

Multithreaded Server

This section demonstrates how java and threads can be used into a network environment to
realize multithreaded server. We consider socket communication and XML remote proce-
dure calls.

Contents

1. Client-Server Modell .. 3

2. Socket communication ... 6

2.1. Basics.. 7

2.2. Example – Echoserver.. 11

2.2.1. Socket basics in Java... 12

2.2.2. Client program.. 18

2.2.3. Simple server program .. 22

2.2.4. Multithreaded server.. 25

3. Remote Procedure Call ... 34

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 1/60

3.1. Basics.. 34

3.2. XML-RPC Specification ... 37

3.2.1. Requests.. 38

3.2.2. Types .. 40

3.2.3. Response ... 43

3.2.4. Strategies/Goals ... 46

3.2.5. FAQ... 46

3.3. Apache XML-RPC... 49

3.3.1. Client classes.. 49

3.3.2. Server Side XML-PRC... 50

3.3.3. Data types ... 53

3.4. XML-RPC Example ... 54

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 2/60

1. Client-Server Modell

Distributed systems could be realized using the OSI1 reference model. Using this technique
implies that a message has to be packed from each sender’s layer and unpacked by the re-
ceiver.

Header Level 1
Header Level 2

Header Level 3
Header Level 4

Header Level 5
Header Level 6 Trailer

Header Level 7

Message

This management overhead can be accepted in WAN (wide area network) environments but
is unacceptable in LAN (local area network) environments.

Here, the client server model is a better choice.

1 Open Systems Interconnect model

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 3/60

A distributed system based on the client server model consists of a set of cooperating
processes (server) which offer services to clients.

In a client server system a request/answer protocol is used between clients and servers:

A client sends a request (message) to a server which is responsible for the required ser-
vice. The server sends the desired information (answer message) back to the client.

request

Client Server

answer
OS kernel OS kernel

network

This kind of communication is more effective because only protocol layer 1, 2 and 5 are in-
volved. Therefore client server communication can be represented within the OSI model as
follows:

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 4/60

OSI layer
7 (application)
6 (representation)
5 (session) answer/request
4 (transport)
3 (network)
2 (data-link) connection
1 (physical) transmission

We will consider socket communication and remote procedure calls to demonstrate, how
Java threads can be used within client server environments.

We realize clients and servers communicating over a TCP/IP network using sockets and re-
mote procedure calls as communication primitives.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 5/60

2. Socket communication

Sockets are communication endpoints, which are from a programmer’s point of view an in-
terface to a network.

Thus, a programmer can use the interface without worry about transmission details.

Sockets can be considered as abstractions of a physical net.

recei-
ver

sender

 sockets

OS kernel OS kernel

The socket interface was first provided with the VAX system, circa 1982. It supported the fol-
lowing communication protocols:

 Unix domain,

 Internet domain and

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 6/60

 Xerox NS domain

We will only consider the Internet domain protocol.

2.1. Basics

Sockets can be created and destroyed dynamically. The creation returns a file descriptor
which can be used to:

• establish a connection,

• read and write operations and

• disable a connection.

Berkeley sockets supports the following communication protocols:

• Unix domain (on same Unix system)

• Internet domain (TCP/IP)

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 7/60

To use sockets, a set of library calls are available (C, Java):

system call connection-oriented connectionless
socket() creating communication endpoints
bind() assigning a name to the endpoint
listen() server ready for communication
accept() server accepts requests
read(), write() reading, writing
connect() connection establishment
sendto(),
recvfrom()

 reading, writing

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 8/60

The following figure shows the timeline of a typical scenario that takes place for a connec-
tion-oriented transfer:

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 9/60

 Server Client

socket()

bind()

First, the server is
started, and then
sometimes later a
client is started that
connects to the
server.

listen()

time accept()
socket()

blocks until connec-
tion from client

connect()
connection establishment

write()
read() data (request)

process request

data (reply)
write()

read()

Here, we see the situation using the connectionless protocol:

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 10/60

 Server Client

socket()

bind() The client just sends
a datagram using
sendto (with the
server as parameter)
to the server.

recvfrom

time

socket()
The server just issues
a revfrom system
call that waits until
data arrives from
some client.

blocks until data
received from
client bind()

sendto()
data (request)

process request

data (reply) sendto() recvfrom

2.2. Example – Echoserver

Socket communication is demonstrated using the example of

dard input
he

2.
network input and

3.

