

Synchronization concepts

We will describe classical synchronization concepts, used in operating system design. By show-
ing, how these concepts can be realized in Java, programming applications can be done inde-
pendently of operating system boundaries.

Table of contents

1. Overview.. 3

2. Semaphore... 5

2.1. Mutual exclusion... 8

2.2. Execution sequence of Threads... 13

2.3. Additive Semaphores .. 23

2.4. Semaphore Groups ... 28

3. Message Queues ... 33

3.1. Buffer of N elements ... 33

3.2. Message queue implementation.. 38

4. Pipes ... 42

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 1/53

5. Dining philosophers ... 46

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 2/53

1. Overview

Processes frequently need to communicate with other processes. An operating system has
built in features for the interprocess communication (IPC). In some operating systems,
processes are working together often share some common storage that each one can read and
write. Other operating systems let processes do not share such common storage.

In Unix, each process has its own address space. When a Java program runs under Unix, the
JVM manages the threads, created within this Java program.

We will consider how the operating system communication concepts

 Semaphores,

 Message Queues and

 Pipes

can be realized using Java Threads. In this scenario, we always use threads of one operating
system process, as demonstrated into the picture:

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 3/53

Threads Processes
Process

within the JVM within a Unix Thread
1

1
system address space

Thread
2

Process Process

1.1 1.2

Thread
n TProcess um

 2.1 T

T

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 4/53

2. Semaphore

A situation where two or more threads are reading or writing some shared data and the final
result depends on who runs precisely when, is called race condition (see our bank account
example)

Several solutions to avoid race conditions have been implemented. We consider semaphores.

In 1965 E.W. Dijkstra suggested the concept of semaphores to synchronize processes:

A semaphore is an integer variable to count the number of wakeups saved for future use.

A semaphore could have the value 0, indication that no wakeups where saved, or some
positive value if one or more wakeups are pending.

Dijkstra proposed having two operations, DOWN and UP (generalizations of SLEEP and
WAKEUP).

The operation DOWN on a semaphore checks to see if the value is greater than 0, it dec-
rements the value and continues. If the value is 0, the thread is put to sleep (wait).
Checking the value, changing it, and possibly going to sleep is all done as single, indivisi-
ble, atomic action.

The UP operation increments the value of the semaphore addressed. If one ore more
threads where sleeping on that semaphore, unable to complete an earlier DOWN operation,
one of them is chosen by the system and is allowed to complete its DOWN operation
(wakeup). Thus, after UP on a semaphore with thread sleeping on it, the semaphore will
still be 0, but there will be one fewer thread sleeping on it. Incrementing the semaphore
and wakeup are also indivisible.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 5/53

So far we have the concept. We now have to realize that behavior in Java.

The idea is:

A semaphore is realized as a class with an integer attribute and methods for UP and
DOWN. A call of DOWN blocks the calling thread, if the integer would become negative. A
UP invocation wakes up a waiting thread.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 6/53

$ cat Semaphores.java
public class Semaphore {
 private int value;

 public Semaphore(int init) {
 if(init < 0)
 init = 0;
 value = init;
 }

 public synchronized void down() { // Dijkstra's operation p=down
 while(value == 0) {
 try {
 wait();
 }
 catch(InterruptedException e) {}
 }
 value--;
 }

 public synchronized void up() { // Dijkstra's operation v=up
 value++;
 notify();
 }
}
$

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 7/53

Now we can use semaphores to solve a problem implementing parallel programs: mutual
exclusion.

2.1. Mutual exclusion

Mutual exclusion is some way of making sure that if one thread is using a shared object, the
other threads will be excluded from doing the same thing. Mutual exclusion scenarios can be
implemented in Java using synchronized. Here, we make use of the semaphore class, realized
before.

We construct a program, where a critical section may be entered from at most one thread.
The activities within the critical section are simulated by letting the thread sleep – in a real
life application, the access to the shared date would occur in that section.

