var(X) = E(X*) - [E(X)]?
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_____________________Voreo]

Example: Fair Price for a Stock

Definition
The fair price of a stock is defined by a price such that the expected
return equals the risk free rate.

@ Suppose that the stock price is p.

@ The return is

(p+Y)-p Y
p p

@ As an alternative, the investor can put the money in the bank

with a 5% interest rate (risk-free).
@ Recall that E(Y) = 0.9. Hence, E (%) = 0.05 shows that p =18 is
the fair price of the stock.
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Expectation as the Best Constant Predictor

@ Consider a constant predictor of X, say c.

@ Mean Square Prediction Error
MSPE = E[(X - ¢)*]
@ It can be shown that

E(X) = arnginE [(X-¢)*]
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More on Expectation

@ In general, unless g(-) is linear,

E(g(X)) * g(E(X))

o For instance, in the previous example, g(X) = X2,
E(X*) =2+ 2= [E(O)]
9

@ One more example,

1 1
E(=]+
(X) E(X)
@ Proof: by Jensen's Inequality
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Jensen’s Inequality

Theorem
If X is a random variable and g(-) is a convex function, then

E(g(X)) 2 g(E(X))

Proof.
Since g(+) is a convex function, there exist some constants a and b
such that g(X) >aX +b, and g(E(X)) = aE(X) + . O

v
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Standardized Random Variables

@ As expectation and variance are the two most important

moments, sometimes we will denote the random variable as

X ~(E(X),Var(X)) or X~ (u,0%)

Definition (Standardized Random Variables)
Given X ~ (u,0?), and let

Then Z ~ (0,1) is called a standardized random variable.
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Moments

@ k-th Moments
E(X%)

@ k-th Central Moments
E[(X - E(X))"]

@ k-th Standardized Moments

_F X—E(X)k
Ve
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Expectation

@ E(X)=ovs. E(X)=5(Var(X) =1)
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Variance

e Var(X)=1vs. Var(X) =9 (E(X) =0)
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Skewness

3
@ 3rd standardized moment (Skewness): y, = E [(—X_E(X) ) ]

@ y,>0
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Kurtosis

4
@ 4th standardized moment (Kurtosis): y, = E [(j\_,f—r(—(xx))) ]
o Excess Kurtosis =y, -3

o Fat tail: Excess Kurtosis > o
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Moment Generating Functions

Section 2

Moment Generating Functions
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Moment Generating Functions

Moment Generating Functions

Definition (MGF)
Let X be a discrete (continuous) random variable, and the pmf (pdf)
is f(x). Given h > o and for all —h < t < h, if the following function

Mx(t) = E(e'*)

exists and is finite, it is called the moment generating function
(MGF) of the random variable X.

@ One use the MGFs is that, in fact, it can generate moments of a

random variable.
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Moment Generating Functions

Properties

Theorem (Moment Generating)
k k
E(X*) = M (0) = My (1) o

where M)((k)(t) denotes the k-th derivative of Mx(t).

@ Proof: expand eX as

GO G
2! 3! 4!

e =1+1tX+

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019

23 /57



Moment Generating Functions

Properties

Theorem (Uniqueness)
For all t € (=h, h), if Mx(t) = My(t), then X and Y has exactly the
same distribution, Fx(c) = Fy(c) for all ¢ e R.

@ Proof: Beyond the scope of this course (via so-called the inverse

Fourier transform).
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Moment Generating Functions

Properties

Theorem (MGF of Linear Transformations)
Given the MGF of X is Mx(t). Let Y =aX + b, then

My (t) = e Mx(at).

@ Proof: By definition.
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Moment Generating Functions

Examples

Find the MGFs of the following random variables:
e X ~ Bernoulli(p)

e X ~ Binomial(n, p)

e X ~ Uniform[[, h]

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 26 /57



Covariance and Correlation

Section 3

Covariance and Correlation
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Covariance and Correlation

Expected Values of Functions of Bivariate Random Variables

Definition
Let X and Y be discrete (continuous) random variables with joint

pmf (pdf) fxy(x,y). Let g(X,Y) be a function of these two random

variables, then:

[g(X,Y)] =Zzg(x,y)fxy(x,y)
Xy

Elg(X, 1)) = [ [ 8(6.7)fir e, y)dyds
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Covariance and Correlation

Covariance

Definition (Covariance)

Cov(X,Y) = E([X - E(X)][Y - E(Y)])

@ It is typically denoted by oxy.

