Exercise: Vectorization of MC Simulation for

BT = N B S R N

clear; clc;

n = leb;

x = rand(n, 1);

y = rand(n, 1);

m=sum(x .~ 2 +vy .7 2<<1);
result = 4 » m / n

® More clear and faster!!!

Zheng-Liang Lu

81

while Loops

® The while loops are used to repeat the instructions until the
continuation criterion is not satisfied.

1 while criterion
o

2 % body
3 end

® Be aware that the if statement executes only once; you should
use the while loop if you want to repeat some actions.

Zheng-Liang Lu

False —the criterion
is no longer
true and the
program
exits the loop

Check to see if the
criterion 1s still true

Calculations

Zheng-Liang Lu

83

Example: Compounding

® | et balance be the initial amount of some investment, and r
be the annualized return rate.

® Write a program which calculates the holding years when this
investment doubles it value.

Zheng-Liang Lu

84

Solution

® |n this case, we don’t know how many iterations we need
before the loop.

© ® N o O hr W N R

=R e
N = O

clear; clc;

balance = 100;
r = 0.01;
goal = 200;

holding.years = 0;
while balance < goal
balance = balance * (1 + r);
holding.years = holding.years + 1;
end
holding.years

® Note that the criterion is evaluated to continue the loop.

Zheng-Liang Lu

85

Infinite Loops

1
2
3

while true
disp("Press ctrl+c to stop me!!!");
end

® Note that your program can terminate the program by
pressing ctrl+c.

Zheng-Liang Lu

86

More Exercises (Optional)

® let a > b be two any positive integers.
® Write a program which calculates the remainder of a divided
by b.
® Do not use mod(a, b).

® Write a program which determines the greatest common
divisor (GCD) of a and b.

® Do not use ged(a, b).

Zheng-Liang Lu

87

Numerical Example: Bisection Method for Root-Finding

F(x)

Zheng-Liang Lu

88

Problem Formulation

Input
- Target function f(x) = x3 — x — 2.
- Initial search interval [a, b] = [1, 2].
- Error tolerance e = 1e — 9.

Output
- The approximate root .

Zheng-Liang Lu

89

Solution

© 0 N o U A W N e

e s e e i <
© ® N o O hp W N R O

c = (a + b) / 2/
fa=a*xaxa-a- 2;
fc = cxc*xc - c - 2;

if fa » fc < 0

b = c;
else
a = c¢c;
end
end
root = ¢
residual = fc

Zheng-Liang Lu

X" -Xx-2

O Root
| |

-1.5

-1 -0.5 0 0.5 1 15

c = 1.52137970691547

Zheng-Liang Lu

91

"All science is dominated by the idea of approximation.”

— Bertrand Russell (1872-1970)

Zheng-Liang Lu

92

http://en.wikipedia.org/wiki/Bertrand_Russell

Jump Statements

® A break statement terminates a for or while loop immediately.
® Aka early termination.

® A continue statement skips instructions behind it and start
the next iteration.

® Directly jump to the very beginning of the loop; still in the
loop.

® Notice that the break and continue statements must be
conditional.

Zheng-Liang Lu

93

Example: Primality Test!

® | et x be any positive integer larger than 2 as input.

® Then x is a prime number if Vy € {2,3,...,x — 1}, y is not a
divisor of x, denoted by y 1 x.
® |n other words, x is called a composite number if

dy €{2,3,...,x—1}, y | x.

® Now write a program which determines if x is a prime number.

!Also see Manindra Agrawal, Neeraj Kayal, Nitin Saxena {2002).
Zheng-Liang Lu

94

© 0 N O OO B~ W N

Pl e ~ T S <O SO
o A W N = O

clear; clc;

x = input ('Enter x > 27

isPrime = true; % a fla
for vy = 2 : sqgrt(x)
if mod(x, y) == 0
isPrime = false
break;
end
end

if isPrime

disp ([num2str(x) '
else

disp([num2str(x) '
end

")

g, true if the number is prime

’

is a prime number.']);

is a composite number.']);

Zheng-Liang Lu

95

Equivalence: for and while Loops

® Whatever you can do with a for loop can be done with a while
loop, and vice versa.