We realized the program in a general way to be able to specify the number of threads, which
can simultaneously enter the critical section as argument of the main method.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 8/53

$ cat MutualExclusion.java
class MutexThread extends Thread {
 private Semaphore mutex;

 public MutexThread(Semaphore mutex, String name) {
 super(name);
 this.mutex = mutex;
 start();

down() {
 while(value == 0) {
 wait();
 }
 value--;
}

 }

 public void run() {
 while(true) {
 mutex.down();

a semaphore pro-
tects the critical
section

 System.out.println("Enter critical section: " + getName());
 try {
 sleep((int)(Math.random() * 100));
 }
 catch(InterruptedException e) {}
 System.out.println("Leave critical section: " + getName());
 mutex.up();
 }
 }
}

up() {
 value++;
 notify();
}

critical
section

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 9/53

public class MutualExclusion {
 public static void main(String[] args) {
 int noThreadsInCriticalSection=1;
 if (args.length != 1) {
 System.err.println(
 "usage: java MutualExclusion <NoThreadsInCriticalSection>");
 System.exit(1);
 } else
 noThreadsInCriticalSection = Integer.parseInt(args[0]);

 Semaphore mutex = new Semaphore(noThreadsInCriticalSection);
 for(int i = 1; i <= 10; i++) {
 new MutexThread(mutex, "Thread " + i);
 }
 }
}
$

Calling the program produces an output, showing that only as many threads can enter the criti-
cal section as specified as argument of the call:

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 10/53

$ java MutualExclusion 1
Enter critical secton: Thread 1 // 1
Leave critical section: Thread 1 // 0
Enter critical secton: Thread 1 // 1
Leave critical section: Thread 1 // 0
Enter critical secton: Thread 3 // 1
Leave critical section: Thread 3 // 0
Enter critical secton: Thread 1 // 1
Leave critical section: Thread 1 // 0
Enter critical secton: Thread 6 // 1
Leave critical section: Thread 6 // 0

Number of threads simulta-
neously within the critical
section

…
CTR C
$ java MutualExclusion 3
Enter critical secton: Thread 1 // 1
Enter critical secton: Thread 2 // 2
Enter critical secton: Thread 3 // 3
Leave critical section: Thread 1 // 2
Enter critical secton: Thread 1 // 3
Leave critical section: Thread 1 // 2
Enter critical secton: Thread 4 // 3
Leave critical section: Thread 4 // 2
Enter critical secton: Thread 1 // 3
Leave critical section: Thread 3 // 2
…

What happens, calling: java MutualExclusion 0 ?

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 11/53

Classroom exercise:

Use the following program of exercise one to protect the critical section using the class
semaphore.

class Even {
 private int n = 0;
 public int next() { // POST?: next is always even
 ++n;
 try { Thread.sleep(10);
 } catch(InterruptedException e) { }
 ++n;
 return n;
 }
}
public class Even2 extends Thread {
 private Even e;
 public Even2(Even e) {
 this.e = e;

$ java Even2
result: 3
result: 5
result: 7
…
result: 23
result: 25
result: 27
result: 29
result: 31
result: 33
result: 35
result: 37
result: 39
result: 40
$

 }
 public void run() {
 for (int i = 1 ; i <= 10; i++) {
 System.out.println("result: " + e.next());
 }
 }
 public static void main(String[] args) {
 Even e = new Even();
 Even2 t1 = new Even2(e); Even2 t2 = new Even2(e);
 t1.start(); t2.start();
 }
}

critical section

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 12/53

2.2. Execution sequence of Threads

In some application scenarios threads start working in parallel, however there are dependen-
cies where some threads have to be finished before other threads are able to continue.

To visualize these dependencies, a dependency graph can be used:

 nodes of the graph are threads,

 an edge exists from thread T1 to thread T2, if T1 must have finished its activities be-
fore T2 is able to start.

Example of a dependency graph:

A1 has to be terminated before A2, A3 or A4 can start.

Start of A5 depends on termination of A2, A3 and A4.

A2

A1 A3 A5

A4

We try to realize that situation in Java using semaphores:

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 13/53

We use for each edge of the depend-
ency graph a semaphore. All sema-
phores are grouped in the array sems
as shown on the right.

A2

0 3

A1 A3 A5 1 4

2 5
A4

Before doing an action, the down operation of all “incoming” semaphores is performed.
After the action, we perform the up-operation for all “outgoing” semaphores.

To make implementation easy, all threads use a reference to the semaphore array, even if
not all threads use each semaphore. Further, we have to initialize the array with 0 (why?).

