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1. Introduction. The Dupire formula enables us to deduce the volatility function in a local volatility
model from quoted put and call options in the market1. In a local volatility model the asset price model
under a risk-neutral measure takes the form

(1.1) dSt = μ(t)Stdt + σ̃(t, St)StdWt.

Here μ(t) = r(t)−q(t) in the usual notation, r(∙), q(∙) are possibly time varying, but deterministic and W

is Brownian motion. The forward price for delivery at time T is then Ft = F (t, T ) = St exp(
∫ T

t
μ(s)ds)

and it is easily seen that Ft is a martingale, satisfying

dFt = σ(t, Ft)FtdWt,

where

σ(t, x) = σ̃(t, xe−
∫ T

t
μ(s)ds),

and of course FT = ST . If we have a call option with strike K and exercise time T then its forward price
in this model is

(1.2) C(T,K) =
∫ ∞

K

(x − K)φ(T, x)dx

where φ(T, ∙) is the density function of the r.v. ST (assumed to exist). The actual market price at time
0 would be p = C(T,K)e−

∫ T
t

r(s)ds. If we differentiate (1.2) twice we obtain

∂C

∂K
= −

∫ ∞

K

φ(x)dx = Φ(T,K) − 1(1.3)

∂2C

∂K2
= φ(T, x)(1.4)

where Φ(T, ∙) is the distribution function of ST . These relations are known as the Breedon-Litzenberger
formulas.

2. The forward equation. For any t < T and (say bounded measurable) function h let v(t, x) =
E[h(FT )|Ft = x]. We have by iterated conditional expectation

E[h(FT )] = E [E[h(FT )|Fs]]

=
∫ ∞

0

v(t, x)φ(t, x)dx.

Since the LHS does not depend on t then neither does the RHS, so differentiating w.r.t. t,

(2.1) 0 =
∫ ∞

0

∂v

∂t
φdx +

∫ ∞

0

v
∂φ

∂t
dx.

We know from Itô calculus that v satisfies the backward equation

∂v

∂t
+

1
2
σ2(t, x)x2 ∂2v

∂x2
= 0, v(T, x) = h(x)

so with v′ = ∂v/∂x etc. (2.1) becomes

0 = −
∫ ∞

0

1
2
σ2x2v′′φdx +

∫ ∞

0

v
∂φ

∂t
dx.

Integrating by parts twice in the first integral gives

0 =
∫ ∞

0

(
1
2
(σ2x2φ)′′ −

∂φ

∂t

)

v dx.

Since h and hence, essentially, v is arbitrary, we conclude that φ satisfies the forward equation

(2.2)
∂φ

∂t
=

1
2

∂2

∂x2
(σ2(t, x)x2φ).

1Warning: The calculations presented here are formal. The formulas are correct (I hope!) but no attempt has been

made to state conditions under which they are valid.
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3. Dupire’s equation. From (1.2) we have

∂C

∂T
(T,K) =

∫ ∞

K

(x − K)
∂φ

∂T
(T, x) dx

=
1
2

∫ ∞

K

(σ2x2φ)′′(x − K) dx [using (2.2)]

= −
1
2

∫ ∞

K

(σ2x2φ)′1 dx [integrating by parts]

=
1
2
σ2(T,K)K2φ(T,K)

=
1
2
σ2(T,K)K2 ∂2C

∂x2
(T,K). [using (1.4)].

This gives us Dupire’s formula for the local volatility, expressed entirely in terms of the volatility surface
C(∙, ∙):

(3.1) σ(T,K) =
1
K

√
2 ∂C/∂T (T,K)
∂2C/∂x2(T,K)

.

4. Constructing a local volatility model. The procedure is as follows.
1. Assemble the data, consisting of a matrix of quoted option prices {C(Ti,K

i
j), i = 1, . . . , N, j =

1, . . . ,M (i)} together with the yield curve (to determine r(t)) and dividend information (to
determine q(t)).

2. Interpolate and extrapolate these prices (or, more likely, the corresponding Black-Scholes implied
volatilities) to produce a smooth volatility surface C.

3. Calculate σ(T, F ) from (3.1) and compute the corresponding σ̃(T, S)
4. The price model is St given by (1.1).
5. Now we can calculate the prices of other options by finite-difference methods or Monte Carlo.
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