@ A measurement of comovement among two random variables.

x-E(X) | y-E(Y) | Cov(X,Y)
+ +
+ _ _
_ " _

@ |t can be shown that

Cov(X,Y) = E(XY) - E(X)E(Y)
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Covariance and Correlation

Properties

Theorem
Given constants a, b, ¢, and d

o E(aX+bY) = aE(X) + bE(Y)

e Cov(X,X) = Var(X)

e Cov(X,c)=o0

e Var(aX+0bY)=a*Var(X)+b>Var(Y) +2abCov(X,Y)

e Cov(X,Y)=E(XY)-E(X)E(Y)
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Covariance and Correlation

Correlation Coefficient

Definition (Correlation Coefficient)

The correlation coefficient is defined by

Cov(X,Y)
\/Var(X)\/Var(Y)

pxy = Corr(X,Y) =

@ A unit-free measure of comovement.
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Covariance and Correlation

Correlation Coefficient

Theorem
The correlation coefficient lies between 1 and -1:

-1<pxy <1

@ Proof: by Cauchy-Schwarz inequality,

[E(UV)]* < E(U*)E(V?)
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Covariance and Correlation

Correlation Coefficient

o Note:

e pxy =1 (perfect correlation)
e pxy = —1 (perfect negative correlation)

e pxy = o (zero correlation, no correlation, uncorrelated)

@ However, no correlation does not mean that there is no
relationship between X and Y

@ It just suggests that there is no linear relationship between X and
Y
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Independent Bivariate Random Variables

Section 4

Independent Bivariate Random Variables
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Independent Bivariate Random Variables

Expectation of Functions of Independent Bivariate Random Variables

Theorem
Let X and Y are independent variables. Then

E[g(X)h(Y)] = E[g(X)JE[h(Y)]
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Independent Bivariate Random Variables

Independent Bivariate Random Variables and MGF

Theorem
X and Y are independent random variables. Their MGFs are Mx(t)
and My (t), respectively. Let Z =X +Y, then

My(t) = My(t)My(t)

@ Proof. By definition and the previous theorem.

e Example: Revisit the MGF of a Binomial(n,p) random variable
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Independent Bivariate Random Variables

Independent Bivariate Random Variables

Theorem
Given that X and Y are independent:

o E(XY)=E(X)E(Y)
e Cov(X,Y)=o0

o Var(X+Y) =Var(X) + Var(Y)
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Independent Bivariate Random Variables

Independent vs. Uncorrelated

@ X, Y independent implies X, Y uncorrelated, however, the reverse

is not true.

o Independence require all possible realizations x and y to satisfy
P(X=x,Y=y)=P(X=x)P(Y =y).
o To check X, Y uncorrelated, only one equation needs to hold:

22 (x—E(X))(y-E(Y))P(X=x,Y = y) =o.
Xy
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Independent Bivariate Random Variables

Example

@ Consider random variable X has the following distribution:

x P(X=x)
113
0 1/3
1 1/3

@ Now let Y = X?

@ It can be shown that Cov(X,Y) = o but clearly they are not
independent.
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Conditional Expectation and Variance

Section 5

Conditional Expectation and Variance
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Conditional Expectation and Variance

Conditional Expectation

Definition

The conditional expectation of Y given X = x is

E(YIX=x) =) yfrxex(¥)
y

E(Y|X =x) = f ¥ i (7)dy

@ Hence, E(Y|X =x) = g(x)

@ Since E(Y|X = x) is a function of x, it follows that
E(Y|X) = g(X)
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Conditional Expectation and Variance

Conditional Variance

Definition

The conditional variance of Y given X = x is

Var(Y|X = x) = E([Y - E(Y|X = x) X = x)

@ Hence, Var(Y|X = x) = h(x)

@ Since Var(Y|X = x) is also a function of x, it follows that
Var(Y|X) = h(X)
@ It can be shown that (will be shown later)

Var(Y|X = x) = E(Y?X = x) - [E(Y|X = x)]?
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Conditional Expectation and Variance

Example

@ Given two continuous random variables X and Y with joint pdf

3

fxy(x,y) = 2’
supp(Y) = {ylx* <y <1}, supp(X) = {x[o <x <1}
o Find fyjx—x(y), E(Y|X =x), and E(Y|X =1/2).
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Conditional Expectation and Variance

