Exercise: Vectorization of MC Simulation for π

```
1 clear; clc;
2
3 n = 1e5;
4 x = rand (n, 1);
5 y = rand (n, 1);
6 m = sum(x .^ 2 + y .^ 2 < 1);
7 result = 4 * m / n
```

- More clear and faster!!!

while Loops

- The while loops are used to repeat the instructions until the continuation criterion is not satisfied.

```
1 while criterion
2 % body
3 end
```

- Be aware that the if statement executes only once; you should use the while loop if you want to repeat some actions.

Example: Compounding

- Let balance be the initial amount of some investment, and r be the annualized return rate.
- Write a program which calculates the holding years when this investment doubles it value.

Solution

- In this case, we don't know how many iterations we need before the loop.

```
1 clear; clc;
2
    balance = 100;
    r = 0.01;
    goal = 200;
    holding_years = 0;
    while balance < goal
        balance = balance * (1 + r);
        holding-years = holding_years + 1;
        end
        holding_years
```

- Note that the criterion is evaluated to continue the loop.

Infinite Loops

```
1 while true
2 disp("Press ctrl+c to stop me!!!");
3 end
```

- Note that your program can terminate the program by pressing ctrl+c.

More Exercises (Optional)

- Let $a>b$ be two any positive integers.
- Write a program which calculates the remainder of a divided by b.
- Do not use $\bmod (a, b)$.
- Write a program which determines the greatest common divisor (GCD) of a and b.
- Do not use $\operatorname{gcd}(a, b)$.

Numerical Example: Bisection Method for Root-Finding

Problem Formulation

Input

- Target function $f(x)=x^{3}-x-2$.
- Initial search interval $[a, b]=[1,2]$.
- Error tolerance $\epsilon=1 e-9$.

Output

- The approximate root \hat{r}.

Solution

```
1 clear; clc;
2
\(a=1 ; b=2 ;\) eps \(=1 e-9 ;\)
4
5 while \(b-a>e p s\)
6
\(7 \quad \mathrm{c}=(\mathrm{a}+\mathrm{b}) / 2\);
\(f a=a * a * a-a-2 ;\)
\(\mathrm{fc}=\mathrm{c} * \mathrm{c} * \mathrm{c}-\mathrm{c}-2\);
    if fa * fc \(<0\)
        \(\mathrm{b}=\mathrm{c}\);
    else
        \(a=c ;\)
    end
16
17 end
18 root \(=c\)
19 residual = fc
```


"All science is dominated by the idea of approximation."

- Bertrand Russell (1872-1970)

Jump Statements

- A break statement terminates a for or while loop immediately.
- Aka early termination.
- A continue statement skips instructions behind it and start the next iteration.
- Directly jump to the very beginning of the loop; still in the loop.
- Notice that the break and continue statements must be conditional.

Example: Primality Test ${ }^{1}$

- Let x be any positive integer larger than 2 as input.
- Then x is a prime number if $\forall y \in\{2,3, \ldots, x-1\}, y$ is not a divisor of x, denoted by $y \nmid x$.
- In other words, x is called a composite number if $\exists y \in\{2,3, \ldots, x-1\}, y \mid x$.
- Now write a program which determines if x is a prime number.
${ }^{1}$ Also see Manindra Agrawal, Neeraj Kayal, Nitin Saxena (2002).

```
1 clear; clc;
2
3 x = input('Enter x > 2? ');
4 isPrime = true; % a flag, true if the number is prime
5 for y = 2 : sqrt(x)
6 if mod(x, y) == 0
7 isPrime = false;
8 break;
9 end
10 end
11
12 if isPrime
13 disp([num2str(x) ' is a prime number.']);
14 else
15 disp([num2str(x) ' is a composite number.']);
16 end
```


Equivalence: for and while Loops

- Whatever you can do with a for loop can be done with a while loop, and vice versa.

```
1 clear; clc;
2
3 balance = 100; goal = 200; r = 0.01;
4
for years = 1 : inf % inf: a huge but finite integer
    balance = balance * (1 + r);
        if balance >= goal
        break;
        end
end
years
```

