Statistics

Random Variables

Shiu-Sheng Chen

Department of Economics
National Taiwan University

Fall 2019

Section 1

Random Variables

Random Variables

- In practice we are interested in certain numerical measurements pertaining to a random experiment.
- For example,

$$
\begin{gathered}
\Omega=\{H, T\} \\
X= \begin{cases}1, & \text { if } H \\
-1, & \text { if } T\end{cases}
\end{gathered}
$$

- Then X is called a random variable.

Random Variables: A Formal Definition

Definition

A random variable X is a real-value function from the sample space to the real numbers:

$$
X: \Omega \longmapsto \mathbb{R}
$$

and it assigns to each element $\omega \in \Omega$ one and only one real number $X(\omega)=x$.

- Small letter x denotes the possible value of a random variable X.

Example: Flip a Fair Coin Twice

- The sample space is

$$
\Omega=\{H H, H T, T H, T T\}
$$

- Let X be the number of heads.
- The mapping is

ω	$X(\omega)$
$\{H H\}$	2
$\{H T\}$	1
$\{T H\}$	1
$\{T T\}$	0

Example: Flip a Fair Coin Twice

- How to assign probability $P(X=x)$?
- For example,

$$
\begin{aligned}
P(X=1) & =P(\{\omega: X(\omega)=1\}) \\
& =P(\{H T, T H\}) \\
& =P(\{H T\} \cup\{T H\}) \\
& =P(\{H T\})+P(\{T H\})=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}
\end{aligned}
$$

Random Variables

- In the previous example, the set of all possible values that X can assume are finite.
- According to the set of all possible values that a random variable can assume, we define two types of random variables.
(1) Discrete random variables
(2) Continuous random variables

Section 2

Discrete Random Variables

Discrete Random Variables

- A random variable X is a discrete random variable if:
- there are a finite number of possible values of X, or
- there are a countably infinite number of possible values of X.
- Recall that a countably infinite number of possible values means that there is a one-to-one correspondence between the values and the set of positive integers.

Examples

- The number of defective light bulbs in a box of six.

$$
\text { Set of all possible values of } X=\{0,1,2,3,4,5,6\}
$$

- The number of tails until the first heads comes up.

$$
\text { Set of all possible values of } X=\{0,1,2,3, \ldots\}
$$

- We use the probability distribution to describe the likelihood of obtaining the possible values that a random variable can assume.

Probability Distribution

Definition (Probability Distribution)
Let X be a random variable. The probability distribution of X is to specify all probabilities involving X.

- One way to specify the probability distribution of discrete random variables is the probability mass function.

Probability Mass Function

Definition (Probability Mass Function)
Given a discrete random variable X. A probability mass function (pmf), $f(x): \mathbb{R} \mapsto[0,1]$ is defined by

$$
f(x)=P(X=x)
$$

- A probability mass function is also called a discrete probability density function (discrete pdf).
- A preferable notation: $f_{X}(x)$

Probability Mass Function

Definition (Support)
The support of a random variable X is defined as:

$$
\operatorname{supp}(X)=\{x: f(x)>0\}
$$

- Properties:

$$
\sum_{x \in \operatorname{supp}(X)} f(x)=1
$$

An Example of pmf

Example 1: Flip a Fair Coin Twice

- The sample space is $\Omega=\{H H, H T, T H, T T\}$
- Let X be the number of heads.

Table: Mapping and Probability Distribution

ω	$P(\{\omega\})$	$X(\omega)$
$T T$	$1 / 4$	0
$T H$	$1 / 4$	1
$H T$	$1 / 4$	1
$H H$	$1 / 4$	2

x	$f(x)=P(X=x)$
0	$1 / 4$
1	$1 / 2$
2	$1 / 4$

- Clearly, $\operatorname{supp}(X)=\{0,1,2\}$, and $\sum_{x \in \operatorname{supp}(X)} f(x)=1$
- Q: let $A=\{X \leq 1\}$, what is $P(X \in A)$?