From the point of view of thread i, we do:

1. i.down(): wait until i-1.up()

down
0 0 i+1 i-1 i

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 14/53

2. i-1.up(): i is able to start its actions

up 1 0 i+1 i-1 i

3. i.up(): i+1 is able to do something

up
1 1 i+1 i-1 i

The realization in Java is not complicate:

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 15/53

$ cat TimingRelation
class T1 extends Thread {
 private Semaphore[] sems;

 public T1(Semaphore[] sems) {
 this.sems = sems;
 start();
 }

 private void a1() {
 System.out.println("a1");
 try {
 sleep((int)(Math.random() * 10));
 } catch(InterruptedException e) {}
 } A2

A1 A5

A4

A3

0

1

2

3 public void run() {
 a1();

4 sems[0].up();
 sems[1].up();

5 sems[2].up();
 }
}

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 16/53

class T2 extends Thread {
 private Semaphore[] sems;

 public T2(Semaphore[] sems) {
 this.sems = sems;
 start();
 }

 private void a2() {
 System.out.println("a2");
 try {
 sleep((int)(Math.random() * 10));
 } catch(InterruptedException e) {}

A1 A5

A4

A3

A2 }

0 3 public void run() {
 sems[0].down();

1 4 a2();
 sems[3].up();

2 5 }
}

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 17/53

class T3 extends Thread {
 private Semaphore[] sems;

 public T3(Semaphore[] sems) {
 this.sems = sems;
 start();
 }

 private void a3() {
 System.out.println("a3");
 try {
 sleep((int)(Math.random() * 10));
 } catch(InterruptedException e) {} A2
 }

A1 A5

A4

A3

0

1

2

3
 public void run() {

4 sems[1].down();
 a3();

5 sems[4].up();
 }
}

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 18/53

class T4 extends Thread {
 private Semaphore[] sems;

 public T4(Semaphore[] sems) {
 this.sems = sems;
 start();
 }

 private void a4() {
 System.out.println("a4");
 try {
 sleep((int)(Math.random() * 10));
 } catch(InterruptedException e) {}

A2 }
 0 3
 public void run() {
 sems[2].down(); A1 A3 A5 1 4
 a4();
 sems[5].up(); 2 5
 }

A4 }

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 19/53

class T5 extends Thread {
 private Semaphore[] sems;

 public T5(Semaphore[] sems) {
 this.sems = sems;
 start();
 }

 private void a5() {
 System.out.println("a5");
 try {
 sleep((int)(Math.random() * 10));
 } catch(InterruptedException e) {}
 }

A2
 public void run() { 0 3
 sems[3].down();
 sems[4].down(); A1 A3 A5 1 4
 sems[5].down();
 a5(); 2 5
 }

A4 }

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 20/53

public class TimingRelation {
 public static void main(String[] args) {
 Semaphore[] sems = new Semaphore[6];
 for(int i = 0; i < 6; i++){
 sems[i] = new Semaphore(0);
 }
 new T1(sems);
 new T2(sems);
 new T3(sems);

A2 new T4(sems);
 new T5(sems); 0 3
 }

A1 A5

A4

A3 } 1 4
$ java TimingRelation
a1 2 5
a3
a2
a4
a5
$ java TimingRelation
a1
a2
a3
a4
a5
$

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 21/53

Classroom exercise

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 22/53

2.3. Additive Semaphores

A semaphore is an integer, where down- and up-operation decrements and increments by one
respectively.

Additive semaphores are a generalization of that concept: the down- and up-operation can be
done by arbitrary steps.

First, we let the generalization be compatible with the semaphore implementation:

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 23/53

$ cat AdditiveSemaphore.java
public class AdditiveSemaphore {
 private int value;

 public AdditiveSemaphore(int init) {
 if(init < 0)
 init = 0;
 value = init;
 }

 public void down() {
 down(1);
 }

 public void up() {
 up(1);
 }

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 24/53

Methods down and up have one integer argument, specifying the value to decrease or increase.
It has to be positive; otherwise a down operation would increment the semaphore.

 public synchronized void down(int x) {
 if(x <= 0)
 return;
 while(value - x < 0) {
 try {
 wait();
 }
 catch(InterruptedException e) {}
 }
 value -= x;
 }

The while loop checks, whether after subtraction of the argument x, the semaphore would be-
come negative; in this case, we will wait.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 25/53

 public synchronized void up(int x) {
 if(x <= 0)
 return;
 value += x;
 notifyAll(); //NOT notify
 }

 public void change(int x) {
 if(x > 0)
 up(x);
 else if(x < 0)
 down(-x);
 }
} // end of class AdditiveSemaphore

Method change can be used to invoke a down or up operation, depending on the sign of its ar-
gument.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 26/53

Analyzing the code shows that an additive semaphore performs the decrement and increment
operation indivisible. That means for example, one down(n) operation is not the same as n
down(1) operations:

Let’s assume, we have 2 threads T1 and T2 using one additive semaphore. Its actual value
is assumed to be 4. Both would like to decrement by 3.