- For another example,

```
1 clear; clc;
2
3 x = input("Enter x > 2? ");
4
5 isPrime = true; y = 2;
6 while isPrime && y < x
7 isPrime = mod(x, y);
8 Y = Y + 1;
9 end
10
11 if isPrime
12 disp(num2str(x) + " is a prime number.");
13 else
14 disp(num2str(x) + " is a composite number.");
15 end
```


Nested Loops

- Write a program which outputs the following patterns:

$*$	$* * * * *$	$*$	$* * * * *$
$* *$	$* * * *$	$* *$	$* * * *$
$* * *$	$* * *$	$* * *$	$* * *$
$* * * *$	$* *$	$* * * *$	$* *$
$* * * * *$	$*$	$* * * * *$	$*$
(a)	(b)	(c)	(d)

- You may use fprintf("*") and fprintf("\n") to print a single star and break a new line, respectively.

```
1 clear; clc;
2
% case (a)
for i = 1 : 5
    for j = 1 : i
        fprintf("*");
    end
    fprintf("\n");
end
```


Exercise: e ~ 2.7183

- Write a program to estimate the Euler constant by Monte Carlo simulation.
- It can be done as follows.
- Let N be the number of iterations.
- For each iteration, find the minimal number n so that $\sum_{i=1}^{n} r_{i}>1$ where r_{i} is the random variable following the standard uniform distribution (you can simply use rand).
- Then e is the average of n.

Special Issue: Sort

```
1 >> stocks = {"GOOG", 15;
    "TSMC", 12;
    "AAPL", 18};
    >> [~, idx] = sort([stocks{:, 2}], "descend")
    idx =
    7
    8
9
10 >> stocks = stocks(idx, :)
11
12 stocks=
13
14
15
16
\[
\begin{array}{ll}
\text { "AAPL" } & {[18]} \\
\text { "GOOG" } & {[15]} \\
\text { "TSMC" } & {[12]}
\end{array}
\]
```


Programming Exercise: Sorting Algorithm²

- Let A be any array.
- Write a program which outputs the sorted array of A (in ascending order).
- For example, $A=[5,4,1,2,3]$.
- Then the sorted array is $[1,2,3,4,5]$.

[^0]
Special Issue: Random Permutation

- Use randperm to generate an index array with a random order.

```
1 >> A = ["Matlab", "Python", "Java", "C++"];
2 >> idx = randperm(length(A))
3
    idx =
5
lllll
7
8>>A(idx)
9
10 ans =
11
12 1x4 string array
13
14
    "Java" "Matlab"
                            "Python"
"C++"
```

"Exploring the unknown requires tolerating uncertainty."

- Brian Greene
"I can live with doubt, and uncertainty, and not knowing. I think it is much more interesting to live not knowing than have answers which might be wrong."
- Richard Feynman

Speedup: Vectorization (Revisited) ${ }^{3}$

- Vector in, vector out.

```
1 >> x = randi (100, 1, 5)
2
3 x =
4
5
6
7 >> dx = diff(x)
8
9 dx =
10
11 -58 60 
```

[^1]
Advantages from Vectorization

- Appearance: vectorized mathematical code appears more like the mathematical expressions found in textbooks, making the code easier to understand.
- Less error prone: without loops, vectorized code is often shorter.
- Fewer lines of code mean fewer opportunities to introduce programming errors.
- Performance: vectorized code often runs much faster than the corresponding code containing loops.

Performance Analysis: Profiling

- Use a timer to measure your performance. ${ }^{4}$
- In newer version, press the button Run and Time.
- Identify which functions are consuming the most time.
- Know why you are calling them and then look for alternatives to improve the overall performance.

