
1 >> Lecture 4
2 >>
3 >> -- Functions
4 >>

Zheng-Liang Lu 181



Motivation

• A large and complicated problem would be conquered by
solving its subproblems.

• So the first step is problem decomposition, that is, separating
tasks into smaller self-contained units.

• This is also beneficial to code reuse without copying the codes.

• Note that bugs propagate across the program when you copy
and paste the codes.

Zheng-Liang Lu 182



Function

• A function is a piece of program code that accepts input
arguments from the caller, and then returns output arguments
to the caller.

• In MATLAB, the syntax of functions is similar to math
functions,

y = f (x),

where x is the input and y is the output.

Zheng-Liang Lu 183



User-Defined Functions

• We can define a new function as follows:

1 function [outputVar] = function name(inputVar)
2 % What to do.
3 end

• This function should be saved in a file with the function name!

• Note that the input/output variables can be optional.

Zheng-Liang Lu 184



Example: Addition of Two Numbers

1 function z = myAdd(x, y)
2 % Input: x, y (any two numbers).
3 % Output: z (sum of x and y).
4 z = x + y;
5 end

• It seems bloody trivial.

• The truth is that the plus operator is actually the function
plus.1

• Also true for all the operators like +.

1See https://www.mathworks.com/help/matlab/ref/plus.html.

Zheng-Liang Lu 185

https://www.mathworks.com/help/matlab/ref/plus.html


Variable-length Input Argument List2 (Optional)

• We can know the number of input arguments for the function
executed by nargin.

• varargin is an input variable in a function definition statement
that enables the function to accept any number of input
arguments.

• It must be declared as the last input argument and collects all
the inputs from that point onwards.

• The variable varargout is a special word similar to varargin
but for outputs.

2See https://www.mathworks.com/help/matlab/ref/varargin.html.

Zheng-Liang Lu 186

https://www.mathworks.com/help/matlab/ref/varargin.html


Example

1 function ret = myAdd(varargin)
2

3 switch nargin
4 case 0
5 disp("No input.");
6 case 1
7 ret = varargin{1};
8 case {2, 3}
9 ret = sum([varargin{:}]);

10 otherwise
11 error("Too many inputs.");
12 end
13

14 end

Zheng-Liang Lu 187



Variable Scope

• Variables in a function are known as local variables, existing
only for the function.

• These variables are wiped out when the function finishes its
task.

• You may trace the data flow in the program by using the
debugger.3

• Let’s set some breakpoints!!!

3See https://www.mathworks.com/help/matlab/matlab_prog/

debugging-process-and-features.html.

Zheng-Liang Lu 188

https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html
https://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html


Example

1 clear; clc;
2

3 x = 0;
4 for i = 1 : 5
5 addOne(x);
6 disp(x); % output ?
7 end

1 function addOne(x)
2 x = x + 1;
3 end

Zheng-Liang Lu 189



Function Handles & Anonymous Functions

• Anonymous functions are used once and not written in the
standard form of functions, for example,

1 f = @(x) x .ˆ 2 + 1 % f is a function handle.

• However, they contain only single statement.

• Besides, we use function handles4 to handle functions.

• This is also called lambda expressions.

• You can also assign an existing function to a handle, for
example,

1 g = @sin

4You may refer to https://en.wikipedia.org/wiki/Function_pointer.
The truth is that every function name is an alias of the function address!

Zheng-Liang Lu 190

https://en.wikipedia.org/wiki/Function_pointer


More Examples5,6,7

1 function y = parabolicFunGen(a, b, c)
2 y = @(x) a * x .ˆ 2 + b * x + c;
3 end

1 function y = getSlope(f, x0)
2 eps = 1e-9;
3 y = (f(x0 + eps) - f(x0)) / eps;
4 end

1 function y = differentiate(f)
2 eps = 1e-9;
3 y = @(x) (f(x + eps) - f(x)) / eps;
4 end

5Thanks to a lively class discussion (MATLAB244) on August 22, 2014.
6Contribution by Ms. Queenie Chang (MAT25108) on March 18, 2015.
7Thanks to a lively class discussion (MATLAB260) on September 16, 2015.

Zheng-Liang Lu 191



Vectorization (Revisited)

• We can apply a function to each element of array by
arrayfun.8

1 B = arrayfun(@(x) 2 * x, A) % Equivalent to 2 * A.

• cellfun is similar to arrayfun but applied to cells.9

1 >> data = {"NTU", "CSIE", [], "MATLAB"};
2 >> isempty(data) % Output 0.
3 >> cellfun(@isempty, data) % Output 0 0 1 0.