Example 1: Flip a Fair Coin Twice

- Probability mass function (alternative notation)

$$
f(x)=P(X=x)= \begin{cases}1 / 4 & \text { if } x=0 \\ 1 / 2 & \text { if } x=1 \\ 1 / 4 & \text { if } x=2\end{cases}
$$

Example 1: Flip a Fair Coin Twice

Example 2: Bernoulli Random Variable

Definition (Bernoulli Random Variable)
A random variable X is said to have a Bernoulli distribution with success probability p if X can only assume the values 0 and 1 , with probabilities

$$
f(1)=P(X=1)=p, \quad f(0)=P(X=0)=1-p
$$

We write $X \sim \operatorname{Bernoulli}(p)$.

- Find its support, and probability mass function.

Example 3: Binomial Random Variables

Definition (Binomial Random Variable)

A random variable Y has the binomial distribution with parameters n and p if the probability mass function is

$$
f(y)=\binom{n}{y} p^{y}(1-p)^{n-y}, \operatorname{supp}(Y)=\{y \mid y=0,1,2, \ldots, n\}
$$

It is denoted by $Y \sim \operatorname{Binomial}(n, p)$

- By the binomial theorem, $(a+b)^{n}=\sum_{y=0}^{n}\binom{n}{y} a^{y} b^{n-y}$,

$$
\sum_{y=0}^{n} f(y)=1
$$

Example 3: Binomial Random Variables

- Bernoulli vs. Binomial
- Bernoulli (p) is used to model a single coin toss experiment.
- Binomial (n, p) is used to model the number of heads in a sequence of n independent coin toss experiment.
- Clearly, they are linked by

$$
Y=X_{1}+X_{2}+\cdots+X_{n},
$$

where $Y \sim \operatorname{Binomial}(n, p)$, and $X_{1}, X_{2}, \ldots, X_{n}$ are independent Bernoulli (p) variables.

Probability Distribution

Consider X ~ Bernoulli(0.5)

Probability Distribution

Consider X ~ Binomial(10, 0.5)

Section 3

Continuous Random Variables

Continuous Random Variables

- A random variable is called continuous if it can takes on an uncountably infinite number of possible values.
- The percentage of exam complete after 1 hour
- The weight of a randomly selected quarter-pound burger

Continuous Random Variables

- Though a continuous variable can take any possible value in an interval, its measured value cannot. This is because no measuring device has infinite precision.
- Nevertheless, continuous random variables offer reasonable approximations to the underlying process of interest even though virtually all phenomena are, at some level, ultimately discrete.

How to Assign Probability?

- Discrete: flip a coin or roll a die.
- How about spinning a spinner?
- Let X be the result of the spin.
- Warning! Impossible to assign each outcome positive probability. Why?

How to Assign Probability?

- Suppose NOT, and let the spinner be fair.
- Each outcome has probability $p>0$.
- Let $A \subset \Omega$ be an event that contains n distinct outcomes.
\Rightarrow Choose n large enough s.t. $p>\frac{1}{n}$.
- Then $P(X \in A)=n p>1$ (Big Trouble!)

How to Assign Probability?

- Hence p must be zero!
- That is, if X is a continuous random variable,

$$
P(X=c)=0
$$

- How can $P(X=c)=$ o make sense? Can many nothings make something?
- Think about the length of a point vs. the length of an interval.
- A Zero-probability event is NOT an impossible event.

Continuous Random Variables

Definition (Continuous Random Variables)
A random variable X is continuous if there exists a function $f: \mathbb{R} \mapsto \mathbb{R}$ and for any number $a \leq b$,

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

- The function $f(\cdot)$ is called the probability density function (pdf).

Probability Density Function

- In general, if the support for a continuous random variable is not specified, we assume that

$$
\operatorname{supp}(X)=\{x:-\infty<x<\infty\}
$$

- The pdf is nonnegative

$$
f(x) \geq 0, \quad \forall x
$$

- The integral over the support of X is one

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

Probability Density Function

- Since $P(X=c)=0$ for any real value c,

$$
\begin{aligned}
& P(a \leq X \leq b) \\
& \quad=P(a<X<b) \\
& \quad=P(a \leq X<b) \\
& \quad=P(a<X \leq b)
\end{aligned}
$$

Probability Mass Function vs. Probability Density Function

- pmf (discrete pdf):

$$
f(x): \mathbb{R} \mapsto[0,1], \quad f(x)=P(X=x)
$$

- pdf:

$$
f(x): \mathbb{R} \mapsto \mathbb{R}^{+}, \quad f(x) \neq P(X=x)
$$

- That is, density is not probability.

