
1 >> Lecture 7
2 >>
3 >> -- Matrix Computation
4 >>
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Vectors

• Let R be the set of all real numbers.

• Rn denotes the vector space of all m-by-1 column vectors:

u = (ui ) =

 u1
...
um

 . (1)

• You can simply use the colon (:) operator to reshape any array
in a column major, say u(:).

• Similarly, the row vector v is

v = (vi ) =
[
v1 · · · vn

]
. (2)

• We consider column vectors unless stated.
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Matrices

• Mm×n(R) denotes the vector space of all m-by-n real
matrices, for example,

A = (aij) =

 a11 · · · a1n
...

. . .
...

am1 · · · amn

 .
• Complex vectors/matrices1 follow similar definitions and

operations introduced later, simply with some care.

1Matlab treats a complex number as a single value.
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Transposition

1 >> A = [1 i];
2 >> A' % Hermitian operator; see any textbook for ...

linear algebra
3

4 ans =
5

6 1.0000 + 0.0000i
7 0.0000 - 1.0000i
8

9 >> A.' % transposition of A
10

11 ans =
12

13 1.0000 + 0.0000i
14 0.0000 + 1.0000i
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Arithmetic Operations

• Let aij and bij be the elements of the matrices A and
B ∈ Mm×n(R) for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

• Then C = A± B can be calculated by cij = aij ± bij . (Try.)
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Inner Product2

• Let u, v ∈ Rm.

• Then the inner product, denoted by u · v , is calculated by

u · v = u′v = [u1 · · · um]

 v1
...
vm

 .
1 clear; clc;
2

3 u = [1; 2; 3];
4 v = [4; 5; 6];
5 u' * v % normal way; orientation is important
6 dot(u, v) % using the built-in function

2Akaa dot product and scalar product.
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• Inner product is also called projection for emphasizing its
geometric significance.

• Recall that we know
u · v = 0

if and only if these two are orthogonal to each other, denoted
by

u ⊥ v .
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Generalization of Inner Product

• Let x ∈ R, f (x) and g(x) be real-valued functions.

• In particular, assume that g(x) is a basis function.3

• Then we can define the inner product of f and g on [a, b] by

〈f , g〉 =

∫ b

a
f (x)g(x)dx .

3See https://en.wikipedia.org/wiki/Basis_function,
https://en.wikipedia.org/wiki/Eigenfunction, and
https://en.wikipedia.org/wiki/Approximation_theory.
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• For example, Fourier transform is widely used in engineering
and science.
• Fourier integral4 is defined as

F (ω) =

∫ ∞
−∞

f (t)e−iωtdt

where f (t) is a square-integrable function.
• The Fast Fourier transform (FFT) algorithm computes the

discrete Fourier transform (DFT) in O(n log n) time.5,6

4See https://en.wikipedia.org/wiki/Fourier_transform.
5Cooley and Tukey (1965).
6See https://en.wikipedia.org/wiki/Fast_Fourier_transform.
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Matrix Multiplication

• Let A ∈ Mm×q(R) and B ∈ Mq×n(R).

• Then C = AB is given by

cij =

q∑
k=1

aik × bkj . (3)

• For example,
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Example

1 clear; clc;
2

3 A = randi(10, 5, 4); % 5-by-4
4 B = randi(10, 4, 3); % 4-by-3
5 C = zeros(size(A, 1), size(B, 2));
6 for i = 1 : size(A, 1)
7 for j = 1 : size(B, 2)
8 for k = 1 : size(A, 2)
9 C(i, j) = C(i, j) + A(i, k) * B(k, j);

10 end
11 end
12 end
13 C % display C

• Time complexity: O(n3).

• Strassen (1969): O(nlog27).
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Matrix Exponentiation

• Raising a matrix to a power is equivalent to repeatedly
multiplying the matrix by itself.
• For example, A2 = AA.