While we develop our implementation of an echo server, we have to know that most TCP/IP
mplementations provide such a server, using TCP and UDP.

st
 next connection.

 an echo server:

1. The client reads a line
from its stan client server
and writes that line to t
server.

The server reads a line
from its

stdin:
abc tcpcli tcpserv

stdout:
abc

echoes the line back to
the client over the network.

The client reads the ech-
oed line from the network
and prints it on its stan-
dard output. TCP/IP

i

The code we demonstrate could be the basis for your own socket programs by adding more
functionality to the server.

First, we show a simple version where the server waits for a connection, handling the reque
and goes on waiting for the

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 11/60

Next, we illustrate how to make a multithreaded server out of the first approach.

2.2.1. Socket basics in Java

Opening a socket

First, we have to open a socket.

If we are programming a client, then we could open a socket like this:

Socket MyClient;
MyClient = new Socket("Machine name", PortNumber);

Where Machine
is the port (a number) on which the server we are trying to

 name is the machine we are trying to open a connection to, and PortNumber
connect to is running.

 reserved
for standard services, such as email, FTP, and HTTP. When selecting a port number for the

de will handle exceptions; thus, we write:

When selecting a port number, you should note that port numbers between 0 and 1023 are
reserved for privileged users (that is, super user or root). These port numbers are

server, select one that is greater than 1023!

In the example above, we didn't make use of exception handling, however, it is a good idea
to handle exceptions. From now on, all our co

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 12/60

Socket MyClient;
try {
 MyClient = new Socket("Machine name", PortNumber);
}
catch (IOException e) {
 System.out.println(e);
}

If programming a server, then this is how to open a socket:

ServerSocket MyService;
try {
 MyServerice = new ServerSocket(PortNumber);
}
catch (IOException e) {
 System.out.println(e);
}

When implementing a server you also need to create a socket object from the ServerSocket
in order to listen for and accept connections from clients.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 13/60

Socket clientSocket = null;
try {
 clientSocket = MyService.accept(); // waits until a client
 //establishes a connection

}
catch (IOException e) {
 System.out.println(e);
}

Creating an input stream

On the client side, we can use the DataInputStream class to create an input stream to re-
ceive response from the server:

DataInputStream input;
try {
 input = new DataInputStream(MyClient.getInputStream());
}
catch (IOException e) {
 System.out.println(e);
}

The class DataInputStream allows us to read lines of text and Java primitive data types in a
portable way. It has methods such as read, readChar, readInt, readDouble, and readLine.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 14/60

On the server side, we can use DataInputStream to receive input from the client:

DataInputStream input;
try {
 input = new DataInputStream(serviceSocket.getInputStream());
}
catch (IOException e) {
 System.out.println(e);
}

Creating an output stream

On the client side, we can create an output stream to send information to the server
socket using the class PrintStream or DataOutputStream of java.io:

PrintStream output;
try {
 output = new PrintStream(MyClient.getOutputStream());
}
catch (IOException e) {
 System.out.println(e);
}

socket

The class PrintStream has methods for displaying textual representation of Java primitive
data types. Its write and println methods are important here. Also, you may want to use
the DataOutputStream:

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 15/60

DataOutputStream output;
try {
 output = new DataOutputStream(MyClient.getOutputStream());
}
catch (IOException e) {
 System.out.println(e);
}

The class DataOutputStream allows us to write Java primitive data types; many of its meth-
ods write a single Java primitive type to the output stream. The method writeBytes is a use-
ful one.

On the server side, we can use the class PrintStream to send information to the client.

PrintStream output;
try {
 output = new PrintStream(serviceSocket.getOutputStream());
}
catch (IOException e) {
 System.out.println(e);
}

You should always close the output and input stream before you close the socket.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 16/60

socket

Alternatively, you can use other classes, like PrintWriter or BufferedReader.

