Introduction to Regular Expressions¹

- A regular expression, also called a pattern, is an expression used to specify a set of strings required for a particular purpose.
 - Check this: https://regexone.com.

¹See https://en.wikipedia.org/wiki/Regular_expression; also https://www.mathworks.com/help/matlab/matlab_prog/ regular-expressions.html.

Example

```
1 >> text = 'bat cat can car coat court CUT ct ...
CAT-scan';
2 >> pattern = 'c[aeiou]+t';
3 >> start_idx = regexp(text, pattern)
4
5 start_idx =
6
7 5 17
```

- The pattern 'c[aeiou]+t' indicates a set of strings:
 - c must be the first character;
 - c must be followed by one of the characters in the brackets [aeiou], followed by t as the last character;
 - in particular, [aeiou] must occur one or more times, as indicated by the + operator.

イロト 不得 トイヨト イヨト 三日

Metacharacters²

Operator	Definition
	Boolean OR.
*	0 or more times consecutively.
?	0 times or 1 time.
+	1 or more times consecutively.
{n}	exactly n times consecutively.
{m, }	at least m times consecutively.
{, n}	at most n times consecutively.
{m, n}	at least m times, but no more than n times consecutively.

Operator	Definition
	any single character, including white space.
$[c_1c_2c_3]$	any character contained within the brackets.
$[\wedge c_1 c_2 c_3]$	any character not contained within the brackets.
$[c_1 - c_2]$	any character in the range of c_1 through c_2 .
∖s	any white-space character.
\w	a word; any alphabetic, numeric, or underscore character.
\W	not a word.
/d	any numeric digit; equivalent to [0-9].
\D	no numeric digit; equivalent to $[\land 0-9]$.

Output Keywords

Keyword	Output
'start'	starting indices of all matches, by default
'end'	ending indices of all matches
'match'	text of each substring that matches the pattern
'tokens'	text of each captured token
'split'	text of nonmatching substrings
'names'	name and text of each named token

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Examples

```
1 clear; clc;
2
3 text1 = {'Madrid, Spain', 'Romeo and Juliet', ...
'MATLAB is great'};
4 tokens = regexp(text1, '\s', 'split')
5
6 text2 = 'EXTRA! The regexp function helps you ...
relax.';
7 matches = regexp(text2, '\w*x\w*', 'match')
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Exercise: Listing Filtered Files

```
1 clear; clc;
2
3 file_list = dir;
4 filenames = {file_list(:).name};
5 A = regexp(filenames, '.+\.m', 'match');
6 mask = cellfun(@(x) ~isempty(x), A);
7 cellfun(@(f) fprintf('%s\\%s\n', pwd, f{:}), A(mask))
```

イロト 不得 とくほ とくほ とうせい

Example: By Names

- You can associate names with tokens so that they are more easily identifiable.
- For example,

```
1 >> str = 'Here is a date: 01-Apr-2020';
2 >> expr = '(?<day>\d+)-(?<month>\w+)-(?<year>\d+)';
3 >> mydate = regexp(str, expr, 'names')
4
5 mydate =
6
7 day: '01'
8 month: 'Apr'
9 year: '2020'
```

イロト 不得 とくほ とくほ とうせい

Exercise: Web Crawler

- Write a script which collects the names of html tags by defining a token within a regular expression.
- For example,

```
1 >> str = '<title>My Title</title>Here is some ...
        text.';
2 >> pattern = '<(\w+) .*>.*</\l>';
3 >> [tokens, matches] = regexp(str, pattern, ...
        'tokens', 'match')
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

More Regexp Functions

• See regexpi, regexprep, and regexptranslate.

```
1 >> Lecture 6
2 >>
3 >> -- Special Topic: File Operations & other I/O
4 >>
```

Spreadsheets: Excel/CSV Files (Revisited)

• The command **xlsread**(*filename*) reads excel files, for example,

1 [~, ~, raw] = xlsread("2330.xlsx");

- By default, it returns a numeric matrix.
- The text part is the 2nd output, separated from the numeric part.
- You may consider the whole spreadsheet by using the 3rd output (stored in a cell array).
- Note that you can use \sim to drop the output value.