© 0 N o U A W N e

=
= o

clear; clc;
balance = 100; goal = 200; r = 0.01;
for years = 1 : inf % inf: a huge but finite integer
balance = balance x (1 + r);
if balance >= goal
break;
end
end
years

Zheng-Liang Lu

96

® For another example,

© ® N o O b~ W N R

e i e
oA W N R O

clear; clc;
x = input ("Enter x > 27 ");

isPrime = true; y = 2;

while isPrime && y < X
isPrime = mod(x, Vy);
y =y + 1

end

if isPrime
disp (num2str(x) + " is a prime number.");
else

disp (num2str(x) + " is a composite number.");

end

Zheng-Liang Lu

97

Nested Loops

® Write a program which outputs the following patterns:

* %k %k %k %k % * %k %k %k k ok
* %k %k %k %k % * %k %k %k %k %
* %k %k *k k% * %k 3k * %k %k
%k % %k % %k Xk %k % %k % * %k
kkkkk ok %k %k %k %k k *

(a) (b) (c) (d)

Zheng-Liang Lu

98

® You may use fprintf("*") and fprintf("\n") to print a single

star and break a new line, respectively.

© 0 N o U A W N e

clear; clc;

% case (a)
for i =1 : 5
for 3 =1 : 1
fprintf ("+");
end
fprintf ("\n");
end

Zheng-Liang Lu

99

Exercise: e ~ 2.7183

Write a program to estimate the Euler constant by Monte
Carlo simulation.

It can be done as follows.
Let N be the number of iterations.

For each iteration, find the minimal number n so that
>°% 1 ri > 1 where r; is the random variable following the
standard uniform distribution (you can simply use rand).

Then e is the average of n.

Zheng-Liang Lu

100

Special Issue: Sort

© ® N o O b W N R

e T S~ S SO SO Y
o A W N R O

>> stocks = {"GOOG", 15;

"TSMC", 12;
"AAPL", 18};
>> [., idx] = sort([stocks{:, 2}1, "descend")
idx =
3 1 2

>> stocks = stocks (idx, :)

stocks =
"AAPL" [18]
"GOOG" [15]
"TSMC" [12]

Zheng-Liang Lu

101

Programming Exercise: Sorting Algorithm?

Let A be any array.

Write a program which outputs the sorted array of A (in
ascending order).

For example, A=1[5,4,1,2,3|.
Then the sorted array is [1,2, 3,4, 5].

2See https://visualgo.net/sorting.
Zheng-Liang Lu 102

https://visualgo.net/sorting

Special Issue: Random Permutation

order.

® Use randperm to generate an index array with a random

© 0 N o U A W N e

e T - S o S
A W N R O

>> A = ["Matlab", "Python", "Java",
>> idx = randperm(length (A4))

idx =

3 1 2 4
>> A(idx)
ans =

1x4 string array

"Java" "Matlab" "Python"

"C++"];

LR nl

Zheng-Liang Lu

103

“Exploring the unknown requires tolerating uncertainty.”
— Brian Greene

“I can live with doubt, and uncertainty, and not knowing.
| think it is much more interesting to live not knowing than
have answers which might be wrong.”

— Richard Feynman

Zheng-Liang Lu 104

Speedup: Vectorization (Revisited)?

® \ector in, vector out.

>> x = randi (100, 1, 5)
% =
88 30 90 73 82
>> dx = diff (x)
dx =

-58 60 -17 9

3More about vectorization.
Zheng-Liang Lu

105

http://www.mathworks.com/help/matlab/matlab_prog/vectorization.html

Advantages from Vectorization

® Appearance: vectorized mathematical code appears more like
the mathematical expressions found in textbooks, making the
code easier to understand.

® | ess error prone: without loops, vectorized code is often
shorter.

® Fewer lines of code mean fewer opportunities to introduce
programming errotrs.

® Performance: vectorized code often runs much faster than the
corresponding code containing loops.

Zheng-Liang Lu

106

Performance Analysis: Profiling

® Use a timer to measure your performance.*

® |n newer version, press the button Run and Time.
® |dentify which functions are consuming the most time.

® Know why you are calling them and then look for alternatives
to improve the overall performance.

*Note that the results may differ depending on the difference of run-time
environments, so make sure that you benchmark the algorithms on the same
conditions.

Zheng-Liang Lu

107

tic & toc

® The command tic makes a stopwatch timer start.

® The command toc returns the elapsed time from the
stopwatch timer started by tic.

~N o 0 A W N e

>> tic
>> toc
Elapsed time is 0.786635 seconds.
>> toc
Elapsed time is 1.609685 seconds.
>> toc
Elapsed time is 2.417677 seconds.

Zheng-Liang Lu

108

Selected Performance Suggestions®

Preallocate arrays.