• The matrix exponential7 is a matrix function on square
matrices analogous to the ordinary exponential function, more
explicitly,

eA =
∞∑
n=0

An

n!
.

• However, it is not allowed to perform AB .

7See matrix exponentials and Pauli matrices.
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Determinants

• Consider the matrix

A =

[
a b
c d

]
.

• Then det(A) = ad − bc is called the determinant of A.
• The method of determinant calculation in high school is a

wrong way but produces correct answers for all 3× 3 matrices.

• Let’s try the minor expansion formula for det(A).8

8See http://en.wikipedia.org/wiki/Determinant.
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Recursive Algorithm for Minor Expansion Formula

1 function y = myDet(A)
2

3 [r, ~] = size(A);
4

5 if r == 1
6 y = A;
7 elseif r == 2
8 y = A(1, 1) * A(2, 2) - A(1, 2) * A(2, 1);
9 else

10 y = 0;
11 for i = 1 : r
12 B = A(2 : r, [1 : i - 1, i + 1 : r]);
13 cofactor = (-1) ˆ (i + 1) * myDet(B);
14 y = y + A(1, i) * cofactor;
15 end
16 end
17 end
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• It needs n! terms in the sum of products, so this algorithm
runs in O(n!) time!

• Use det for determinants, which can be done in O(n3) time
by using LU decomposition or alike.9

9See https://en.wikipedia.org/wiki/LU_decomposition. Moreover,
various decompositions are used to implement efficient matrix algorithms in
numerical analysis. See
https://en.wikipedia.org/wiki/Matrix_decomposition.
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Linear Systems (Transformation/Mapping)10

• A linear system is a mathematical model of a system based on
linear operators satisfying the property of superposition.
• For simplicity, Ax = y for any input x associated with the

output y .
• Then A is a linear operator if and only if

A(ax1 + bx2) = aAx1 + bAx2 = ay1 + by2

for a, b ∈ R.
• For example, d(x2+3x)

dx = dx2

dx + 3 dx
dx = 2x + 3.

• Linear systems typically exhibit features and properties that
are much simpler than the nonlinear case.
• What about nonlinear cases?

10See https://en.wikipedia.org/wiki/Linear_system.
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First-Order Approximation: Local Linearization

• Let f (x) be any nonlinear function.

• Assume that f (x) is infinitely differentiable at x0.

• By Taylor’s expansion11, we have

f (x) = f (x0) + f ′(x0)(x − x0) + O
(
(x − x0)2

)
,

where O
(
(x − x0)2

)
is the collection of higher-order terms,

which can be neglected as x − x0 → 0.

• Then we have a first-order approximation

f (x) ≈ f ′(x0)x + k,

with k = f (x0)− x0f
′(x0), a constant.

11See https://en.wikipedia.org/wiki/Taylor_series.
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Two Observations

• We barely feel like the curvature of the ground; however, we
look at Earth on the moon and agree that Earth is a sphere.
• Newton’s kinetic energy is a low-speed approximation

(classical limit) to Einstein’s total energy.
• Let m be the rest mass and v be the velocity relative to the

inertial coordinate.
• The resulting total energy is

E =
mc2√

1− (v/c)2
.

• By applying the first-order approximation,

E ≈ mc2 +
1

2
mv2.
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Example: Kirchhoff’s Laws12

• The algebraic sum of currents in a network of conductors
meeting at a point is zero.

• The directed sum of the potential differences (voltages)
around any closed loop is zero.

12See https://en.wikipedia.org/wiki/Kirchhoff’s_circuit_laws.
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General Form of Linear Equations13

• Let n be the number of unknowns and m be the number of
constraints.

• A general system of m linear equations with n unknowns is
a11x1 +a12x2 · · · +a1nxn = y1
a21x1 +a22x2 · · · +a2nxn = y2

...
...

. . .
... =

...
am1x1 +am2x2 · · · +amnxn = ym

where x1, . . . , xn are unknowns, a11, . . . , amn are the
coefficients of the system, and y1, . . . , ym are the constant
terms.

