
Case 1: m = n

• For example,
3x + 2y − z = 1
x − y + 2z = −1

−2x + y − 2z = 0

1 >> A = [3 2 -1; 1 -1 2; -2 1 -2];
2 >> b = [1; -1; 0];
3 >> x = A \ b
4

5 1
6 -2
7 -2
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Case 2: m > n

• For example, 
2x − y = 2
x − 2y = −2
x + y = 1

1 >> A = [2 -1; 1 -2; 1 1];
2 >> b = [2; -2; 1];
3 >> x = A \ b
4

5 1
6 1
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Case 3: m < n

• For example, {
x + 2y + 3z = 7

4x + 5y + 6z = 8

1 >> A = [1 2 3; 4 5 6];
2 >> b = [7; 8];
3 >> x = A \ b
4

5 -3
6 0
7 3.333

• Note that this solution is a basic solution, one of infinitely
many.

• How to find the directional vector? (Try cross.)
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Gaussian Elimination Algorithm1

• First we consider the linear system is represented as an
augmented matrix [A | y ].

• We then transform A into an upper triangular matrix

[ Ā | y ] =


1 ā12 · · · ā1n ȳ1
0 1 · · · ā2n ȳ2
...

...
. . .

...
...

0 0 · · · 1 ȳn

 .
where āij ’s and ȳi ’s are the resulting values after elementary
row operations.

• This matrix is said to be in reduced row echelon form.

1See https://en.wikipedia.org/wiki/Gaussian_elimination.
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• The solution can be done by backward substitution:

xi = ȳi −
n∑

j=i+1

āijxj ,

where i = 1, 2, · · · , n.

• Time complexity: O(n3).
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Exercise

1 clear; clc;
2

3 A = [3 2 -1; 1 -1 2; -2 1 -2];
4 b = [1; -1; 0];
5 A \ b % check the answer
6

7 for i = 1 : 3
8 for j = i : 3
9 b(j) = b(j) / A(j, i); % why first?

10 A(j, :) = A(j, :) / A(j, i);
11 end
12 for j = i + 1 : 3
13 A(j, :) = A(j, :) - A(i, :);
14 b(j) = b(j) - b(i);
15 end
16 end
17 x = zeros(3, 1);

Zheng-Liang Lu 254



18 for i = 3 : -1 : 1
19 x(i) = b(i);
20 for j = i + 1 : 1 : 3
21 x(i) = x(i) - A(i, j) * x(j);
22 end
23 end
24 x

Zheng-Liang Lu 255



Selected Functions of Linear Algebra2

• Matrix properties: norm, null, orth, rank, rref, trace,
subspace.

• Matrix factorizations: lu, chol, qr.

2See https://www.mathworks.com/help/matlab/linear-algebra.html.
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Numerical Example: 2D Laplace’s Equation

• A partial differential equation (PDE) is a differential equation
that contains unknown multivariable functions and their
partial derivatives.3

• Let Φ(x , y) be a scalar field on R2.

• Consider Laplace’s equation4 as follows:

∇2Φ(x , y) = 0,

where ∇2 = ∂2

∂x2
+ ∂2

∂y2 is the Laplace operator.

• Consider the system shown in the next page.

3See
https://en.wikipedia.org/wiki/Partial_differential_equation.

4Pierre-Simon Laplace (1749–1827).
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• Consider the boundary condition:
• V1 = V2 = · · · = V4 = 0.
• V21 = V22 = · · · = V24 = 0.
• V1 = V6 = · · · = V16 = 0.
• V5 = V10 = · · · = V25 = 1.
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An Simple Approximation5

• As you can see, we partition the region into many subregions
by applying a proper mesh generation.

• Then Φ(x , y) can be approximated by

Φ(x , y) ≈ Φ(x + h, y) + Φ(x − h, y) + Φ(x , y + h) + Φ(x , y − h)

4
,

where h is small enough.

5See
https://en.wikipedia.org/wiki/Finite_difference_method#Example:

_The_Laplace_operator.
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Matrix Formation

• By collecting all constraints, we have Ax = b where

A =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 −1 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


and

b =
[

0 0 1 0 0 1 0 0 1
]T
.
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Dimension Reduction by Symmetry

• As you can see, V7 = V17,V8 = V18 and V9 = V19.

• So we can reduce A to A′

A′ =



4 −1 0 −1 0 0
−1 4 −1 0 −1 0
0 −1 4 0 0 −1
−2 0 0 4 −1 0
0 −2 0 −1 4 −1
0 0 −2 0 −1 4


and

b′ =
[

0 0 1 0 0 1
]T
.

• The dimensions of this problem are cut to 6 from 9.

• This trick helps to alleviate the curse of dimensionality.6

6See https://en.wikipedia.org/wiki/Curse_of_dimensionality.
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Remarks

• This is a toy example for numerical methods of PDEs.
• We can use the PDE toolbox for this case. (Try.)