Important Theorems

Theorem
o Useful Rule

E[h(X)Y|X] = h(X)E[Y|X]

e Simple Law of Iterated Expectation

E(E[Y|X]) = E(Y)

E(E[XY|X]) = E(XY)

@ Application:
Var(Y|X) = E(Y?|X) - [E(Y|X)]?
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Conditional Expectation and Variance

Example

@ Given two continuous random variables X and Y with joint pdf

fxr(x,y) = Z

supp(Y) = {ylx* <y <1}, supp(X) = {x[o < x <1}
e Find E(Y?|X =x), Var(Y|X =x), and Var(Y|X =1/2).
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Conditional Expectation and Variance

Important Theorems

Theorem (Variance Decomposition)

Var(Y) = Var(E(Y|X)) + E(Var(Y]X))

o Example:
X ~ Bernoulli(P)

where
P ~ Uniform[0,1]

Find E(X) and Var(X).
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Conditional Expectation and Variance

Important Theorems

Theorem (Best Conditional Predictor)
Conditional expectation E(Y|X) is the best conditional predictor of Y

in the sense of minimizing the conditional mean squared error:

E(Y[X) = arg{gr(l)ig)lE[(Y—g(X))z]
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Example: GPA vs. Study Hours

@ Let Y = GPA, X = Study Hours
e We would like to know E(Y|X) (to forecast Y)
@ We further assume that E(Y|X) is a linear function:

E(Y|X) = a+BX

@ |t can be shown that

E(XY) - E(X)E(Y) _Cov(X,Y)

p= E(X?)-E(X):  Var(X)

a = E(Y) - BE(X)
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Example: GPA vs. Study Hours

@ We can define the forecast error as
e=Y-E(Y|X)=Y - (a+BX)
@ Hence,

Y=a+pX+e€

o Interpretation: your GPA is determined by

(a) Systematic Part: a + X, which can be explained by study hours
(b) Irregular Part: €, which captures other factors other than study
hours. For instance, good/bad luck, mood, illness, etc.
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Multivariate Random Variables

Section 6

Multivariate Random Variables

Shiu-Sheng Chen (NTU Econ) Statistics Fall 2019 50/57



Multivariate Random Variables

Expected Values of Functions of Random Variables

@ For discrete random variables, the expected values of
g(X,, X,,..., X,) is given by

E[g(X,, X,, ..., X0)]
= Z Zg(xl, Xosenn ,xn)fx(xl,xz) cee ’xn)

@ For continuous random variables,

E[g(Xl,XZ,...,Xn)]
sz g(x0, o xn) fx (%0, -0, X% )d Xy -dx,
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Multivariate Random Variables

Properties

i=1
Var Zn:XZ =Zn:Var(X)+2Zn:l lCov(XZ,X)
i=1 i=1 i=1 j=1
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Multivariate Random Variables

Expectation of Functions of Independent Random Variables

Theorem
Let X,,X,,...,X, are independent variables. Then

E[h(X,)h(X,)--h(X,)] = E[h(X,) |E[h(X,)]--E[h(X,)]
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Independent Random Variables and MGF

Theorem
X,, X,,..., X, are independent with MGF: Mx, (t), My, (t),...,
My, (t). Let Y =Y X;, then

My (t) = My, (£) My, (£)Mx, (1) = ] Mx, (1)

i=1
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[ID Random Variables

o Given that {X;}" arei.i.d. random variables.

o Clearly,
E(X,) = E(X,) = = E(X,)

Var(X,) = Var(X,) == Var(X,)
Cov(X;,X;) =0 foranyi#j

@ |.I.D. random variables with mean y and variance o2 are denoted
by
{Xi}?:l idd. (M’ 02)
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Multivariate Random Variables

Properties of i.i.d. Random Variables

Theorem

Let {X;}" arei.id. random variables with E(X;) = u and
Var(X;) = 02, and let

Y=>X,.

1=1

Then
E(Y) = ny,

Var(Y) = no*.
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Multivariate Random Variables

Example
o Let
{X;}r, ~*4 Bernoulli(p)
e That is,
E(X;)=p and Var(X;)=p(-p)
o Let .
Y=> X,

o What is the distribution of Y?
e Find E(Y) and Var(Y)
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