More Tips for Excel Files

- You can specify the range.
 - For example, the string argument "B:B" is used to import column B.
 - If you need a single value, say the cell B1, just use "B1:B1".³
- You could specify the worksheet by the sheet name⁴ or the sheet number.
- You could refer to the document for more details.⁵

³Contribution by Mr. Tsung-Yu Hsieh (MAT24409) on August 27, 2014. ⁴The default sheet name is "工作表". ⁵See https://www.mathworks.com/help/matlab/ref/xlsread.html. 💿

Mat Files⁶

- Recall that I/O is costly.
- To save time, you may consider save matrices to the disk; for example,

```
1 data1 = rand(1, 10);
2 data2 = ones(10);
3 save('trial.mat', 'data1', 'data2');
```

• You can use load to fetch the data from mat files.

1 load('trial.mat');

⁶See https://www.mathworks.com/help/matlab/ref/save.html. = 🛌 🤊 🔍

Selected Read/Write Functions

- For text data, see https:
 - //www.mathworks.com/help/matlab/text-files.html.
 - Try dlmread, dlmwrite, csvread, csvwrite, textread/textscan.
- For images, see https://www.mathworks.com/help/ matlab/images_images.html.
- For video and audio, see https://www.mathworks.com/ help/matlab/audio-and-video.html.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Selected File Operations⁷

cd	Change current folder.
pwd	Identify current folder.
ls	List folder contents by chars.
dir	List folder contents by structures.
exist	Check existence of variable, script, function, folder, or class.
mkdir	Make new folder.
visdiff	Compare two files or folders.

⁷See

Example: Pooling Data from Multiple Files⁸

```
1 clear; clc;
2
3 cd('./stocks'); % enter the folder
4 files = dir; % get all files in the current folder
5 files = files (3 : end); % drop the first two
6 names = {files(:).name}; % get all file names
7 filter = endsWith(names, '.xlsx'); % filter by .xlsx
8 names = names(filter);
9
  pool = cell(length(names), 2);
10
11
  for i = 1 : length(names)
       [~, ~, raw] = xlsread(names{i});
12
      pool(i, :) = \{names\{i\}(1 : 4), raw\};
13
  end
14
15 save('data_pool', 'pool');
```

⁸Download stocks.zip.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

```
1 >> Lecture 7
2 >>
3 >> -- Matrix Computation
4 >>
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

Vectors

- Let \mathbb{R} be the set of all real numbers.
- \mathbb{R}^n denotes the vector space of all *m*-by-1 column vectors:

$$u = (u_i) = \begin{bmatrix} u_1 \\ \vdots \\ u_m \end{bmatrix}.$$
(1)

- You can simply use the colon (:) operator to reshape any array in a column major, say *u*(:).
- Similarly, the row vector v is

$$\mathbf{v} = (\mathbf{v}_i) = \left[\begin{array}{c} \mathbf{v}_1 \cdots \mathbf{v}_n \end{array} \right]. \tag{2}$$

We consider column vectors unless stated.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Matrices

M_{m×n}(ℝ) denotes the vector space of all *m*-by-*n* real matrices, for example,

$$A = (a_{ij}) = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

 Complex vectors/matrices⁹ follow similar definitions and operations introduced later, simply with some care.

Transposition