• You may consider the finite element method (FEM).7

• The mesh generation is also crucial for numerical methods.8

• You can use the Computational Geometry toolbox for
triangular mesh.9

7See https://en.wikipedia.org/wiki/Finite_element_method.
8See https://en.wikipedia.org/wiki/Mesh_generation.
9See https:

//www.mathworks.com/help/matlab/computational-geometry.html.
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Numerical Example: Method of Least Squares10

• The method of least squares is a standard approach to the
approximate solution of overdetermined systems (m > n).

• Let {ŷi}ni=1 be the observed response values and {yi}ni=1 be
the fitted response values.

• Let εi = ŷi − yi be the residual for i = 1, . . . , n.

• Then the sum of square residuals estimates associated with
the data is given by

S =
n∑

i=1

ε2i .

• The best fit in the least-squares sense minimizes the sum of
squared residuals.

10See https://en.wikipedia.org/wiki/Least_squares.
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https://commons.wikimedia.org/wiki/File:Linear_regression.svg
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Linear Least Squares

• The approach is called linear least squares since the assumed
function is linear in the parameters to be estimated.

• For example, consider

y = ax + b,

where a and b are to be determined.

• Then we have εi = (axi + b)− ŷi so that

S =
n∑

i=1

((axi + b)− ŷi )
2 .
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• Now consider the partial derivatives of S with respective to a
and b:

∂S

∂a
=− 2

n∑
i=1

xi (yi − (axi + b)) = 0,

∂S

∂b
=− 2

n∑
i=1

(yi − (axi + b)) = 0.

• We reorganize the above equations as follows:

a
n∑

i=1

x2i + b
n∑

i=1

xi =
n∑

i=1

xiyi ,

a
n∑

i=1

xi + nb =
n∑

i=1

yi .

• It could be done by using normal equations.11
11See https://en.wikipedia.org/wiki/Linear_least_squares_

(mathematics)#Derivation_of_the_normal_equations.
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Example

1 clear; clc; close all;
2

3 rng(3); % fix the random seed
4 N = 10;
5 x = linspace(0, 1, N); x = x(:);
6 y = cos(rand(size(x)) * pi / 2) + x .ˆ 2;
7 figure; hold on; grid on; plot(x, y, 'o');
8 degree = 4;
9

10 M = @(x, degree) repmat(x, 1, degree + 1);
11 A = @(mat) bsxfun(@(x, i) x .ˆ i, mat, ...
12 size(mat, 2) - 1 : -1 : 0);
13 pp = A(M(x, degree)) \ y % show the coefficients
14 xq = linspace(min(x), max(x), 100); xq = xq(:);
15 yq = A(M(xq, degree)) * pp;
16 plot(xq, yq, '--');
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Polynomial Regression

• polyfit(x , y , n) returns the coefficients for a polynomial of
degree n that is a best fit for the set of sample data (x , y) (in
a least-squares sense).
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Example

1 clear; clc; close all;
2

3 rng(3);
4 N = 10;
5 x = linspace(0, 1, N); x = x(:);
6 y = cos(rand(size(x)) * pi / 2) + x .ˆ 2;
7 figure; hold on; grid on; plot(x, y, 'o');
8 degree = 4;
9

10 p = polyfit(x, y, degree)
11 xq = linspace(0, 1, 50);
12 yq = polyval(p, xq);
13 plot(xq, yq);

• The result is identical to the figure shown before.
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Overfitting

• Overfitting is the production of an analysis that corresponds
too closely or exactly to a particular set of data, and may
therefore fail to fit additional data or predict future
observations reliably.
• In other words, the overfitted model is perfect to in-sample

data but not robust in out-of-sample data.
• For example, Runge’s phenomenon.12

• Law of parsimony13 states that simpler solutions are more
likely to be correct than complex ones.

12See https://en.wikipedia.org/wiki/Runge’s_phenomenon.
13Aka Occam’s Razor.
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Polynomials

• Let n ∈ N ∪ {0}, and x , a0, . . . , an ∈ R.

• f (x) is said to be a polynomial with degree n provided that

f (x) = anx
n + an−1x

n−1 + · · ·+ a0,

where an 6= 0.

• We often express a polynomial by its coefficient vector
[an, an−1, . . . , a0].

• In fact, the set of polynomials with coefficients in R is a
vector space over R, denoted by Pn.14

14See https://en.wikipedia.org/wiki/Examples_of_vector_spaces#

Polynomial_vector_spaces.
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Arithmetic Operations of Polynomials

• Let p1 and p2 be two coefficient vectors of polynomials of the
same degree.
• Then we have the following operations:

• addition and subtraction: p1 ± p2.
• multiplication: conv(p1, p2).15

• division: [ q, r ] = deconv(p1, p2).16

• Use polyval(p1, x) to calculate the function values of p1 on x .