Close sockets

On the client side:

try {
 output.close();
 input.close();
 MyClient.close(); // socket
}
catch (IOException e) {
 System.out.println(e);
}

On the server side:

try {
 output.close();
 input.close();
 serviceSocket.close(); // socket
 MyService.close(); // socket
}
catch (IOException e) {
 System.out.println(e);
}

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 17/60

2.2.2. Client program

When programming a client, you can follow these four steps:

1. Open a socket.

2. Open an input and output stream to that socket.

3. Read from and write to the socket according to the server's protocol.

4. Clean up.

These steps are pretty much the same for all clients. The only step that varies is step three,
since it depends on the server you are talking to.

The Client program for our example can be realized as:

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 18/60

$ cat EchoClient.java
import java.io.*;

 } // usage check

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 19/60

import java.net.*;

public class EchoClient {
 public static void main(String[] args) throws IOException {

 Socket echoSocket = null;
 PrintWriter out = null;
 BufferedReader in = null;
 String host = new String();
 int port = 9999;

 if (args.length != 2) { // usage check
 System.err.println(
 "usage: java EchoClient <server host> <port>");
 System.exit(1);
 } else {
 host = args[0];
 try {
 port = Integer.parseInt(args[1]);
 } catch (Exception e) {
 System.err.println("<port> has to be a number");
 System.exit(2);
 }

APIs for networking

 try {
 // open socket
 echoSocket = new Socket(host, port);

 // creating output stream
 out = new PrintWriter(echoSocket.getOutputStream(), true);

 // creating input stream (using BufferedReader)
 in = new BufferedReader(new InputStreamReader(
 echoSocket.getInputStream()));
 } catch (UnknownHostException e) {
 System.err.println("Don't know about host: "+ host);
 System.exit(1);
 } catch (IOException e) {
 System.err.println("Couldn't get IO for " +
 "the connection to: " + host);
 System.exit(1);
 } // open resources

 BufferedReader stdIn = new BufferedReader(
 new InputStreamReader(System.in));
 String userInput;

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 20/60

 System.out.println("EchoClient started");
 while ((userInput = stdIn.readLine()) != null) { // reading from stdin
 out.println(userInput); // writing to socket
 System.out.println(in.readLine()); // reading from socket
 // writing to stdout
 }

 // closing resources
 out.close();
 in.close();
 stdIn.close();
 echoSocket.close();

 } // main client server
}

stdIn:
abc

$
 out

in
Systerm.out:
abc

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 21/60

2.2.3. Simple server program

Now let's write a server. This server is very similar to the echo server running on port 7 in
Unix.

Basically, the echo server receives text from the client and then sends that exact text back to
the client. This is just about the simplest server you can write. Note that this server handles
only one client. Next we modify it to handle multiple clients using threads.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 22/60

$ cat EchoServer.java
import java.io.*;
import java.net.*;

public class EchoServer {
 public static void main(String args[]) {
 // declaration section:
 // declare a server socket and a client socket for the server
 // declare an input and an output stream
 ServerSocket echoServer = null;
 String line;
 DataInputStream is;
 PrintStream os;
 Socket clientSocket = null;

 // Try to open a server socket on port 9999
 // Note that we can't choose a port less than 1023 if we are not
 // privileged users (root)
 try {
 echoServer = new ServerSocket(9999);
 } catch (IOException e) {
 System.out.println(e);

 } // ServerSocket

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 23/60

 while (true) {
 // Create a socket object from the ServerSocket to listen and accept
 // connections.
 // Open input and output streams
 try {
 clientSocket = echoServer.accept();
 is = new DataInputStream(
 clientSocket.getInputStream());
 os = new PrintStream(clientSocket.getOutputStream());

 // As long as we receive data, echo that data back to the client.
 while ((line = is.readLine()) != null) { // read from socket
 os.println(line); // write to socket
 } // while
 } catch (IOException e) {
 System.out.println(e);
 } // connection
 }
 } // main
}
$

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 24/60

When more than one client connects to the server, the second client has to wait until the first
client has terminated. This situation is not acceptable. Think about a Web server which only
accepts one request at a time.