```
1 >> A = [1 i];
2 >> A' % Hermitian operator; see any textbook for ...
       linear algebra
3
Δ
  ans =
5
6
     1.0000 + 0.0000i
7
      0.0000 - 1.0000i
8
  >> A.' % transposition of A
9
10
11
  ans =
12
      1.0000 + 0.0000i
13
      0.0000 + 1.0000i
14
```

<ロト <部ト <きト <きト = 目

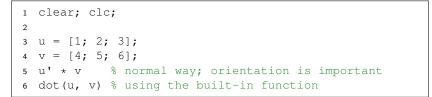
Arithmetic Operations

- Let a_{ij} and b_{ij} be the elements of the matrices A and $B \in \mathbf{M}^{m \times n}(\mathbb{R})$ for $1 \le i \le m$ and $1 \le j \le n$.
- Then $C = A \pm B$ can be calculated by $c_{ij} = a_{ij} \pm b_{ij}$. (Try.)

Inner Product¹⁰

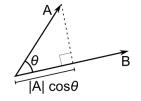
- Let $u, v \in \mathbb{R}^m$.
- Then the inner product, denoted by $u \cdot v$, is calculated by

$$u \cdot v = u'v = [u_1 \cdots u_m] \begin{bmatrix} v_1 \\ \vdots \\ v_m \end{bmatrix}$$



¹⁰Akaa dot product and scalar product.

• Inner product is also called projection for emphasizing its geometric significance.



Recall that we know

 $u \cdot v = 0$

if and only if these two are orthogonal to each other, denoted by

 $u \perp v$.

イロト 不得 トイヨト イヨト 三日

Generalization of Inner Product

- Let $x \in \mathbb{R}$, f(x) and g(x) be real-valued functions.
- In particular, assume that g(x) is a basis function.¹¹
- Then we can define the inner product of f and g on [a, b] by

$$\langle f,g\rangle = \int_a^b f(x)g(x)dx.$$

¹¹See https://en.wikipedia.org/wiki/Basis_function, https://en.wikipedia.org/wiki/Eigenfunction, and https://en.wikipedia.org/wiki/Approximation_theory > < > < > > > >

- For example, Fourier transform is widely used in engineering and science.
 - Fourier integral¹² is defined as

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

where f(t) is a square-integrable function.

 The Fast Fourier transform (FFT) algorithm computes the discrete Fourier transform (DFT) in O(n log n) time.^{13,14}

¹³Cooley and Tukey (1965).

¹⁴See https://en.wikipedia.org/wiki/Fast_Fourier_transform > =

¹²See https://en.wikipedia.org/wiki/Fourier_transform.

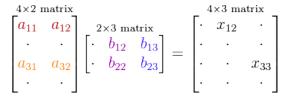
Matrix Multiplication

- Let $A \in \mathbf{M}_{m \times q}(\mathbb{R})$ and $B \in \mathbf{M}_{q \times n}(\mathbb{R})$.
- Then C = AB is given by

$$c_{ij} = \sum_{k=1}^{q} a_{ik} \times b_{kj}.$$
 (3)

・ロト ・ 同ト ・ ヨト ・ ヨト

For example,



Example

```
1 clear; clc;
2
3 A = randi(10, 5, 4); % 5-by-4
  B = randi(10, 4, 3); \& 4-by-3
4
  C = zeros(size(A, 1), size(B, 2));
5
  for i = 1 : size(A, 1)
6
      for j = 1 : size(B, 2)
7
           for k = 1 : size(A, 2)
8
               C(i, j) = C(i, j) + A(i, k) * B(k, j);
9
           end
10
       end
11
12 end
13 C % display C
```

- Time complexity: $O(n^3)$.
- Strassen (1969): $O(n^{log_27})$.

イロト 不得 トイヨト イヨト 二日

Matrix Exponentiation

- Raising a matrix to a power is equivalent to repeatedly multiplying the matrix by itself.
 - For example, $A^2 = AA$.
- The matrix exponential¹⁵ is a matrix function on square matrices analogous to the ordinary exponential function, more explicitly,

$$e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!}.$$

• However, it is not allowed to perform A^B .

¹⁵See matrix exponentials and <u>Pauli matrices</u>.

Determinants

Consider the matrix

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

- Then det(A) = ad bc is called the determinant of A.
 - The method of determinant calculation in high school is a wrong way but produces correct answers for all 3 × 3 matrices.
- Let's try the minor expansion formula for det(A).¹⁶

¹⁶See http://en.wikipedia.org/wiki/Determinant. () + (

Recursive Algorithm for Minor Expansion Formula