Example 1: Uniform Random Variable

Definition (Uniform Random Variable)

A random variable X is said to have a uniform distribution on the interval $[l, h]$ if its pdf is given by

$$
f(x)=\frac{1}{h-l}, \quad l \leq x \leq h
$$

We write $X \sim U[l, h]$.

- The probability that X falls in the sub-interval $[a, b]$ is

$$
P(a \leq X \leq b)=\frac{b-a}{h-l} .
$$

Uniform Distribution

Section 4

Cumulative Distribution Function

Cumulative Distribution Function

- An alternative way to specify the probability distribution is to give the probabilities of all events of the form

$$
\{X \leq x\}, \quad x \in \mathbb{R}
$$

- For example, what is the probability that the resulting number by rolling a die is smaller than 3.8 ?
- This leads to the following definition of cumulative distribution function.

Cumulative Distribution Function

Definition (Cumulated Distribution Function)

Given any real variable x, a function $F(x): \mathbb{R} \mapsto[0,1]$:

$$
F(x)=P(X \leq x)
$$

is called a cumulated distribution function (CDF), or distribution function.

- A preferable notation: $F_{X}(x)$
- It should be emphasized that the cumulative distribution function is defined as above for every random variable X, regardless of whether the distribution of X is discrete, or continuous.

Cumulative Distribution Function

- If X is discrete,

$$
F(x)=P(X \leq x)=\sum_{u \leq x} P(X=u)=\sum_{u \leq x} f(u)
$$

- If X is continuous,

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(u) d u
$$

Cumulative Distribution Function

Theorem (Properties of CDF)
Let $F(x)$ be the CDF of a random variable X. Then,

- If $a<b$, then $F(a) \leq F(b)$ and $P(a<X \leq b)=F(b)-F(a)$.
- $\lim _{x \rightarrow-\infty} F(x)=0$, and $\lim _{x \rightarrow \infty} F(x)=1$
- $F(x)=\lim _{\delta \rightarrow 0} F(x+\delta)$

CDF: Discrete Random Variable

$\operatorname{supp}(X)=\left\{x_{1}, x_{2} x_{3}\right\}$

CDF: Continuous Random Variable

Example 1: Bernoulli(p)

- Given the pmf of $X \sim \operatorname{Bernoulli}(p)$,

$$
f(x)= \begin{cases}p, & x=1 \\ 1-p, & x=0\end{cases}
$$

- The CDF is

$$
F(x)=P(X \leq x)= \begin{cases}0, & x<0 \\ 1-p, & 0 \leq x<1 \\ 1, & 1 \leq x\end{cases}
$$

Example 1: Bernoulli(p)

Example 2: Uniform $[l, h]$

- Given $X \sim$ Uniform $[l, h]$, the pdf is

$$
f(x)=\frac{1}{h-l}
$$

- The CDF is

$$
F(x)=\int_{l}^{x} f(u) d u=\int_{l}^{x} \frac{1}{h-l} d u=\frac{x-l}{h-l}
$$

Example 2: Uniform $[l, h]$

$$
F(x)
$$

Section 5

Quantiles

Quantiles

Definition (Quantiles)
Let F denote the CDF of a random variable X. The function

$$
\pi_{p}=F^{-1}(p)=\inf \{x \mid F(x) \geq p\}
$$

is called the $100 p$-th quantile of $X . F^{-1}(\cdot)$ is called the inverse distribution function.

- Given $p=0.5$, the 50 -th quantile, $\pi_{0.5}$, is called the median.
- If F is strictly increasing,

$$
\pi_{p}=F^{-1}(p)=\{x \mid F(x)=p\}
$$

