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1. Introduction. The Dupire formula enables us to deduce the volatility function in a local volatility
model from quoted put and call options in the market!. In a local volatility model the asset price model
under a risk-neutral measure takes the form

Here pu(t) = r(t) — q(t) in the usual notation, (), ¢(-) are possibly time varying, but deterministic and W
is Brownian motion. The forward price for delivery at time T is then F} = F'(¢t,T) = S¢ exp(ftT u(s)ds)
and it is easily seen that F} is a martingale, satisfying

dFt = O'(t, Ft)Ftth,
where
o(t,x) = &(t,me Ji #E)ds),

and of course Fr = Sp. If we have a call option with strike K and exercise time T then its forward price
in this model is
o0

(1.2) O(T, K) = / (z — K)$(T, z)dx

K

where ¢(T,-) is the density function of the r.v. Sy (assumed to exist). The actual market price at time
0 would be p = C(T, K)e~ JTr(9)ds If we differentiate (1.2) twice we obtain

(1.3) STC( =— /: P(zx)de = (T, K) — 1
(1.4) % = ¢(T, )

where ®(T),-) is the distribution function of Sp. These relations are known as the Breedon-Litzenberger
formulas.

2. The forward equation. For any ¢ < T and (say bounded measurable) function h let v(¢,x) =
E[h(Fr)|F; = x]. We have by iterated conditional expectation

E[h(Fr)] = E[E[A(Fr)|F]]
:/0 v(t, z)P(t, z)dx.

Since the LHS does not depend on ¢ then neither does the RHS, so differentiating w.r.t. ,

v < ¢
2.1 0= —od. —dx.
(2.1) ; atqb x +/0 v 0T
We know from It6 calculus that v satisfies the backward equation
ov 1 4 5 0%
R — _— = T =
5 + 57 (t,x)x 92 0, o(T,z) = h(x)

so with v = 9v/0x etc. (2.1) becomes
0= —/ —o2220" pdx —|—/ v—dz.
0o 2 o Ot

Integrating by parts twice in the first integral gives

_ > l 2.2 /1_%
0—/0 <2(033 ?) 6t>vda:.

Since h and hence, essentially, v is arbitrary, we conclude that ¢ satisfies the forward equation
dp 1 0?

(2.2) 9t~ 2042

(02(15, x)x2¢).

LWARNING: The calculations presented here are formal. The formulas are correct (I hope!) but no attempt has been
made to state conditions under which they are valid.



3. Dupire’s equation. From (1.2) we have

oC [ ¢
B—T(T,K)—/K (x—K)a—T(T,x)dx
1

=5 /K (022%¢)" (x — K)dx [using (2.2)]

1 oo
=5 / (0%z%¢)'1dx [integrating by parts]
K

302 (T, K)K?*¢(T, K)

e O .
=50 (T,K)K 92 (T, K). [using (1.4)].

This gives us Dupire’s formula for the local volatility, expressed entirely in terms of the volatility surface

c(,-):

(3.1)

1 [20C/0T(T,K)
R\ e/ E)

4. Constructing a local volatility model. The procedure is as follows.

1.

.

Assemble the data, consisting of a matrix of quoted option prices {C(T;, K;),Z =1,...,N,j =
1,..., M (i)} together with the yield curve (to determine r(¢)) and dividend information (to
determine ¢(t)).

Interpolate and extrapolate these prices (or, more likely, the corresponding Black-Scholes implied
volatilities) to produce a smooth volatility surface C.

Calculate (T, F') from (3.1) and compute the corresponding (T, S)

The price model is S; given by (1.1).

Now we can calculate the prices of other options by finite-difference methods or Monte Carlo.