```
function y = myDet(A)
1
2
       [r, \sim] = size(A);
3
4
       if r == 1
5
        v = A;
6
       elseif r == 2
7
           y = A(1, 1) * A(2, 2) - A(1, 2) * A(2, 1);
8
       else
9
           v = 0;
10
           for i = 1 : r
11
                B = A(2 : r, [1 : i - 1, i + 1 : r]);
12
                cofactor = (-1)^{(i + 1)} * myDet(B);
13
                y = y + A(1, i) * cofactor;
14
           end
15
       end
16
17
   end
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- It needs n! terms in the sum of products, so this algorithm runs in O(n!) time!
- Use **det** for determinants, which can be done in $O(n^3)$ time by using LU decomposition or alike.¹⁷

¹⁷See https://en.wikipedia.org/wiki/LU_decomposition. Moreover, various decompositions are used to implement efficient matrix algorithms in numerical analysis. See https://en.wikipedia.org/wiki/Matrix_decomposition

Linear Systems (Transformation/Mapping)¹⁸

- A linear system is a mathematical model of a system based on linear operators satisfying the property of superposition.
 - For simplicity, Ax = y for any input x associated with the output y.
 - Then A is a linear operator if and only if

$$A(ax_1 + bx_2) = aAx_1 + bAx_2 = ay_1 + by_2$$

for $a, b \in \mathbb{R}$.

- For example, $\frac{d(x^2+3x)}{dx} = \frac{dx^2}{dx} + 3\frac{dx}{dx} = 2x + 3.$
- Linear systems typically exhibit features and properties that are much simpler than the nonlinear case.
 - What about nonlinear cases?

¹⁸See https://en.wikipedia.org/wiki/Linear_system > (= > (= >) a (

First-Order Approximation: Local Linearization

- Let f(x) be any nonlinear function.
- Assume that f(x) is infinitely differentiable at x_0 .
- By Taylor's expansion¹⁹, we have

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + O((x - x_0)^2),$$

where $O\left((x - x_0)^2\right)$ is the collection of higher-order terms, which can be neglected as $x - x_0 \rightarrow 0$.

• Then we have a first-order approximation

$$f(x)\approx f'(x_0)x+k,$$

with $k = f(x_0) - x_0 f'(x_0)$, a constant.

¹⁹See https://en.wikipedia.org/wiki/Taylor_series → < = → < = → へへ

Two Observations

- We barely feel like the curvature of the ground; however, we look at Earth on the moon and agree that Earth is a sphere.
- Newton's kinetic energy is a low-speed approximation (classical limit) to Einstein's total energy.
 - Let *m* be the rest mass and *v* be the velocity relative to the inertial coordinate.
 - The resulting total energy is

$$E=\frac{mc^2}{\sqrt{1-(v/c)^2}}.$$

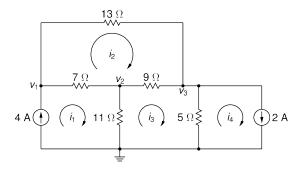
By applying the first-order approximation,

$$E \approx mc^2 + \frac{1}{2}mv^2.$$

・ロト ・ 四ト ・ 日ト ・ 日下

Example: Kirchhoff's Laws²⁰

- The algebraic sum of currents in a network of conductors meeting at a point is zero.
- The directed sum of the potential differences (voltages) around any closed loop is zero.



²⁰See https://en.wikipedia.org/wiki/Kirchhoff's_circuit_laws. E 900

General Form of Linear Equations²¹

- Let *n* be the number of unknowns and *m* be the number of constraints.
- A general system of *m* linear equations with *n* unknowns is

	<i>a</i> ₁₁ <i>x</i> ₁	$+a_{12}x_{2}$	•••	$+a_{1n}x_n$	=	y_1
	$a_{21}x_1$	$+a_{22}x_{2}$	• • •	$+a_{2n}x_n$	=	<i>y</i> ₂
	:	÷	•••	÷	=	÷
	a _{m1} x ₁	$+a_{m2}x_{2}$	• • •	$+a_{mn}x_n$	=	Уm

where x_1, \ldots, x_n are unknowns, a_{11}, \ldots, a_{mn} are the coefficients of the system, and y_1, \ldots, y_m are the constant terms.