The idea is to change the server, so that it creates a new thread, when a client sends a re-
quest. This thread is responsible to satisfy the client request. The server can than wait for
new client requests while the previously created thread handles the request.

2.2.4. Multithreaded server

To make a multithreaded server out of our echo server, we have to create a thread after ac-
cepting a client request:

while (true) {
 // listen to server socket
 Socket clientSocket = serverSocket.accept();

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 25/60

 // start thread when client connects
 new MultiServerThread(clientSocket, clientId++).start();
}

The new thread than performs the task of reading from the socket and echoing the request.

public void run() { // handle connection
 try {
 …
 while ((socketInput = is.readLine()) != null) {
 os.println(socketInput);
 System.out.println(getName() + ": " + socketInput);
 } // while
 }
 …
}

Now we are able to finalize the multithreaded server:

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 26/60

$ cat MultiThreadedEchoServer.java
// a multi threaded echo server
import java.net.*;
import java.io.*;

public class MultiThreadedEchoServer {
 private static int clientId = 0; // clientId to identify clients
 public static void main(String[] args) throws IOException {
 ServerSocket serverSocket = null;
 boolean listening = true;
 int port = 8777;
 System.out.println("EchoServer started");

 if (args.length != 1) { // check usage
 System.err.println("usage: java EchoServer <port>");
 System.exit(1);
 } else
 port = Integer.parseInt(args[0]);

 // Create a socket from the Server Socket
 try {
 serverSocket = new ServerSocket(port);
 } catch (IOException e) {
 System.err.println("Could not listen on port: "+port);
 System.exit(1);

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 27/60

 }

 while (listening) {
 // listen to server socket
 Socket clientSocket = serverSocket.accept();

 // start thread when client connects
 new MultiServerThread(clientSocket, clientId++).start();
 }

 serverSocket.close();
 } // main
} // MultiThreadedEchoServer

class MultiServerThread extends Thread {
 private Socket socket = null;

 public MultiServerThread(Socket socket,int clientId) {
 super("Client " + clientId);
 this.socket = socket;
 }

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 28/60

 public void run() {
 System.out.println("Handle new connection");
 try {
 DataInputStream is;
 PrintStream os;

 is = new DataInputStream(socket.getInputStream());
 os = new PrintStream(socket.getOutputStream());

 String socketInput;
 // As long as we receive data,
 // echo that data back to the client.
 while ((socketInput = is.readLine()) != null) {
 os.println(socketInput);
 System.out.println(getName() + ": " + socketInput);
 } // while

 os.close();
 is.close();
 } catch (IOException e) {e.printStackTrace();
 }
 System.out.println("close connection");
 } // run
} // MultiServerThread
$

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 29/60

Classroom exercise 1:

Download the client code, compile it and execute it to connect to my server.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 30/60

Classroom exercise 2:

Use our example MultiThreadedEchoServer.java and modify it to realize a time server:

 client server

 out

in
Systerm.out:
3:00 pm

The client sends a request to the server to get the actual server time. The server answers
that request by taking its own actual time and sends it over the socket to the client.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 31/60

Most Unix systems have a time server running, listening on port 13. The following Java pro-
gram just opens a socket on that port and read whatever the server sends.

$ cat Inettime.java
import java.io.*;
import java.net.*;
class Inettime {
 public static void main(String[] args) {
 String host;
 int port;
 if (args.length > 0) // check usage
 host = args[0];
 else
 host = "localhost"; // deafult host
 if (args.length > 1)
 port = Integer.parseInt(args[1]);
 else

 port = 13; // date port
 new Inettime(host, port);
 }

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 32/60

 Inettime(String host, int port) {
 try {
 Socket s = new Socket(host, port); //create socket
 InputStreamReader in = new InputStreamReader(s.getInputStream());

 int c;
 do {
 c = in.read();
 if (c>0)
 System.out.print((char) c);
 } while (c>0);
 System.out.print('\n');
 }
 catch(IOException e) {
 System.out.println("Error" + e);
 }
 }
}
$

$ java Inettime rh
17 JUL 2002 22:30:26 CEST

$

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 33/60

3. Remote Procedure Call

Inside every computer, every time you click a key or the mouse, thousands of "procedure
calls" are spawned, analyzing, computing and then acting on your gestures.