15See http://en.wikipedia.org/wiki/Convolution.
16Equivalently, v = conv(u, q) + r . Also see

http://en.wikipedia.org/wiki/Euclidean_division.
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1 clear; clc;
2

3 p1 = [1 -2 -7 4];
4 p2 = [2 -1 0 6];
5 p3 = p1 + p2
6 p4 = p1 - p2
7 p5 = conv(p1, p2)
8 [q, r] = deconv(p1, p2)
9

10 x = linspace(-1, 1, 20);
11 plot(x, polyval(p1, x), 'o', x, polyval(p2, x), ...

'*', x, polyval(p5, x), 'd');
12 grid on; legend('p1', 'p2', 'conv(p1, p2)');
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Finding Roots of Polynomial

• Use roots(p) for all roots of the polynomial p.17

• For example,

1 clear; clc; close all;
2

3 p = [1, 3, 1, 5, -1];
4 r = roots(p) % find all roots of p
5 polyval(p, r) % why not zeros?

17See https://en.wikipedia.org/wiki/Jenkins-Traub_algorithm.
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Exercise: Internal Rate of Return (IRR)18

• Consider two assets.

• For asset A, you are promised to receive the cash flows as
follows:

C0 = −100,C1 = 0,C2 = 0,C3 = 120.

• For asset B, the cash flows are

C0 = −100,C1 = 6,C2 = 6,C3 = 108.

• Which asset is more desirable?

18See https://en.wikipedia.org/wiki/Internal_rate_of_return.
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• Given a collection of pairs (time, cash flow), the IRR is a rate
of return when the net present value is zero.

• Explicitly, the IRR can be calculated by solving

N∑
i=0

Ci

(1 + r)i
= 0,

where Ci is the cash flow at time i .

• So the IRR is 6.27% for A and 6.62% for B.
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“Time is free, but its priceless.
You can’t own it, but you can use it.

You can’t keep it, but you can spend it.
Once you’ve lost it, you can never get it back.”

– Harvey MacKay

“No man can achieve success
if he didn’t first know the value of time.”

– Sunday Adelaja
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Integral and Derivative of Polynomials

• polyder(p) returns the derivative of the polynomial p.

• polyint(p, k) returns a polynomial representing the integral of
polynomial p, using a scalar constant of integration k .

1 clear; clc;
2

3 p = [4 3 2 1];
4 p der = polyder(p)
5 p int = polyint(p, 0) % k = 0
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Exercise

• Let p be the coefficient vector for any polynomial with degree
3.

• Write a program to calculate the coefficients of its derivative
and integration.

• Also, you may write down the matrix representation of
differentiation and integration of p.

• Do not use the built-in functions.
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1 clear; clc;
2

3 p = randi(100, 1, 4)
4 q1 = [0, p(1 : end - 1) .* [length(p) - 1 : -1 : 1]]
5 q2 = [p ./ [length(p) : -1 : 1], 0]
6

7 T1 = [0 0 0 0;
8 3 0 0 0;
9 0 2 0 0;

10 0 0 1 0];
11 T1 * p'
12 T2 = [0 1/4 0 0 0;
13 0 0 1/3 0 0;
14 0 0 0 1/2 0;
15 0 0 0 0 1;
16 0 0 0 0 0];
17 T2 * [0 p]'
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Eigenvalues and Eigenvectors

• Let A ∈ Mn×n(R), I be the identity, and v ∈ Rn be nontrivial.

• An eigenvalue problem19 is a system which follows

Av = λv .

• Then u is an eigenvector associated with the eigenvalue λ by
solving det(A− λI ) = 0, aka the characteristic polynomial.
• Use [V ,D ] = eig(A) produces a diagonal matrix D of

eigenvalues and a full matrix V whose columns are the
corresponding eigenvectors so that AV = VD.

19See https://en.wikipedia.org/wiki/Eigenvalues_and_

eigenvectors#Applications.
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Example: Google PageRank Algorithm20

• PageRank (PR) is an algorithm used by Google Search to
rank web pages in their search engine results.

• PageRank works by counting the number and quality of links
to a page to determine a rough estimate of how important the
website is.

• The underlying assumption is that more important websites
are likely to receive more links from other websites.

20Larry Page and Sergey Brin (1998).
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Singular Value Decomposition (SVD)

• Let A ∈ Mm×n(R), u ∈ Rm, v ∈ Rn, and σ ∈ R.

• σ is called a singular value associated with the left singular
vector u and the right singular vector v for A provided that

A =
n∑

i=1

σiuiv
T
i .

• In matrix form,
A = UΣV T ,

where U and V consist of the left and right singular vectors,
respectively, and Σ is a diagonal matrix whose diagonal entries
are the singular values of A.

• Use [U, S ,V ] = svd(A) for SVD.21

21See
https://www.mathworks.com/help/matlab/math/singular-values.html.
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Example: Image Compression by Low-Rank Approximation

• We can have an image extremely similar to the original one,
but with a smaller image size by keeping the vectors
associated with a few number of first large principal
components, aka Principal Component Analysis (PCA).22

• PCA can be done by svd.

22See http://setosa.io/ev/principal-component-analysis/.
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