²¹See https://en.wikipedia.org/wiki/System_of_linear_equations.

Matrix Equation

• Hence we can rewrite the aforesaid equations as follows:

$$Ax = y$$
.

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix},$$
$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, \text{ and } y = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}.$$

Finally, x can be done by x = A⁻¹y, where A⁻¹ is called the inverse of A.

Inverse Matrices²²

- For simplicity, let $A \in \mathbf{M}_{n \times n}(\mathbb{R})$ and $x, y \in \mathbb{R}^{n}$.
- Then A is called invertible if there exists $B \in \mathbf{M}_{n \times n}(\mathbb{R})$ such that

$$AB = BA = I_n,$$

where I_n denotes a $n \times n$ identity matrix.

- We use A^{-1} to denote the inverse of A.
- You can use eye(n) to generate an identity matrix I_n .
- Use inv(A) to calculate the inverse of A.

²²See https://en.wikipedia.org/wiki/Invertible_matrix#The_ invertible_matrix_theorem.

- However, **inv**(*A*) may return a weird result even if *A* is ill-conditioned, indicates how much the output value of the function can change for a small change in the input argument.²³
- For example, calculate the inverse of the matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array} \right].$$

- Recall the Cramer's rule²⁴: A is invertible iff $det(A) \neq 0$. (Try.)
- If these constraints cannot be eliminated by row reduction, they are linearly independent.

 $^{^{23}}$ You may refer to the condition number of a function with respect to an argument. Also try **rcond**.

²⁴See https://en.wikipedia.org/wiki/Cramer's_rule + < = + < = + > = - > <

Linear Independence

- Let $K = \{a_1, a_2, \dots, a_n\}$ for each $a_i \in \mathbb{R}^m$.
- Now consider this linear superposition

$$x_1a_1+x_2a_2+\cdots+x_na_n=0,$$

where $x_1, x_2, \ldots, x_n \in \mathbb{R}$ are the weights.

• Then K is linearly independent iff

$$x_1=x_2=\cdots=x_n=0.$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Example: \mathbb{R}^3

Let

$$\mathcal{K}_1 = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}
ight\}.$$

- It is clear that K₁ is linearly independent.
- Moreover, you can represent all vectors in \mathbb{R}^3 if you collect all linear superpositions from K_1 .
- We call this new set a span of K_1 , denoted by Span (K_1) .²⁵
- Clearly, Span $(K_1) = \mathbb{R}^3$.

²⁵See https://en.wikipedia.org/wiki/Linear_span.

Now let

$$\mathcal{K}_2 = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}.$$

- Then K_2 is not a linearly independent set. (Why?)
- If you take one or more vectors out of K_2 , then K_2 becomes linearly independent.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Basis of Vector Space & Its Dimension²⁶

- However, you can take only one vector out of K₂ if you want to represent all vectors in ℝ³. (Why?)
 - The dimension of \mathbb{R}^3 is exactly the size (element number) of \mathcal{K}_2 .
- We say that the basis of \mathbb{R}^n is a maximally linearly independent set of size n.
- Note that the basis of \mathbb{R}^3 is not unique.
 - For example, K_1 could be also a basis of \mathbb{R}^3 .