A procedure call is the name of a procedure, its parameters, and the result it returns.

A remote procedure call (RPC for short) is a very simple extension to the procedure call
idea, it says let's create connections between procedures that are running in different applica-
tions, or on different machines.

3.1. Basics

Conceptually, there's no difference between a local procedure call and a remote one, but they
are implemented differently, perform differently (RPC is much slower) and therefore are used
for different things.

Remote calls are "marshalled" by “stub procedures” into a format that can be understood on
the other side of the connection; here “stub procedures” have to “unmarshall” the format.

After the remote procedure has terminated its execution, the remote stub procedure marshals
the result and transfers it to the caller, where it is made available to the caller of the remote
procedure.

This idea is shown in the following picture:

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 34/60

1. remote procedure call

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 35/60

Client Server

User Process Stub Stub

message

…
n=
sum(4,7);

sum sum sum(int i,int j) {
 return (i+j);
}

4 4

7 7

kernel kernel

2. return result

Client Server

User Stub Stub

message

…
n=
sum(4,7)

sum(int i,int j) {
 return (i+j);
}

11
11

kernel kernel

There are an almost infinite number of formats possible.

To specify such a format, languages (interface definition languages) have been developed,
i.e.:

• Suns ONC-RPC: XDR (eXternal Data Representation)

• OSF-RPC (DCE): IDL (Interface Definition Language)

• CORBA: IDL (Interface Definition Language)

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 36/60

One other possible format is XML, a new language that both humans and computers can
read. XML-RPC uses XML as the marshalling format. It allows Macs to easily make proce-

l

ure calling protocol that works over the Internet.

ML. A pro-
.

dure calls to software running on Windows machines and BeOS machines, as well as all fla-
vours of Unix and Java, and IBM mainframes, and PDAs and mobile phones.

With XML it's easy to see what it's doing, and it's also relatively easy to marshal the interna
procedure call format into a remote format.

3.2. XML-RPC Specification2

XML-RPC is a Remote Proced

An XML-RPC message is an HTTP-POST request. The body of the request is in X
cedure executes on the server and the value it returns is also formatted in XML

Procedure parameters can be scalars, numbers, strings, dates, etc.; and can also be complex
record and list structures.

2 © Copyright 1998-2002 UserLand Software, Inc.. (www.userland.com)
XML-RPC is a trademark of UserLand Software, Inc.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 37/60

http://www.userland.com/

3.2.1. Requests

Here's an example of an XML-RPC request:

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 38/60

Host: betty.userland.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>
 <methodName>
 examples.getStateName
 </methodName>
 <params>
 <param>
 <value>
 <i4>
 41
 </i4>
 </value>
 </param>
 </params>
</methodCall>

header

request as XML string

Header requirements

The format of the URI in the first line of the header is not specified. For example, it could
be empty, a single slash, if the server is only handling XML-RPC calls. However, if the
server is handling a mix of incoming HTTP requests, we allow the URI to help route the
request to the code that handles XML-RPC requests. (In the example, the URI is /RPC2,
telling the server to route the request to the "RPC2" responder.)

A User-Agent and Host must be specified.

The Content-Type is text/xml.

The Content-Length must be specified and must be correct.

Payload format

The payload is in XML, a single <methodCall> structure.

The <methodCall> must contain a <methodName> sub-item, a string, containing the
name of the method to be called. The string may only contain identifier characters, upper
and lower-case A-Z, the numeric characters, 0-9, underscore, dot, colon and slash. It's
entirely up to the server to decide how to interpret the characters in a methodName.

