
Exercise: Vectorization of MC Simulation for π

1 clear; clc;
2

3 n = 1e5;
4 x = rand(n, 1);
5 y = rand(n, 1);
6 m = sum(x .ˆ 2 + y .ˆ 2 < 1);
7 result = 4 * m / n

• More clear and faster!!!

Zheng-Liang Lu 81

while Loops

• The while loops are used to repeat the instructions until the
continuation criterion is not satisfied.

1 while criterion
2 % body
3 end

• Be aware that the if statement executes only once; you should
use the while loop if you want to repeat some actions.

Zheng-Liang Lu 82

Zheng-Liang Lu 83

Example: Compounding

• Let balance be the initial amount of some investment, and r
be the annualized return rate.

• Write a program which calculates the holding years when this
investment doubles it value.

Zheng-Liang Lu 84

Solution

• In this case, we don’t know how many iterations we need
before the loop.

1 clear; clc;
2

3 balance = 100;
4 r = 0.01;
5 goal = 200;
6

7 holding years = 0;
8 while balance < goal
9 balance = balance * (1 + r);

10 holding years = holding years + 1;
11 end
12 holding years

• Note that the criterion is evaluated to continue the loop.

Zheng-Liang Lu 85

Infinite Loops

1 while true
2 disp("Press ctrl+c to stop me!!!");
3 end

• Note that your program can terminate the program by
pressing ctrl+c.

Zheng-Liang Lu 86

More Exercises (Optional)

• Let a > b be two any positive integers.
• Write a program which calculates the remainder of a divided

by b.
• Do not use mod(a, b).

• Write a program which determines the greatest common
divisor (GCD) of a and b.
• Do not use gcd(a, b).

Zheng-Liang Lu 87

Numerical Example: Bisection Method for Root-Finding

Zheng-Liang Lu 88

Problem Formulation

Input

- Target function f (x) = x3 − x − 2.

- Initial search interval [a, b] = [1, 2].

- Error tolerance ε = 1e − 9.

Output

- The approximate root r̂ .

Zheng-Liang Lu 89

Solution

1 clear; clc;
2

3 a = 1; b = 2; eps = 1e-9;
4

5 while b - a > eps
6

7 c = (a + b) / 2;
8 fa = a * a * a - a - 2;
9 fc = c * c * c - c - 2;

10

11 if fa * fc < 0
12 b = c;
13 else
14 a = c;
15 end
16

17 end
18 root = c
19 residual = fc

Zheng-Liang Lu 90

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-8

-6

-4

-2

0

2

4

x3 - x - 2
Root

c = 1.52137970691547

Zheng-Liang Lu 91

“All science is dominated by the idea of approximation.”

– Bertrand Russell (1872–1970)

Zheng-Liang Lu 92

http://en.wikipedia.org/wiki/Bertrand_Russell

Jump Statements

• A break statement terminates a for or while loop immediately.
• Aka early termination.

• A continue statement skips instructions behind it and start
the next iteration.
• Directly jump to the very beginning of the loop; still in the

loop.

• Notice that the break and continue statements must be
conditional.

Zheng-Liang Lu 93

Example: Primality Test1

• Let x be any positive integer larger than 2 as input.

• Then x is a prime number if ∀y ∈ {2, 3, . . . , x − 1}, y is not a
divisor of x , denoted by y - x .

• In other words, x is called a composite number if
∃y ∈ {2, 3, . . . , x − 1}, y | x .

• Now write a program which determines if x is a prime number.

1Also see Manindra Agrawal, Neeraj Kayal, Nitin Saxena (2002).

Zheng-Liang Lu 94

1 clear; clc;
2

3 x = input('Enter x > 2? ');
4 isPrime = true; % a flag, true if the number is prime
5 for y = 2 : sqrt(x)
6 if mod(x, y) == 0
7 isPrime = false;
8 break;
9 end

10 end
11

12 if isPrime
13 disp([num2str(x) ' is a prime number.']);
14 else
15 disp([num2str(x) ' is a composite number.']);
16 end

Zheng-Liang Lu 95

Equivalence: for and while Loops

• Whatever you can do with a for loop can be done with a while
loop, and vice versa.