Linear Transformation (Revisited)²⁷

Matrix A converts n-tuples into m-tuples $\mathbb{R}^n \to \mathbb{R}^m$. That is, linear transformation T₄ is a map between rows and columns Fundamental Subspaces C(A): Column space (image) $\mathcal{R}(A)$: Row space (coimage) $\mathcal{C}(\mathsf{A})$ $\mathcal{R}(\mathsf{A})$ $Ax_{1} = b$ N(A): Null space (kernel) Х, ≁b $\mathcal{N}(\mathsf{A}^{\mathsf{T}})$: Left null space (cokernel) x = Ax = bx, + x Identities Theorems $Ax_n = 0$ $\dim(\mathcal{C}) \equiv \operatorname{rank}(A)$ $\dim(\mathcal{C}) + \dim(\mathcal{N}) = n$ Х., $\mathcal{N}(\mathsf{A}^{\mathsf{T}})$ $\dim(\mathcal{N}) \equiv \operatorname{nullity}(A)$ $\dim(\mathcal{R}) = \dim(\mathcal{C})$ $\mathcal{N}(A)$

Example: Vector Projection $(\mathbb{R}^3 \to \mathbb{R}^2)$

- Let $u \in \mathbb{R}^3$ and $v \in \mathbb{R}^2$.
- We consider the projection matrix (operator),

$$egin{array}{ccc} A = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix}$$

so that Au = v.

For example,

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Solution Set to System of Linear Equations²⁸

- Recall that *m* is the number of constraints and *n* is the number of unknowns.
- Now consider the following cases.
- If m = n, then there exists a unique solution.
- If m > n, then it is called an overdetermined system and there is no solution.
 - Fortunately, we can find a least-squares error solution such that $||Ax y||^2$ is minimal, shown later.
- If *m* < *n*, then it is called a underdetermined system which has infinitely many solutions.
 - Become an optimization problem?
- For all cases,

$$x = A \setminus y$$
.

²⁸See https://www.mathworks.com/help/matlab/ref/mldivide.html. = •n

Case 1: m = n

• For example,

$$\begin{cases} 3x + 2y - z = 1\\ x - y + 2z = -1\\ -2x + y - 2z = 0 \end{cases}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Case 2: *m* > *n*

• For example,

$$\begin{cases} 2x - y = 2 \\ x - 2y = -2 \\ x + y = 1 \end{cases}$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Case 3: *m* < *n*

For example,

$$\begin{cases} x + 2y + 3z = 7 \\ 4x + 5y + 6z = 8 \end{cases}$$

1 >> A = [1 2 3; 4 5 6]; 2 >> b = [7; 8]; 3 >> x = A \ b
4
5 -3
6 0
7 3.333

- Note that this solution is a basic solution, one of infinitely many.
- How to find the directional vector? (Try cross.)

・ロト ・ 四ト ・ 日ト ・ 日下

Gaussian Elimination Algorithm²⁹

- First we consider the linear system is represented as an augmented matrix [A | y].
- We then transform A into an upper triangular matrix

$$\begin{bmatrix} \bar{A} \mid y \end{bmatrix} = \begin{bmatrix} 1 & \bar{a}_{12} & \cdots & \bar{a}_{1n} \mid \bar{y}_1 \\ 0 & 1 & \cdots & \bar{a}_{2n} \mid \bar{y}_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \mid \bar{y}_n \end{bmatrix}$$

where \bar{a}_{ij} 's and \bar{y}_i 's are the resulting values after elementary row operations.

• This matrix is said to be in reduced row echelon form.

²⁹See https://en.wikipedia.org/wiki/Gaussian_elimination.

• The solution can be done by backward substitution:

$$x_i = \bar{y}_i - \sum_{j=i+1}^n \bar{a}_{ij} x_j,$$

where $i = 1, 2, \dots, n$.

• Time complexity: $O(n^3)$.

▲□▶▲□▶▲≣▶▲≣▶ ■ のへの

Exercise

```
1 clear; clc;
2
A = [3 \ 2 \ -1; \ 1 \ -1 \ 2; \ -2 \ 1 \ -2];
4 b = [1; -1; 0];
5 A \setminus b % check the answer
6
7 \text{ for } i = 1 : 3
      for j = i : 3
8
            b(j) = b(j) / A(j, i); % why first?
9
            A(j, :) = A(j, :) / A(j, i);
10
      end
11
    for j = i + 1 : 3
12
            A(j, :) = A(j, :) - A(i, :);
13
            b(j) = b(j) - b(i);
14
15
       end
16 end
17 x = zeros(3, 1);
```

◆□▶ ◆□▶ ▲目▶ ▲目▶ 目 うんぐ

```
18 for i = 3 : -1 : 1
19     x(i) = b(i);
20     for j = i + 1 : 1 : 3
21          x(i) = x(i) - A(i, j) * x(j);
22     end
23 end
24 x
```

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

Selected Functions of Linear Algebra³⁰

- Matrix properties: norm, null, orth, rank, rref, trace, subspace.
- Matrix factorizations: lu, chol, qr.