For example, the methodName could be the name of a file containing a script that exe-
cutes on an incoming request. It could be the name of a cell in a database table. Or it
could be a path to a file contained within a hierarchy of folders and files.

If the procedure call has parameters, the <methodCall> must contain a <params>
sub-item. The <params> sub-item can contain any number of <param>s, each of
which has a <value>.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 39/60

3.2.2. Types

The following types are supported in XML-RPC:

Scalar <value>s

<value>s can be scalars, type is indicated by nesting the value inside one of the tags
listed in this table:

Tag Type Example

<i4> or <int> four-byte signed integer -12
<boolean> 0 (false) or 1 (true) 1
<string> ASCII string hello world
<double> double-precision signed

floating point number
-12.214

<dateTime.iso8601> date/time 19980717T14:08:55
<base64> base64-encoded binary eW91IGNhbid0IHJlYWQgdGhpcyE=

If no type is indicated, the type is string.

<struct>s

A value can also be of type <struct>.

A <struct> contains <member>s and each <member> contains a <name> and a
<value>.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 40/60

Here's an example of a two-element <struct>:

<struct>

 <member>

 <name>lowerBound</name>

 <value>

 <i4>18</i4>

 </value>

 </member>

 <member>

 <name>upperBound</name>

 <value>

 <i4>139</i4>

 </value>

 </member>

</struct>

<struct>s can be recursive, any <value> may contain a <struct> or any other type, in-
cluding an <array>, described below.

<array>s

A value can also be of type <array>.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 41/60

An <array> contains a single <data> element, which can contain any number of
<value>s.

Here's an example of a four-element array:

<array>

 <data>

 <value><i4>12</i4></value>

 <value><string>Egypt</string></value>

 <value><boolean>0</boolean></value>

 <value><i4>-31</i4></value>

 </data>

</array>

<array> elements do not have names.

You can mix types as the example above illustrates.

<arrays>s can be recursive, any value may contain an <array> or any other type, in-
cluding a <struct>, described above.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 42/60

3.2.3. Response

Here's an example of a response to an XML-RPC request:

HTTP/1.1 200 OK
Connection: close
Content-Length: 158
Content-Type: text/xml
Date: Fri, 17 Jul 1998 19:55:08 GMT
Server: UserLand Frontier/5.1.2-WinNT

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value><string>South Dakota</string></value>
 </param>
 </params>
</methodResponse>

Response format

Unless there's a lower-level error, always return 200 OK.

The Content-Type is text/xml.

Content-Length must be present and correct.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 43/60

The body of the response is a single XML structure, a <methodResponse>, which can
contain a single <params> which contains a single <param> which contains a single
<value>.

The <methodResponse> could also contain a <fault> which contains a <value> which
is a <struct> containing two elements, one named <faultCode>, an <int> and one
named <faultString>, a <string>.

A <methodResponse> can not contain both a <fault> and a <params>.

Fault example:

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 44/60

HTTP/1.1 200 OK
Connection: close
Content-Length: 426
Content-Type: text/xml
Date: Fri, 17 Jul 1998 19:55:02 GMT
Server: UserLand Frontier/5.1.2-WinNT

<?xml version="1.0"?>
<methodResponse>
 <fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value><int>4</int></value>
 </member>
 <member>
 <name>faultString</name>
 <value><string>Too many parameters.</string></value>
 </member>
 </struct>
 </value>
 </fault>
</methodResponse>

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 45/60

3.2.4. Strategies/Goals

The following items influenced the design of XML-PRC:

 Firewalls. The goal of this protocol is to lay a compatible foundation across different
environments, no new power is provided beyond the capabilities of the CGI interface.
Firewall software can watch for POSTs whose Content-Type is text/xml.

 Discoverability. A clean, extensible format that's very simple is wanted. It should be
possible for an HTML coder to be able to look at a file containing an XML-RPC procedure
call, understand what it's doing, and be able to modify it and have it work on the first or
second try.

 Easy to implement. An easy to implement protocol that could quickly be adapted to run
in other environments or on other operating systems has been desired.

3.2.5. FAQ

The following questions came up on the UserLand discussion group as XML-RPC was being
implemented in Python.