1 clear; clc;
2

3 balance = 100; goal = 200; r = 0.01;
4

5 for years = 1 : inf % inf: a huge but finite integer
6 balance = balance * (1 + r);
7 if balance >= goal
8 break;
9 end

10 end
11 years

Zheng-Liang Lu 96

• For another example,

1 clear; clc;
2

3 x = input("Enter x > 2? ");
4

5 isPrime = true; y = 2;
6 while isPrime && y < x
7 isPrime = mod(x, y);
8 y = y + 1;
9 end

10

11 if isPrime
12 disp(num2str(x) + " is a prime number.");
13 else
14 disp(num2str(x) + " is a composite number.");
15 end

Zheng-Liang Lu 97

Nested Loops

• Write a program which outputs the following patterns:

Zheng-Liang Lu 98

• You may use fprintf(”*”) and fprintf(”\n”) to print a single
star and break a new line, respectively.

1 clear; clc;
2

3 % case (a)
4 for i = 1 : 5
5 for j = 1 : i
6 fprintf("*");
7 end
8 fprintf("\n");
9 end

Zheng-Liang Lu 99

Exercise: e ∼ 2.7183

• Write a program to estimate the Euler constant by Monte
Carlo simulation.

• It can be done as follows.

• Let N be the number of iterations.

• For each iteration, find the minimal number n so that∑n
i=1 ri > 1 where ri is the random variable following the

standard uniform distribution (you can simply use rand).

• Then e is the average of n.

Zheng-Liang Lu 100

Special Issue: Sort

1 >> stocks = {"GOOG", 15;
2 "TSMC", 12;
3 "AAPL", 18};
4 >> [~, idx] = sort([stocks{:, 2}], "descend")
5

6 idx =
7

8 3 1 2
9

10 >> stocks = stocks(idx, :)
11

12 stocks =
13

14 "AAPL" [18]
15 "GOOG" [15]
16 "TSMC" [12]

Zheng-Liang Lu 101

Programming Exercise: Sorting Algorithm2

• Let A be any array.

• Write a program which outputs the sorted array of A (in
ascending order).

• For example, A = [5, 4, 1, 2, 3].

• Then the sorted array is [1, 2, 3, 4, 5].

2See https://visualgo.net/sorting.

Zheng-Liang Lu 102

https://visualgo.net/sorting

Special Issue: Random Permutation

• Use randperm to generate an index array with a random
order.

1 >> A = ["Matlab", "Python", "Java", "C++"];
2 >> idx = randperm(length(A))
3

4 idx =
5

6 3 1 2 4
7

8 >> A(idx)
9

10 ans =
11

12 1x4 string array
13

14 "Java" "Matlab" "Python" "C++"

Zheng-Liang Lu 103

“Exploring the unknown requires tolerating uncertainty.”

– Brian Greene

“I can live with doubt, and uncertainty, and not knowing.
I think it is much more interesting to live not knowing than
have answers which might be wrong.”

– Richard Feynman

Zheng-Liang Lu 104

Speedup: Vectorization (Revisited)3

• Vector in, vector out.

1 >> x = randi(100, 1, 5)
2

3 x =
4

5 88 30 90 73 82
6

7 >> dx = diff(x)
8

9 dx =
10

11 -58 60 -17 9

3More about vectorization.

Zheng-Liang Lu 105

http://www.mathworks.com/help/matlab/matlab_prog/vectorization.html

Advantages from Vectorization

• Appearance: vectorized mathematical code appears more like
the mathematical expressions found in textbooks, making the
code easier to understand.
• Less error prone: without loops, vectorized code is often

shorter.
• Fewer lines of code mean fewer opportunities to introduce

programming errors.

• Performance: vectorized code often runs much faster than the
corresponding code containing loops.

Zheng-Liang Lu 106

Performance Analysis: Profiling

• Use a timer to measure your performance.4

• In newer version, press the button Run and Time.

• Identify which functions are consuming the most time.

• Know why you are calling them and then look for alternatives
to improve the overall performance.

4Note that the results may differ depending on the difference of run-time
environments, so make sure that you benchmark the algorithms on the same
conditions.