³⁰See https://www.mathworks.com/help/matlab/linear-algebra.html.

Numerical Example: 2D Laplace's Equation

- A partial differential equation (PDE) is a differential equation that contains unknown multivariable functions and their partial derivatives.³¹
- Let $\Phi(x, y)$ be a scalar field on \mathbb{R}^2 .
- Consider Laplace's equation³² as follows:

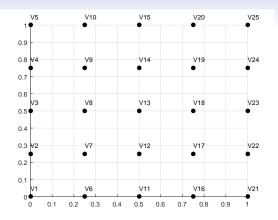
$$\nabla^2\Phi(x,y)=0,$$

where $\nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ is the Laplace operator.

• Consider the system shown in the next page.

³¹See

https://en.wikipedia.org/wiki/Partial_differential_equation. ³²Pierre-Simon Laplace (1749-1827).



• Consider the boundary condition:

•
$$V_1 = V_2 = \cdots = V_4 = 0.$$

•
$$V_{21} = V_{22} = \cdots = V_{24} = 0$$

•
$$V_1 = V_6 = \cdots = V_{16} = 0.$$

•
$$V_5 = V_{10} = \cdots = V_{25} = 1.$$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

An Simple Approximation³³

- As you can see, we partition the region into many subregions by applying a proper mesh generation.
- Then $\Phi(x, y)$ can be approximated by

$$\Phi(x,y) pprox rac{\Phi(x+h,y) + \Phi(x-h,y) + \Phi(x,y+h) + \Phi(x,y-h)}{4},$$

where h is small enough.

³³See

https://en.wikipedia.org/wiki/Finite_difference_method#Example: _The_Laplace_operator.

Matrix Formation

• By collecting all constraints, we have Ax = b where

$$A = \begin{bmatrix} 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 4 & -1 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 4 & 0 & 0 & -1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 4 & -1 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 0 & 0 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & -1 & 4 \end{bmatrix}$$

and
$$b = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}^{T}.$$

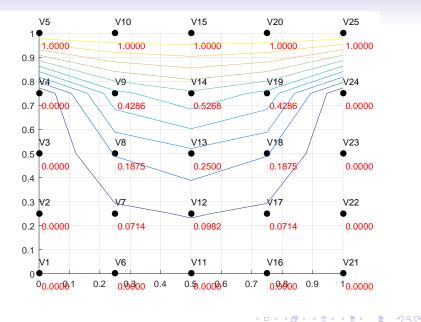
Dimension Reduction by Symmetry

- As you can see, $V_7 = V_{17}, V_8 = V_{18}$ and $V_9 = V_{19}$.
- So we can reduce A to A'

and

- The dimensions of this problem are cut to 6 from 9.
- This trick helps to alleviate the curse of dimensionality.³⁴

³⁴See https://en.wikipedia.org/wiki/Curse_of_dimensionality.



Remarks

- This is a toy example for numerical methods of PDEs.
- We can use the PDE toolbox for this case. (Try.)
 - You may consider the finite element method (FEM).³⁵
 - The mesh generation is also crucial for numerical methods.³⁶
 - You can use the Computational Geometry toolbox for triangular mesh.³⁷

³⁵See https://en.wikipedia.org/wiki/Finite_element_method.
³⁶See https://en.wikipedia.org/wiki/Mesh_generation.
³⁷See https:

//www.mathworks.com/help/matlab/computational=geometry=html= > = <