1. Correct program fragment:
Both T1 and T2 invoke down(3).
T1 is chosen and down(3)has finished.
T2 blocks calling down(3). That’s what we want!

2. Program fragment of an incorrect solution:
Both T1 and T2 invoke down(1); down(1);down(1).
T1 is chosen and the calls “down(1); down(1)” have finished (Semaphore == 2), but
the last call of “down(1);” is still open;
now JVM switches to T2.
T2 as well calls “down(1); down(1)”, thus Semaphore == 0. Now the last call of
“down(1)” let T2 become blocked (wait);
now JVM switches back to T1
Now the open call of “down(1)” let T1 also become blocked (wait);
 -> DEADLOCK: T1 waits for T2 and simultaneously T2 waits for T1

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 27/53

2.4. Semaphore Groups

Additive semaphores increment and decrement its values in an atomic manner. This princi-
ple “everything or nothing” is the motivation for semaphore groups.

Note, in Unix this semaphore groups are just called semaphores.

A semaphore group can be seen as an act of generalizing additive semaphores: one invoca-
tion of the method change increments or decrements a set of semaphores, belonging to the
same group. The change action will only be executed, if each group’s semaphore will not
become negative; in that case, change waits without modifying a semaphore’s value.

To realize the class SemaphoreGroup, we use an integer array (values) to hold the set of sema-
phores. (Trying to implement SemaphoreGroup by a set of AdditiveSemaphore objects could
result in deadlocks.)

$ cat SemaphoreGroup.java
public class SemaphoreGroup {
 private int[] values; // set of semaphores

 public SemaphoreGroup(int numberOfMembers) {
 if(numberOfMembers <= 0)
 return;
 values = new int[numberOfMembers];
 }
…

The constructor’s argument specifies the number of elements in that group.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 28/53

We do not implement down- and up-operations, instead we realize one method changeValues.

…
 public synchronized void changeValues(int[] deltas) {
 if(deltas.length != values.length)
 return;
 while(! canChange(deltas)) {
 try {
 wait();
 } catch(InterruptedException e) {}
 }
 doChange(deltas);
 notifyAll();
 }
…

The parameter deltas defines the values for the changes of the semaphores: deltas[i] is the
value to increase (if positive) or decrease (if negative) semaphore values[i].

Private method canChange tests, whether all changes are possible (no value[i] may become
negative).

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 29/53

 private boolean canChange(int[] deltas) {
 for(int i = 0; i < values.length; i++)
 if(values[i] + deltas[i] < 0)
 return false;
 return true;
 }

The changes are performed by the private method doChange after that all waiting threads are
notified.

 private void doChange(int[] deltas) {
 for(int i = 0; i < values.length; i++)
 values[i] = values[i] + deltas[i];
 }

To complete the class, we have a public method to get the number of elements within a sema-
phore group.

 public int getNumberOfMembers() {
 return values.length;
 }
}
$

To visualize the behavior of semaphore groups, we consider an applet semgrp.html.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 30/53

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 31/53

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 32/53

3. Message Queues

Semaphores are mechanisms to synchronize processes. To allow processes to communicate,
operating systems provide communication facilities. This section introduces the concept of
message queues, the next section covers pipes. Both concepts are realized within modern op-
erating systems.

First, we discuss a generalization of the class buffer. This let processes transfer data of a
fixed length (we use integer). After that we show, how data of arbitrary length can be
transferred (MessageQueue, Pipe).

3.1. Buffer of N elements
The first idea to organize a buffer of N elements as array is

The producer stores a value into

 as follows:

 consumer the first empty field (tail).