13See https://en.wikipedia.org/wiki/System_of_linear_equations.
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Matrix Equation

• Hence we can rewrite the aforesaid equations as follows:

Ax = y .

where

A =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 ,

x =

 x1
...
xn

 , and y =

 y1
...
ym

 .
• Finally, x can be done by x = A−1y , where A−1 is called the

inverse of A.
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Inverse Matrices14

• For simplicity, let A ∈ Mn×n(R) and x , y ∈ Rn.

• Then A is called invertible if there exists B ∈ Mn×n(R) such
that

AB = BA = In,

where In denotes a n × n identity matrix.
• We use A−1 to denote the inverse of A.
• You can use eye(n) to generate an identity matrix In.

• Use inv(A) to calculate the inverse of A.

14See https://en.wikipedia.org/wiki/Invertible_matrix#The_

invertible_matrix_theorem.
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• However, inv(A) may return a weird result even if A is
ill-conditioned, indicates how much the output value of the
function can change for a small change in the input
argument.15

• For example, calculate the inverse of the matrix

A =

 1 2 3
4 5 6
7 8 9

 .
• Recall the Cramer’s rule16: A is invertible iff det(A) 6= 0.

(Try.)

• If these constraints cannot be eliminated by row reduction,
they are linearly independent.

15You may refer to the condition number of a function with respect to an
argument. Also try rcond.

16See https://en.wikipedia.org/wiki/Cramer’s_rule.
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Linear Independence

• Let K = {a1, a2, . . . , an} for each ai ∈ Rm.

• Now consider this linear superposition

x1a1 + x2a2 + · · ·+ xnan = 0,

where x1, x2, . . . , xn ∈ R are the weights.

• Then K is linearly independent iff

x1 = x2 = · · · = xn = 0.

Zheng-Liang Lu 242



Example: R3

• Let

K1 =


1

0
0

 ,
0

1
0

 ,
0

0
1

 .

• It is clear that K1 is linearly independent.

• Moreover, you can represent all vectors in R3 if you collect all
linear superpositions from K1.

• We call this new set a span of K1, denoted by Span(K1).17

• Clearly, Span(K1) = R3.

17See https://en.wikipedia.org/wiki/Linear_span.
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• Now let

K2 =


1

0
0

 ,
0

1
0

 ,
0

0
1

 ,
1

2
3

 .

• Then K2 is not a linearly independent set. (Why?)

• If you take one or more vectors out of K2, then K2 becomes
linearly independent.
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Basis of Vector Space & Its Dimension18

• However, you can take only one vector out of K2 if you want
to represent all vectors in R3. (Why?)
• The dimension of R3 is exactly the size (element number) of

K2.

• We say that the basis of Rn is a maximally linearly
independent set of size n.
• Note that the basis of R3 is not unique.

• For example, K1 could be also a basis of R3.

18See https://en.wikipedia.org/wiki/Basis_(linear_algebra),
https://en.wikipedia.org/wiki/Vector_space, and
https://en.wikipedia.org/wiki/Dimension_(vector_space).
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Linear Transformation (Revisited)19

19See https://en.wikipedia.org/wiki/Linear_map; also see
https://kevinbinz.com/2017/02/20/linear-algebra/.

Zheng-Liang Lu 246

https://en.wikipedia.org/wiki/Linear_map
https://kevinbinz.com/2017/02/20/linear-algebra/


Example: Vector Projection (R3 → R2)

• Let u ∈ R3 and v ∈ R2.

• We consider the projection matrix (operator),

A =

[
1 0 0
0 1 0

]
so that Au = v .

• For example, [
1 0 0
0 1 0

]1
2
3

 =

[
1
2

]
.
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Solution Set to System of Linear Equations20

• Recall that m is the number of constraints and n is the
number of unknowns.

• Now consider the following cases.