[^2]
tic \& toc

- The command tic makes a stopwatch timer start.
- The command toc returns the elapsed time from the stopwatch timer started by tic.

```
1 >> tic
2 >> toc
3 Elapsed time is 0.786635 seconds.
4 >> toc
5 Elapsed time is 1.609685 seconds.
6 >> toc
7 Elapsed time is 2.417677 seconds.
```


Selected Performance Suggestions ${ }^{5}$

- Preallocate arrays.
- Instead of continuously resizing arrays, consider preallocating the maximum amount of space required for an array.
- Vectorize your code.
- Create new variables if data type changes.
- Use functions instead of scripts.
- Avoid overloading Matlab built-in functions.

[^3]
Programming Exercise: A Benchmark

- Let $N=1 e 1,1 e 2,1 e 3,1 e 4,1 e 5$.
- Write a program which produces a benchmark for the following three cases:
- Generate an array of $1: N$ by dynamically resizing the array.
- Generate an array of $1: N$ by allocating an array of size N and filling up sequentially.
- Generate an array of $1: N$ by vectorization.

Analysis of Algorithms (Optional)

- For one problem, there exist various algorithms (solutions).
- We then compare these algorithms for various considerations and choose the most appropriate one.
- In general, we want efficient algorithms.
- Except for real-time performance analysis, could we predict before the program is completed?
- Definitely yes.

Growth Rate

- Now we use $f(n)$ to denote the growth rate of time cost as a function of n.
- In general, n refers to the data size.
- For simplicity, assume that every instruction (e.g. $+-\times \div$) takes 1 unit of computation time.
- Find $f(n)$ for the following problem.
- Sum(n): ?
- Triangle(n): ?

O-notation ${ }^{6}$

- In math, O-notation describes the limiting behavior of a function, usually in terms of simple functions.
- We say that

$$
f(n) \in O(g(n)) \text { as } n \rightarrow \infty
$$

if and only if $\exists c>0, n_{0}>0$ such that

$$
|f(n)| \leq c|g(n)| \quad \forall n \geq n_{0}
$$

- So $O(g(n))$ is a collection featured by a simple function $g(n)$.
- We use $f(n) \in O(g(n))$ to denote that $f(n)$ is one instance of $O(g(n))$.

- Big-O is used for the asymptotic upper bound of time complexity of algorithm.
- In layman's term, Big-O describes the worst case of this algorithm.
- For example, $8 n^{2}-3 n+4 \in O\left(n^{2}\right)$.
- For large n, you could ignore the last two terms. (Why?)
- It is easy to find a constant $c>0$ so that $c n^{2}>8 n^{2}$, say $c=9$.
- Hence the statement is proved.
- Also, $8 n^{2}-3 n+4 \in O\left(n^{3}\right)$ but we seldom say this. (Why?)
- However, $8 n^{2}-3 n+4 \notin O(n)$. (Why?)
- What is this analysis related to the algorithm?
- Any insight?

Common Simple Functions ${ }^{7}$

${ }^{7}$ See Table 4.1 and Figure 4.2 in Goodrich and etc, p. 161.

Remarks

- We often make a trade-off between time and space.
- Unlike time, we can reuse memory.
- Users are sensitive to time.
- Playing game well is hard. ${ }^{8}$
- Solve the problem P ?= NP, which is one of Millennium Prize Problems. ${ }^{9}$

[^4]＂All roads lead to Rome．＂
－Anonymous
＂但如你根本並無招式，敵人如何來破你的招式？＂
－風清揚。笑傲江湖。第十回。傳劍

[^0]: ${ }^{2}$ See https://visualgo.net/sorting.

[^1]: ${ }^{3}$ More about vectorization.

[^2]: ${ }^{4}$ Note that the results may differ depending on the difference of run-time environments, so make sure that you benchmark the algorithms on the same conditions.

[^3]: ${ }^{5}$ See Techniques for Improving Performance.

[^4]: ${ }^{8}$ See https://en.wikipedia.org/wiki/Game_complexity.
 ${ }^{9}$ See https://en.wikipedia.org/wiki/P_versus_NP_problem.