The consumer takes always the
buffer

producer
head0 value of field number 0 (head) an

reorganizes the buffer (moving
each element to its neighbor)

d 18
1 69

 2 tail 6
…

n-1

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 33/53

The reorganization of the buffer can be avoided, when we use the array in a cyclic manner:

 head
tail producer consumer

0n-1 1
2
3

buffer

The head element will be taken; a new element is stored at the tail position. After each op-
eration the corresponding position pointer (head and tail) will be incremented cyclic.

This mechanism in mind let us come to the following implementation of BufferN.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 34/53

The constructor initializes position pointers and creates the data array.

$ cat BufferN.java
public class BufferN {
 private int head;
 private int tail;
 private int numberOfElements;
 private int[] data;

 public BufferN(int n) {
 data = new int[n];
 head = 0;
 tail = 0;
 numberOfElements = 0;
 }

When the buffer has become full the put method is going to wait. The usage of a loop is nec-
essary, because we have to use notifyAll to awake a task (as seen in the producer consumer
example).

If there are some positions free, the value is stored at tail position and the position counter is
incremented cyclic. After having increased the number of elements, we notify waiting threads.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 35/53

 public synchronized void put(int x) {
 while(numberOfElements == data.length) { // buffer full
 try {
 wait();
 } catch(InterruptedException e) {}
 }
 data[tail++] = x;
 if(tail == data.length)
 tail = 0;
 numberOfElements++;
 notifyAll();

 }

Method get can be implemented analogically.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 36/53

public synchronized int get() {
 while(numberOfElements == 0) {
 try {
 wait();
 } catch(InterruptedException e) {}
 }
 int result = data[head++];
 if(head == data.length)
 head = 0;
 numberOfElements--;
 notifyAll();
 return result;

 }

}
$

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 37/53

3.2. Message queue implementation

We now consider how to interchange data of arbitrary length, preserving data bounda-
ries. That means, sending a byte array implies that the receiver gets exactly that byte array,
not more, not less:

not allowed

first element second element

To achieve that, we use a two dimensional array. Remember, in Java a two dimensional ar-
rays need not to be a matrix:

byte[][] arra2dim = new byte[5]; // array of references to a byte array
for (int i=0; i<array2dim.length; i++)
 array2dim[i] = new byte[2+i]; // the reference will points to an array

This code fragment is responsible for an array of the following form:

<
<

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 38/53

We copy the message to allow the sender to manipulate the original message after having send
the message.

Using the mechanism of bufferN we found the solution:

$ cat MessageQueue.java
public class MessageQueue {
 private byte[][] msgQueue = null;
 private int qsize = 0;// size of message queue as number of entries
 // (not number of bytes as in Unix)
 private int head = 0;
 private int tail = 0;

 public MessageQueue(int capacity) {
 if(capacity <= 0)
 return;
 msgQueue = new byte[capacity][];
 }

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 39/53

 public synchronized void send(byte[] msg) {
 while(qsize == msgQueue.length) { // full
 try {
 wait();
 } catch(InterruptedException e) {}
 }

 msgQueue[tail] = new byte[msg.length]; // copy message and store the copy
 for(int i = 0; i < msg.length; i++)
 msgQueue[tail][i] = msg[i];

 qsize++;
 tail++;
 if(tail == msgQueue.length)
 tail = 0;
 notifyAll();
 }

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 40/53

 public synchronized byte[] receive() {
 while(qsize == 0) {
 try {
 wait();
 } catch(InterruptedException e) {}
 }

 byte[] result = msgQueue[head];
 msgQueue[head] = null;
 qsize--;
 head++;
 if(head == msgQueue.length)
 head = 0;
 notifyAll();
 return result;
 }
}
$

An applet demonstrates the behavior of class MessageQueue.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 41/53

4. Pipes

Message queues preserve message boundaries. This kind of communication is named “mes-
sage oriented”.

Now we consider so called “(data) stream oriented” communication. That means, a receiver
of a message can not identify the portions the message has been composed off.

An applet demonstrates the behavior of class Pipe.

A pipe has a defined size (we use a byte array of fixed size).