8See https://www.mathworks.com/help/matlab/ref/arrayfun.html.
9See https://www.mathworks.com/help/matlab/ref/cellfun.html.

Zheng-Liang Lu 192

https://www.mathworks.com/help/matlab/ref/arrayfun.html
 https://www.mathworks.com/help/matlab/ref/cellfun.html


Error and Error Handling

• You can issue/throw an error if you do not allow the callee for
some situations.

1 if bad condition
2 error("So wrong."); % Interrupt the normal flow.
3 end

• As an app programmer, you should use a try-catch statement
to handle errors.

1 try
2 % Normal operations.
3 catch
4 % Handler operations.
5 end

Zheng-Liang Lu 193



Example: Combinations

• For all nonnegative integers n ≥ k ,
(n
k

)
is given by(

n

k

)
=

n!

k!(n − k)!
.

• Note that factorial(n) returns n!.

1 clear; clc;
2

3 n = input("n = ? ");
4 k = input("k = ? ");
5 y = factorial(n) / (factorial(k) * factorial(n - k))
6 disp('End of program.');

Zheng-Liang Lu 194



• Try n = 2, k = 5.

• However, factorial(−3) is not allowed!

• The program is not designed to handle this error, so it is
interrupted in Line 5 and does not reach the end of program.

• Add error handling to the program:

1 clear; clc;
2

3 n = input("n = ? ");
4 k = input("k = ? ");
5 try
6 y = factorial(n) / (factorial(k) * ...

factorial(n - k))
7 catch e % capture the thrown exception
8 disp("Error: " + e.message); % show the message
9 end

10 disp("End of program.");

Zheng-Liang Lu 195



1 >> Lecture 5
2 >>
3 >> -- Special Topic: Text Processing
4 >>

Zheng-Liang Lu 196



(Most) Common Codec: ASCII11

• Everything in the computer is encoded in binary.

• ASCII is a character-encoding scheme originally based on the
English alphabet that encodes 128 specified characters into
the 7-bit binary integers (see the next page).

• Unicode10 became a standard for the modern systems from
2007.

• Unicode is backward compatible with ASCII because ASCII is a
subset of Unicode.

10See Unicode 8.0 Character Code Charts.
11Codec: coder-decoder; ASCII: American Standard Code for Information

Interchange, also see http://zh.wikipedia.org/wiki/ASCII.

Zheng-Liang Lu 197

http://www.unicode.org/charts/
http://zh.wikipedia.org/wiki/ASCII


Zheng-Liang Lu 198



Characters and Strings (Revisited)

• Before R2017a, a text is a sequence of characters, just like
numeric arrays.

• For example, ’ntu’.

• Most built-in functions can be applied to string arrays.

1 clear; clc;
2

3 s1 = 'ntu'; s2 = 'csie';
4 s = {s1, s2};
5 upper(s) % output: {'NTU', 'CSIE'}

Zheng-Liang Lu 199



• Since R2017a, you can create a string by enclosing a piece of
text in double quotes.12

• For example, ”ntu”.

• You can find a big difference between characters and strings in
this example:

1 clear; clc;
2

3 s1 = 'ntu'; s2 = 'NTU';
4 s1 + s2 % output: 188 200 202
5

6 s3 = string(s1); s4 = string(s2);
7 s3 + s4 % output: "ntuNTU"

12See https://www.mathworks.com/help/matlab/ref/string.html.

Zheng-Liang Lu 200

https://www.mathworks.com/help/matlab/ref/string.html


Selected Text Operations13

sprintf Format data into string.

strcat Concatenate strings horizontally.

contains Determine if pattern is in string.

count Count occurrences of pattern in string.

endsWith Determine if string ends with pattern.

startsWith Determine if string starts with pattern.

strfind Find one string within another.

replace Find and replace substrings in string array.

split Split strings in string array.

strjoin Join text in array.

lower Convert string to lowercase.

upper Convert string to uppercase.

reverse Reverse order of characters in string.

13See https:

//www.mathworks.com/help/matlab/characters-and-strings.html.

Zheng-Liang Lu 201

https://www.mathworks.com/help/matlab/characters-and-strings.html
https://www.mathworks.com/help/matlab/characters-and-strings.html