® |nstead of continuously resizing arrays, consider preallocating
the maximum amount of space required for an array.

® \/ectorize your code.

® Create new variables if data type changes.

Use functions instead of scripts.

Avoid overloading Matlab built-in functions.

®See Techniques for Improving Performance.

Zheng-Liang Lu 109

http://www.mathworks.com/help/matlab/matlab_prog/techniques-for-improving-performance.html

Programming Exercise: A Benchmark

® et N=1el,1e2,1e3,1e4,1eb.
® Write a program which produces a benchmark for the
following three cases:
® Generate an array of 1 : N by dynamically resizing the array.
® Generate an array of 1 : N by allocating an array of size N and
filling up sequentially.
® Generate an array of 1 : N by vectorization.

Zheng-Liang Lu

110

Analysis of Algorithms (Optional)

For one problem, there exist various algorithms (solutions).

We then compare these algorithms for various considerations
and choose the most appropriate one.

In general, we want efficient algorithms.

Except for real-time performance analysis, could we predict
before the program is completed?

Definitely yes.

Zheng-Liang Lu

111

Growth Rate

® Now we use f(n) to denote the growth rate of time cost as a
function of n.
® In general, n refers to the data size.
® For simplicity, assume that every instruction (e.g. + — X=+)
takes 1 unit of computation time.
® Find f(n) for the following problem.
® Sum(n): 7
® Triangle(n): ?

Zheng-Liang Lu

112

O-notation®

In math, O-notation describes the limiting behavior of a
function, usually in terms of simple functions.

We say that

f(n) € O(g(n)) as n — oo

if and only if 3¢ > 0, np > 0 such that

[f(n)[< clg(n)| Vn=no.

So O(g(n)) is a collection featured by a simple function g(n).
® We use f(n) € O(g(n)) to denote that f(n) is one instance of

O(g(n)).

®See https://en.wikipedia.org/wiki/Big_0_notation.
Zheng-Liang Lu 113

https://en.wikipedia.org/wiki/Big_O_notation

cg(n)

Running Time

o Input Size

® Big-O is used for the asymptotic upper bound of time
complexity of algorithm.

® In layman’s term, Big-O describes the worst case of this
algorithm.

Zheng-Liang Lu

114

For example, 8n® —3n+ 4 € O(n?).
® For large n, you could ignore the last two terms. (Why?)
® |t is easy to find a constant ¢ > 0 so that cn® > 8n?, say
c=09.
® Hence the statement is proved.

Also, 8n> — 3n+ 4 € O(n®) but we seldom say this. (Why?)
However, 8n?> —3n+ 4 ¢ O(n). (Why?)

What is this analysis related to the algorithm?

Any insight?

Zheng-Liang Lu

115

Common Simple Functions’

1LE+44 | =
1LE+40 =4 .
= | o —e— Exponential
1.E+36 > = S
» | o —o— Cubic
1LE+32 = o | | - ouaduati
LE+28 1 | o /.//./ Quadratic
1.E+24 e s —#-N-Log-N
1.E+20 o /.//./ —a— Linear
| o] | =] | m L
1.LE+16 | o] = 5 B -y —4— Logarithmic
4] o S \
LE+12 4 //.//./ :F:F:F —o— Constant
1LE+08 | o™ :F:F:F
1.E+04 2!;:'%#
LE+00 S S T o Vo o S S~~~ 0
PN S RN P NP
F I I I F I I I I I I I8
constant | logarithm | linear | n-log-n | quadratic | cubic | exponential
1 logn n nlogn n? n a’

"See Table 4.1 and Figure 4.2 in Goodrich and etc, p. 161.

Zheng-Liang Lu

116

Remarks

® We often make a trade-off between time and space.

® Unlike time, we can reuse memory.
® Users are sensitive to time.

® Playing game well is hard.®

® Solve the problem P 7= NP, which is one of Millennium Prize
Problems.?

8See https://en.wikipedia.org/wiki/Game_complexity.
See https://en.wikipedia.org/wiki/P_versus_NP_problem.

Zheng-Liang Lu

117

https://en.wikipedia.org/wiki/Game_complexity
https://en.wikipedia.org/wiki/P_versus_NP_problem

“All roads lead to Rome.”

— Anonymous
A2 fRAR AR 3B 248 X 0 Ao AT KA R a9 X 2 "

- BiEdy o ERULH o BT o R4

Zheng-Liang Lu

118