• If m = n, then there exists a unique solution.
• If m > n, then it is called an overdetermined system and there

is no solution.
• Fortunately, we can find a least-squares error solution such

that ‖Ax − y ‖2 is minimal, shown later.

• If m < n, then it is called a underdetermined system which
has infinitely many solutions.
• Become an optimization problem?

• For all cases,

x = A \ y .

20See https://www.mathworks.com/help/matlab/ref/mldivide.html.
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Case 1: m = n

• For example,
3x + 2y − z = 1
x − y + 2z = −1

−2x + y − 2z = 0

1 >> A = [3 2 -1; 1 -1 2; -2 1 -2];
2 >> b = [1; -1; 0];
3 >> x = A \ b
4

5 1
6 -2
7 -2
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Case 2: m > n

• For example, 
2x − y = 2
x − 2y = −2
x + y = 1

1 >> A = [2 -1; 1 -2; 1 1];
2 >> b = [2; -2; 1];
3 >> x = A \ b
4

5 1
6 1
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Case 3: m < n

• For example, {
x + 2y + 3z = 7

4x + 5y + 6z = 8

1 >> A = [1 2 3; 4 5 6];
2 >> b = [7; 8];
3 >> x = A \ b
4

5 -3
6 0
7 3.333

• Note that this solution is a basic solution, one of infinitely
many.

• How to find the directional vector? (Try cross.)
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Gaussian Elimination Algorithm21

• First we consider the linear system is represented as an
augmented matrix [A | y ].

• We then transform A into an upper triangular matrix

[ Ā | y ] =


1 ā12 · · · ā1n ȳ1
0 1 · · · ā2n ȳ2
...

...
. . .

...
...

0 0 · · · 1 ȳn

 .
where āij ’s and ȳi ’s are the resulting values after elementary
row operations.

• This matrix is said to be in reduced row echelon form.

21See https://en.wikipedia.org/wiki/Gaussian_elimination.
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• The solution can be done by backward substitution:

xi = ȳi −
n∑

j=i+1

āijxj ,

where i = 1, 2, · · · , n.

• Time complexity: O(n3).
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Exercise

1 clear; clc;
2

3 A = [3 2 -1; 1 -1 2; -2 1 -2];
4 b = [1; -1; 0];
5 A \ b % check the answer
6

7 for i = 1 : 3
8 for j = i : 3
9 b(j) = b(j) / A(j, i); % why first?

10 A(j, :) = A(j, :) / A(j, i);
11 end
12 for j = i + 1 : 3
13 A(j, :) = A(j, :) - A(i, :);
14 b(j) = b(j) - b(i);
15 end
16 end
17 x = zeros(3, 1);
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18 for i = 3 : -1 : 1
19 x(i) = b(i);
20 for j = i + 1 : 1 : 3
21 x(i) = x(i) - A(i, j) * x(j);
22 end
23 end
24 x
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Selected Functions of Linear Algebra22

• Matrix properties: norm, null, orth, rank, rref, trace,
subspace.

• Matrix factorizations: lu, chol, qr.

22See https://www.mathworks.com/help/matlab/linear-algebra.html.
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Numerical Example: 2D Laplace’s Equation

• A partial differential equation (PDE) is a differential equation
that contains unknown multivariable functions and their
partial derivatives.23

• Let Φ(x , y) be a scalar field on R2.

• Consider Laplace’s equation24 as follows:

∇2Φ(x , y) = 0,

where ∇2 = ∂2

∂x2
+ ∂2

∂y2 is the Laplace operator.

• Consider the system shown in the next page.

23See
https://en.wikipedia.org/wiki/Partial_differential_equation.

24Pierre-Simon Laplace (1749–1827).
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• Consider the boundary condition:
• V1 = V2 = · · · = V4 = 0.
• V21 = V22 = · · · = V24 = 0.
• V1 = V6 = · · · = V16 = 0.
• V5 = V10 = · · · = V25 = 1.