Zheng-Liang Lu 107

tic & toc

• The command tic makes a stopwatch timer start.

• The command toc returns the elapsed time from the
stopwatch timer started by tic.

1 >> tic
2 >> toc
3 Elapsed time is 0.786635 seconds.
4 >> toc
5 Elapsed time is 1.609685 seconds.
6 >> toc
7 Elapsed time is 2.417677 seconds.

Zheng-Liang Lu 108

Selected Performance Suggestions5

• Preallocate arrays.
• Instead of continuously resizing arrays, consider preallocating

the maximum amount of space required for an array.

• Vectorize your code.

• Create new variables if data type changes.

• Use functions instead of scripts.

• Avoid overloading Matlab built-in functions.

5See Techniques for Improving Performance.

Zheng-Liang Lu 109

http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html

Programming Exercise: A Benchmark

• Let N = 1e1, 1e2, 1e3, 1e4, 1e5.

• Write a program which produces a benchmark for the
following three cases:
• Generate an array of 1 : N by dynamically resizing the array.
• Generate an array of 1 : N by allocating an array of size N and

filling up sequentially.
• Generate an array of 1 : N by vectorization.

Zheng-Liang Lu 110

Analysis of Algorithms (Optional)

• For one problem, there exist various algorithms (solutions).

• We then compare these algorithms for various considerations
and choose the most appropriate one.

• In general, we want efficient algorithms.

• Except for real-time performance analysis, could we predict
before the program is completed?

• Definitely yes.

Zheng-Liang Lu 111

Growth Rate

• Now we use f (n) to denote the growth rate of time cost as a
function of n.
• In general, n refers to the data size.

• For simplicity, assume that every instruction (e.g. +−×÷)
takes 1 unit of computation time.
• Find f (n) for the following problem.

• Sum(n): ?
• Triangle(n): ?

Zheng-Liang Lu 112

O-notation6

• In math, O-notation describes the limiting behavior of a
function, usually in terms of simple functions.

• We say that
f (n) ∈ O(g(n)) as n→∞

if and only if ∃c > 0, n0 > 0 such that

| f (n) | ≤ c | g(n) | ∀n ≥ n0.

• So O(g(n)) is a collection featured by a simple function g(n).

• We use f (n) ∈ O(g(n)) to denote that f (n) is one instance of
O(g(n)).

6See https://en.wikipedia.org/wiki/Big_O_notation.

Zheng-Liang Lu 113

https://en.wikipedia.org/wiki/Big_O_notation

• Big-O is used for the asymptotic upper bound of time
complexity of algorithm.

• In layman’s term, Big-O describes the worst case of this
algorithm.

Zheng-Liang Lu 114

• For example, 8n2 − 3n + 4 ∈ O(n2).
• For large n, you could ignore the last two terms. (Why?)
• It is easy to find a constant c > 0 so that cn2 > 8n2, say

c = 9.
• Hence the statement is proved.

• Also, 8n2 − 3n + 4 ∈ O(n3) but we seldom say this. (Why?)

• However, 8n2 − 3n + 4 /∈ O(n). (Why?)

• What is this analysis related to the algorithm?

• Any insight?

Zheng-Liang Lu 115

Common Simple Functions7

7See Table 4.1 and Figure 4.2 in Goodrich and etc, p. 161.

Zheng-Liang Lu 116

Remarks

• We often make a trade-off between time and space.
• Unlike time, we can reuse memory.
• Users are sensitive to time.

• Playing game well is hard.8

• Solve the problem P ?= NP, which is one of Millennium Prize
Problems.9

8See https://en.wikipedia.org/wiki/Game_complexity.
9See https://en.wikipedia.org/wiki/P_versus_NP_problem.

Zheng-Liang Lu 117

https://en.wikipedia.org/wiki/Game_complexity
https://en.wikipedia.org/wiki/P_versus_NP_problem

“All roads lead to Rome.”

– Anonymous

“但如你根本並無招式，敵人如何來破你的招式？”

– 風清揚。笑傲江湖。第十回。傳劍

Zheng-Liang Lu 118

