
1 >> Lecture 4
2 >>
3 >> -- Functions
4 >>

Zheng-Liang Lu 181



Motivation

• A large and complicated problem would be conquered by
solving its subproblems.

• So the first step is problem decomposition, that is, separating
tasks into smaller self-contained units.

• This is also beneficial to code reuse without copying the codes.

• Note that bugs propagate across the program when you copy
and paste the codes.

Zheng-Liang Lu 182



Function

• A function is a piece of program code that accepts input
arguments from the caller, and then returns output arguments
to the caller.

• In MATLAB, the syntax of functions is similar to math
functions,

y = f (x),

where x is the input and y is the output.

Zheng-Liang Lu 183



User-Defined Functions

• We can define a new function as follows:

1 function [outputVar] = function name(inputVar)
2 % What to do.
3 end

• This function should be saved in a file with the function name!

• Note that the input/output variables can be optional.

Zheng-Liang Lu 184



Example: Addition of Two Numbers

1 function z = myAdd(x, y)
2 % Input: x, y (any two numbers).
3 % Output: z (sum of x and y).
4 z = x + y;
5 end

• It seems bloody trivial.

• The truth is that the plus operator is actually the function
plus.1

• Also true for all the operators like +.

1See https://www.mathworks.com/help/matlab/ref/plus.html.

Zheng-Liang Lu 185

https://www.mathworks.com/help/matlab/ref/plus.html


Variable-length Input Argument List2 (Optional)

• We can know the number of input arguments for the function
executed by nargin.

• varargin is an input variable in a function definition statement
that enables the function to accept any number of input
arguments.

• It must be declared as the last input argument and collects all
the inputs from that point onwards.

• The variable varargout is a special word similar to varargin
but for outputs.

2See https://www.mathworks.com/help/matlab/ref/varargin.html.

Zheng-Liang Lu 186

https://www.mathworks.com/help/matlab/ref/varargin.html


Example

1 function ret = myAdd(varargin)
2

3 switch nargin
4 case 0
5 disp("No input.");
6 case 1
7 ret = varargin{1};
8 case {2, 3}
9 ret = sum([varargin{:}]);

10 otherwise
11 error("Too many inputs.");
12 end
13

14 end

Zheng-Liang Lu 187



Variable Scope

• Variables in a function are known as local variables, existing
only for the function.

• These variables are wiped out when the function finishes its
task.

• You may trace the data flow in the program by using the
debugger.3

• Let’s set some breakpoints!!!

3See https://www.mathworks.com/help/matlab/matlab_prog/

debugging-process-and-features.html.

Zheng-Liang Lu 188

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html
https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html


Example

1 clear; clc;
2

3 x = 0;
4 for i = 1 : 5
5 addOne(x);
6 disp(x); % output ?
7 end

1 function addOne(x)
2 x = x + 1;
3 end

Zheng-Liang Lu 189



Function Handles & Anonymous Functions

• Anonymous functions are used once and not written in the
standard form of functions, for example,

1 f = @(x) x .ˆ 2 + 1 % f is a function handle.

• However, they contain only single statement.

• Besides, we use function handles4 to handle functions.

• This is also called lambda expressions.

• You can also assign an existing function to a handle, for
example,

1 g = @sin

4You may refer to https://en.wikipedia.org/wiki/Function_pointer.
The truth is that every function name is an alias of the function address!

Zheng-Liang Lu 190

https://en.wikipedia.org/wiki/Function_pointer


More Examples5,6,7

1 function y = parabolicFunGen(a, b, c)
2 y = @(x) a * x .ˆ 2 + b * x + c;
3 end

1 function y = getSlope(f, x0)
2 eps = 1e-9;
3 y = (f(x0 + eps) - f(x0)) / eps;
4 end

1 function y = differentiate(f)
2 eps = 1e-9;
3 y = @(x) (f(x + eps) - f(x)) / eps;
4 end

5Thanks to a lively class discussion (MATLAB244) on August 22, 2014.
6Contribution by Ms. Queenie Chang (MAT25108) on March 18, 2015.
7Thanks to a lively class discussion (MATLAB260) on September 16, 2015.

Zheng-Liang Lu 191



Vectorization (Revisited)

• We can apply a function to each element of array by
arrayfun.8

1 B = arrayfun(@(x) 2 * x, A) % Equivalent to 2 * A.

• cellfun is similar to arrayfun but applied to cells.9

1 >> data = {"NTU", "CSIE", [], "MATLAB"};
2 >> isempty(data) % Output 0.
3 >> cellfun(@isempty, data) % Output 0 0 1 0.

8See https://www.mathworks.com/help/matlab/ref/arrayfun.html.
9See https://www.mathworks.com/help/matlab/ref/cellfun.html.

Zheng-Liang Lu 192

https://www.mathworks.com/help/matlab/ref/arrayfun.html
 https://www.mathworks.com/help/matlab/ref/cellfun.html


Error and Error Handling

• You can issue/throw an error if you do not allow the callee for
some situations.

1 if bad condition
2 error("So wrong."); % Interrupt the normal flow.
3 end

• As an app programmer, you should use a try-catch statement
to handle errors.

1 try
2 % Normal operations.
3 catch
4 % Handler operations.
5 end

Zheng-Liang Lu 193



Example: Combinations

• For all nonnegative integers n ≥ k ,
(n
k

)
is given by(

n

k

)
=

n!

k!(n − k)!
.

• Note that factorial(n) returns n!.

1 clear; clc;
2

3 n = input("n = ? ");
4 k = input("k = ? ");
5 y = factorial(n) / (factorial(k) * factorial(n - k))
6 disp('End of program.');

Zheng-Liang Lu 194



• Try n = 2, k = 5.

• However, factorial(−3) is not allowed!

• The program is not designed to handle this error, so it is
interrupted in Line 5 and does not reach the end of program.

• Add error handling to the program:

1 clear; clc;
2

3 n = input("n = ? ");
4 k = input("k = ? ");
5 try
6 y = factorial(n) / (factorial(k) * ...

factorial(n - k))
7 catch e % capture the thrown exception
8 disp("Error: " + e.message); % show the message
9 end

10 disp("End of program.");

Zheng-Liang Lu 195