Zheng-Liang Lu 258



An Simple Approximation25

• As you can see, we partition the region into many subregions
by applying a proper mesh generation.

• Then Φ(x , y) can be approximated by

Φ(x , y) ≈ Φ(x + h, y) + Φ(x − h, y) + Φ(x , y + h) + Φ(x , y − h)

4
,

where h is small enough.

25See
https://en.wikipedia.org/wiki/Finite_difference_method#Example:

_The_Laplace_operator.
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Matrix Formation

• By collecting all constraints, we have Ax = b where

A =



4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 −1 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4


and

b =
[

0 0 1 0 0 1 0 0 1
]T
.
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Dimension Reduction by Symmetry

• As you can see, V7 = V17,V8 = V18 and V9 = V19.

• So we can reduce A to A′

A′ =



4 −1 0 −1 0 0
−1 4 −1 0 −1 0
0 −1 4 0 0 −1
−2 0 0 4 −1 0
0 −2 0 −1 4 −1
0 0 −2 0 −1 4


and

b′ =
[

0 0 1 0 0 1
]T
.

• The dimensions of this problem are cut to 6 from 9.

• This trick helps to alleviate the curse of dimensionality.26

26See https://en.wikipedia.org/wiki/Curse_of_dimensionality.
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 0.0000

 0.0000
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 0.0000
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Remarks

• This is a toy example for numerical methods of PDEs.
• We can use the PDE toolbox for this case. (Try.)

• You may consider the finite element method (FEM).27

• The mesh generation is also crucial for numerical methods.28

• You can use the Computational Geometry toolbox for
triangular mesh.29

27See https://en.wikipedia.org/wiki/Finite_element_method.
28See https://en.wikipedia.org/wiki/Mesh_generation.
29See https:

//www.mathworks.com/help/matlab/computational-geometry.html.
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Numerical Example: Method of Least Squares30

• The method of least squares is a standard approach to the
approximate solution of overdetermined systems (m > n).

• Let {ŷi}ni=1 be the observed response values and {yi}ni=1 be
the fitted response values.

• Let εi = ŷi − yi be the residual for i = 1, . . . , n.

• Then the sum of square residuals estimates associated with
the data is given by

S =
n∑

i=1

ε2i .

• The best fit in the least-squares sense minimizes the sum of
squared residuals.

30See https://en.wikipedia.org/wiki/Least_squares.

Zheng-Liang Lu 264

https://en.wikipedia.org/wiki/Least_squares


https://commons.wikimedia.org/wiki/File:Linear_regression.svg
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Linear Least Squares

• The approach is called linear least squares since the assumed
function is linear in the parameters to be estimated.

• For example, consider

y = ax + b,

where a and b are to be determined.

• Then we have εi = (axi + b)− ŷi so that

S =
n∑

i=1

((axi + b)− ŷi )
2 .

Zheng-Liang Lu 266



• Now consider the partial derivatives of S with respective to a
and b:

∂S

∂a
=− 2

n∑
i=1

xi (yi − (axi + b)) = 0,

∂S

∂b
=− 2

n∑
i=1

(yi − (axi + b)) = 0.

• We reorganize the above equations as follows:

a
n∑

i=1

x2i + b
n∑

i=1

xi =
n∑

i=1

xiyi ,

a
n∑

i=1

xi + nb =
n∑

i=1

yi .