$ cat Pipe.java
public class Pipe {
 private byte[] buffer = null;
 private int bsize = 0;
 private int head = 0;
 private int tail = 0;

 public Pipe(int capacity) {
 if(capacity <= 0)
 return;
 buffer = new byte[capacity];
 }

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 42/53

Put data into a pipe has to be realized as an atomic operation: if the message size is larger
than available free space within the pipe, the sending thread must block until space will become
available.

 public synchronized void send(byte[] msg) {
 if(msg.length <= buffer.length) {
 // sent as atomic operation
 while(msg.length > buffer.length - bsize) {
 try {
 wait();
 } catch(InterruptedException e) {}
 }

 // copy message into buffer
 for(int i = 0; i < msg.length; i++) {
 buffer[tail] = msg[i];
 tail++;
 if(tail == buffer.length)
 tail = 0;
 }
 bsize += msg.length;
 notifyAll();
 }

If the message length is larger than the pipe’s size, the sending thread would hang. There-
fore, we implement the send operation to be able to split a message into small portions.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 43/53

 else {
 // send in portions
 int offset = 0;
 int stillToSend = msg.length;
 while(stillToSend > 0) {
 while(bsize == buffer.length) {
 try {
 wait();
 } catch(InterruptedException e) {}
 }
 int sendNow = buffer.length - bsize;
 if(stillToSend < sendNow)
 sendNow = stillToSend;
 for(int i = 0; i < sendNow; i++) {
 buffer[tail] = msg[offset];
 tail++;
 if(tail == buffer.length)
 tail = 0;
 offset++;
 }
 bsize += sendNow;
 stillToSend -= sendNow;
 notifyAll();
 }
 }
 }

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 44/53

Receiving a message has to block, if no data is available. The parameter of the receive
method defines the expected number of bytes to receive. If less data is available than ex-
pected, the operation will not be blocked. In this case only the bytes available are received.

 public synchronized byte[] receive(int noBytes) {
 while(bsize == 0) {
 try {
 wait();
 } catch(InterruptedException e) {}
 }
 if(noBytes > bsize)
 noBytes = bsize;
 byte[] result = new byte[noBytes];
 for(int i = 0; i < noBytes; i++) {
 result[i] = buffer[head];
 head++;
 if(head == buffer.length)
 head = 0;
 }
 bsize -= noBytes;
 notifyAll();
 return result;
 }
}
$

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 45/53

5. Dining philosophers

A classical IPC problem is the “dining philosopher problem”. Since Dijkstra posed and solved
this problem in 1965, everyone tries to show how wonderful his synchronization primitive can
solve this problem. Thus, we have to show, how we can do it with Java build in primitives.

The problem can be stated as follows:

Five philosophers are seated around a circular table. Each philosopher has a plate of
Italian spaghetti. Italian spaghetti is so slippery that a philosopher needs two forks to
eat it. Between each plate is a fork as shown next:

0

Plate i has
 - on its left fork i and
 - on its right fork i+1(cyclic add)

1 0 1 4

2 4
Philosophers i uses plate i

3 2
3

The life of a philosopher consists of alternate periods of eating and thinking. When a phi-
losopher gets hungry, he tries to acquire his left and right fork, one at a time, in either or-
der. If successful in acquiring two forks, he eats for a while, then puts down the fork and
continues to think.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 46/53

The key question is: can you write a program for each philosopher that does what is sup-
posed to do and never gets stuck (because of a deadlock situation)?

The obvious, but wrong solution (in C++) is:

const int N=5;
philosophers(int i) {
 while (true) {
 think();
 takeFork(i); // take left fork
 take_fork((i+1)%N); // take right fork
 eat();
 putFork(i); // put left fork back on the table
 putFork((i+1)%N); // put right fork back on the table
 }
}

Function takeFork waits until the specified fork is available and then seizes it. If it is not, the
philosopher puts down the left one, waits for some time, and then repeats the process.

This solution fails if all philosophers take simultaneously the left fork. None will now be
able to take their right fork, and there will be a deadlock – they all will die of hunger.

With the mechanisms of the course in mind, we know that we have to implement the process of
taking a fork as atomic operation and find the following solution:

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 47/53

$ cat Philosophers.java
class Table {
 private boolean[] usedFork;

 public Table(int numberForks) {
 usedFork = new boolean[numberForks];

0 for(int i = 0; i < usedFork.length; i++)
 usedFork[i] = false;
 } 1 0 1 4 private int left(int i) { return i; }

2
3

2 private int right(int i) { 4 if(i+1 < usedFork.length)
 return i+1;