• It could be done by using normal equations.31
31See https://en.wikipedia.org/wiki/Linear_least_squares_

(mathematics)#Derivation_of_the_normal_equations.
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Example

1 clear; clc; close all;
2

3 rng(3); % fix the random seed
4 N = 10;
5 x = linspace(0, 1, N); x = x(:);
6 y = cos(rand(size(x)) * pi / 2) + x .ˆ 2;
7 figure; hold on; grid on; plot(x, y, 'o');
8 degree = 4;
9

10 M = @(x, degree) repmat(x, 1, degree + 1);
11 A = @(mat) bsxfun(@(x, i) x .ˆ i, mat, ...
12 size(mat, 2) - 1 : -1 : 0);
13 pp = A(M(x, degree)) \ y % show the coefficients
14 xq = linspace(min(x), max(x), 100); xq = xq(:);
15 yq = A(M(xq, degree)) * pp;
16 plot(xq, yq, '--');
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Polynomial Regression

• polyfit(x , y , n) returns the coefficients for a polynomial of
degree n that is a best fit for the set of sample data (x , y) (in
a least-squares sense).
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Example

1 clear; clc; close all;
2

3 rng(3);
4 N = 10;
5 x = linspace(0, 1, N); x = x(:);
6 y = cos(rand(size(x)) * pi / 2) + x .ˆ 2;
7 figure; hold on; grid on; plot(x, y, 'o');
8 degree = 4;
9

10 p = polyfit(x, y, degree)
11 xq = linspace(0, 1, 50);
12 yq = polyval(p, xq);
13 plot(xq, yq);

• The result is identical to the figure shown before.
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Overfitting

• Overfitting is the production of an analysis that corresponds
too closely or exactly to a particular set of data, and may
therefore fail to fit additional data or predict future
observations reliably.
• In other words, the overfitted model is perfect to in-sample

data but not robust in out-of-sample data.
• For example, Runge’s phenomenon.32

• Law of parsimony33 states that simpler solutions are more
likely to be correct than complex ones.

32See https://en.wikipedia.org/wiki/Runge’s_phenomenon.
33Aka Occam’s Razor.
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Polynomials

• Let n ∈ N ∪ {0}, and x , a0, . . . , an ∈ R.

• f (x) is said to be a polynomial with degree n provided that

f (x) = anx
n + an−1x

n−1 + · · ·+ a0,

where an 6= 0.

• We often express a polynomial by its coefficient vector
[an, an−1, . . . , a0].

• In fact, the set of polynomials with coefficients in R is a
vector space over R, denoted by Pn.34

34See https://en.wikipedia.org/wiki/Examples_of_vector_spaces#

Polynomial_vector_spaces.
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Arithmetic Operations of Polynomials

• Let p1 and p2 be two coefficient vectors of polynomials of the
same degree.
• Then we have the following operations:

• addition and subtraction: p1 ± p2.
• multiplication: conv(p1, p2).35

• division: [ q, r ] = deconv(p1, p2).36

• Use polyval(p1, x) to calculate the function values of p1 on x .

35See http://en.wikipedia.org/wiki/Convolution.
36Equivalently, v = conv(u, q) + r . Also see

http://en.wikipedia.org/wiki/Euclidean_division.
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1 clear; clc;
2

3 p1 = [1 -2 -7 4];
4 p2 = [2 -1 0 6];
5 p3 = p1 + p2
6 p4 = p1 - p2
7 p5 = conv(p1, p2)
8 [q, r] = deconv(p1, p2)
9

10 x = linspace(-1, 1, 20);
11 plot(x, polyval(p1, x), 'o', x, polyval(p2, x), ...

'*', x, polyval(p5, x), 'd');
12 grid on; legend('p1', 'p2', 'conv(p1, p2)');
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Finding Roots of Polynomial

• Use roots(p) for all roots of the polynomial p.37

• For example,

1 clear; clc; close all;
2

3 p = [1, 3, 1, 5, -1];
4 r = roots(p) % find all roots of p
5 polyval(p, r) % why not zeros?

37See https://en.wikipedia.org/wiki/Jenkins-Traub_algorithm.

Zheng-Liang Lu 278

https://en.wikipedia.org/wiki/Jenkins-Traub_algorithm


Exercise: Internal Rate of Return (IRR)38

• Consider two assets.

• For asset A, you are promised to receive the cash flows as
follows:

C0 = −100,C1 = 0,C2 = 0,C3 = 120.

• For asset B, the cash flows are

C0 = −100,C1 = 6,C2 = 6,C3 = 108.

• Which asset is more desirable?

38See https://en.wikipedia.org/wiki/Internal_rate_of_return.
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• Given a collection of pairs (time, cash flow), the IRR is a rate
of return when the net present value is zero.

• Explicitly, the IRR can be calculated by solving

N∑
i=0

Ci

(1 + r)i
= 0,

where Ci is the cash flow at time i .

• So the IRR is 6.27% for A and 6.62% for B.
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“Time is free, but its priceless.
You can’t own it, but you can use it.

You can’t keep it, but you can spend it.
Once you’ve lost it, you can never get it back.”

– Harvey MacKay

“No man can achieve success
if he didn’t first know the value of time.”

– Sunday Adelaja
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Integral and Derivative of Polynomials

• polyder(p) returns the derivative of the polynomial p.

• polyint(p, k) returns a polynomial representing the integral of
polynomial p, using a scalar constant of integration k .

1 clear; clc;
2

3 p = [4 3 2 1];
4 p der = polyder(p)
5 p int = polyint(p, 0) % k = 0
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Exercise

• Let p be the coefficient vector for any polynomial with degree
3.

• Write a program to calculate the coefficients of its derivative
and integration.

• Also, you may write down the matrix representation of
differentiation and integration of p.

• Do not use the built-in functions.

Zheng-Liang Lu 283



1 clear; clc;
2

3 p = randi(100, 1, 4)
4 q1 = [0, p(1 : end - 1) .* [length(p) - 1 : -1 : 1]]
5 q2 = [p ./ [length(p) : -1 : 1], 0]
6

7 T1 = [0 0 0 0;
8 3 0 0 0;
9 0 2 0 0;

10 0 0 1 0];
11 T1 * p'
12 T2 = [0 1/4 0 0 0;
13 0 0 1/3 0 0;
14 0 0 0 1/2 0;
15 0 0 0 0 1;
16 0 0 0 0 0];
17 T2 * [0 p]'

Zheng-Liang Lu 284



Eigenvalues and Eigenvectors

• Let A ∈ Mn×n(R), I be the identity, and v ∈ Rn be nontrivial.

• An eigenvalue problem39 is a system which follows

Av = λv .

• Then u is an eigenvector associated with the eigenvalue λ by
solving det(A− λI ) = 0, aka the characteristic polynomial.
• Use [V ,D ] = eig(A) produces a diagonal matrix D of

eigenvalues and a full matrix V whose columns are the
corresponding eigenvectors so that AV = VD.

39See https://en.wikipedia.org/wiki/Eigenvalues_and_

eigenvectors#Applications.
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Example: Google PageRank Algorithm40

• PageRank (PR) is an algorithm used by Google Search to
rank web pages in their search engine results.

• PageRank works by counting the number and quality of links
to a page to determine a rough estimate of how important the
website is.

• The underlying assumption is that more important websites
are likely to receive more links from other websites.

40Larry Page and Sergey Brin (1998).
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Singular Value Decomposition (SVD)

• Let A ∈ Mm×n(R), u ∈ Rm, v ∈ Rn, and σ ∈ R.

• σ is called a singular value associated with the left singular
vector u and the right singular vector v for A provided that

A =
n∑

i=1

σiuiv
T
i .

• In matrix form,
A = UΣV T ,

where U and V consist of the left and right singular vectors,
respectively, and Σ is a diagonal matrix whose diagonal entries
are the singular values of A.

• Use [U, S ,V ] = svd(A) for SVD.41

41See
https://www.mathworks.com/help/matlab/math/singular-values.html.
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Example: Image Compression by Low-Rank Approximation

• We can have an image extremely similar to the original one,
but with a smaller image size by keeping the vectors
associated with a few number of first large principal
components, aka Principal Component Analysis (PCA).42

• PCA can be done by svd.

42See http://setosa.io/ev/principal-component-analysis/.
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