3 else
 return 0;
 }

 public synchronized void takeForks(int place) {
 while(usedFork[left(place)]|| usedFork[right(place)]) {
 try {
 wait();
 } catch(InterruptedException e) {}
 }
 usedFork[left(place)] = true;
 usedFork[right(place)] = true;
 }

 public synchronized void putBackForks(int place)
 {
 usedFork[left(place)] = false;
 usedFork[right(place)] = false;
 notifyAll();
 }
} // table

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 48/53

class Philosoph extends Thread {
 private Table Table;
 private int place;

 public Philosoph(Table Table, int place) {
 this.Table = Table;
 this.place = place;
 start();
 }

 public void run() { // life of a philosopher
 while(true) {
 thinking(place);
 Table.takeForks(place);
 eating(place);
 Table.putBackForks(place);
 }
 }

 private void thinking(int place) {
 System.out.println("Philosoph " + place + " thinking.");
 try {
 sleep((int)(Math.random() * 20000));
 } catch(InterruptedException e) {}
 }

 private void eating(int place) {
 System.out.println("Philosoph " + place + " starts eating.");
 try {
 sleep((int)(Math.random() * 20000));
 } catch(InterruptedException e) {}
 System.out.println("Philosoph " + place + " finished eating.");
 }
}

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 49/53

public class Philosophers {
 private static final int numberPhilisophers = 5;

 public static void main(String[] args) {

++)

 Table Table = new Table(numberForks);
 for(int i = 0; i < numberPhilisophers; i
 new Philosoph(Table, i);
 }
}
$

 $ java Philosophers
Philosoph 0 thinking.
Philosoph 1 thinking.
Philosoph 2 thinking.
Philosoph 3 thinking.
Philosoph 4 thinking.
Philosoph 3 starts eating.
Philosoph 3 finished eating.

Philosoph 3 thinking.
Philosoph 2 starts eating.
Philosoph 0 starts eating.
Philosoph 0 finished eating.
Philosoph 0 thinking.
Philosoph 4 starts eating.
Philosoph 2 finished eating.
Philosoph 2 thinking.
Philosoph 1 starts eating.
Philosoph 1 finished eating.
Philosoph 1 thinking.

An other solution is to use the concept of semaphore groups. We show it without any explana-
tions.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 50/53

$ cat PhilosophersSemGroup.java
class PhilosopherSemGroup extends Thread {
 private SemaphoreGroup sems;
 private int place;
 private int leftFork;
 private int rightFork;

 public PhilosopherSemGroup(SemaphoreGroup sems, int place) {
 this.sems = sems;
 this.place = place;
 leftFork = place;
 if(place+1 < sems.getNumberOfMembers())
 rightFork = place+1;
 else
 rightFork = 0;
 start();
 }

 public void run() {
 int[] deltas = new int[sems.getNumberOfMembers()];
 for(int i = 0; i < deltas.length; i++)
 deltas[i] = 0;

 while(true) {
 thinking(place);
 deltas[leftFork] = -1;
 deltas[rightFork] = -1;
 sems.changeValues(deltas);
 eating(place);
 deltas[leftFork] = 1;
 deltas[rightFork] = 1;
 sems.changeValues(deltas);
 }
 }

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 51/53

 private void thinking(int place) {
 System.out.println("Philosopher " + place
 + " is thinking.");
 try {
 sleep((int)(Math.random() * 20000));
 } catch(InterruptedException e) {}
 }

 private void eating(int place) {
 System.out.println("Philosopher " + place
 + " starts eating.");
 try {
 sleep((int)(Math.random() * 20000));
 } catch(InterruptedException e) {}
 System.out.println("Philosopher " + place
 + " finished eating.");
 }
}

public class PhilosophersSemGroup {
 private static final int N = 5;

 public static void main(String[] args) {
 SemaphoreGroup group = new SemaphoreGroup(N);
 int[] init = new int[N];
 for (int i = 0; i < init.length; i++)
 init[i] = 1;
 group.changeValues(init);

 for(int i = 0; i < N; i++)
 new PhilosopherSemGroup(group, i);
 }
}

The program can be animated by an applet.

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 52/53

Parallel Programming in Java: Synchronisation Prof. Dr. Alois Schütte 53/53

Classroom exercise

	Overview
	Semaphore
	Mutual exclusion
	Execution sequence of Threads
	Additive Semaphores
	Semaphore Groups

	Message Queues
	Buffer of N elements
	Message queue implementation

	Pipes
	Dining philosophers