 The Response Format section says "The body of the response is a single XML structure, a
<methodResponse>, which can contain a single <params>..." This is confusing. Can we
leave out the <params>?

No you cannot leave it out if the procedure executed successfully. There are only two op-
tions, either a response contains a <params> structure or it contains a <fault> structure.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 46/60

http://discuss.userland.com/

That's why we used the word "can" in that sentence.

 Is "boolean" a distinct data type, or can boolean values be interchanged with integers
(e.g. zero=false, non-zero=true)?

Yes, boolean is a distinct data type. Some languages/environments allow for an easy co-
ercion from zero to false and one to true, but if you mean true, send a boolean type with
the value true, so your intent can't possibly be misunderstood.

 What is the legal syntax (and range) for integers? How to deal with leading zeros? Is a
leading plus sign allowed? How to deal with whitespace?

An integer is a 32-bit signed number. You can include a plus or minus at the beginning of
a string of numeric characters. Leading zeros are collapsed. Whitespace is not permitted.
Just numeric characters preceeded by a plus or minus.

 What is the legal syntax (and range) for floating point values (doubles)? How is the ex-
ponent represented? How to deal with whitespace? Can infinity and "not a number" be
represented?

There is no representation for infinity or negative infinity or "not a number". At this time,
only decimal point notation is allowed, a plus or a minus, followed by any number of nu-
meric characters, followed by a period and any number of numeric characters.
Whitespace is not allowed. The range of allowable values is implementation-dependent, is

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 47/60

not specified.

 What characters are allowed in strings? Non-printable characters? Null characters? Can a
"string" be used to hold an arbitrary chunk of binary data?

Any characters are allowed in a string except < and &, which are encoded as < and
&. A string can be used to encode binary data.

 Does the "struct" element keep the order of keys. Or in other words, is the struct "foo=1,
bar=2" equivalent to "bar=2, foo=1" or not?

The struct element does not preserve the order of the keys. The two structs are equiva-
lent.

 Can the <fault> struct contain other members than <faultCode> and <faultString>? Is
there a global list of faultCodes? (so they can be mapped to distinct exceptions for lan-
guages like Python and Java)?

A <fault> struct may not contain members other than those specified. This is true for all
other structures. We believe the specification is flexible enough so that all reasonable
data-transfer needs can be accomodated within the specified structures. If you believe
strongly that this is not true, please post a message on the discussion group. There is no
global list of fault codes. It is up to the server implementer, or higher-level standards to

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 48/60

specify fault codes.

 What timezone should be assumed for the dateTime.iso8601 type? UTC? localtime?

Don't assume a timezone. It should be specified by the server in its documentation what
assumptions it makes about timezones.

3.3. Apache XML-RPC

To be able to concentrate to the application development, we use a Java implementation of
the XML-RPC protocol. It is part of the Apache project.

Apache XML-RPC is a Java implementation of XML-RPC, a popular protocol that uses XML over
HTTP to implement remote procedure calls.

3.3.1. Client classes

Apache XML-RPC provides two client classes.

 org.apache.xmlrpc.XmlRpcClient uses java.net.URLConnection, the HTTP client that co-
mes with the standard Java API

 org.apache.xmlrpc.XmlRpcClientLite provides its own lightweight HTTP client implementa-
tion.

XmlRpcClientLite is usually faster, but if you need full HTTP support (e.g. Proxies, Redirect
etc), you should use XmlRpcClient.

Both client classes provide the same interface, which includes methods for synchronous and
asynchronous calls. We will use the synchronous method.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 49/60

http://xml.apache.org/xmlrpc/index.html
http://www.xmlrpc.com/
http://xml.apache.org/xmlrpc/apidocs/org/apache/xmlrpc/XmlRpcClient.html
http://xml.apache.org/xmlrpc/apidocs/org/apache/xmlrpc/XmlRpcClientLite.html

Using the XML-RPC library on the client side is quite straightforward. Here is some sample
code:

 // create new client, parametrer is the url of the server
 XmlRpcClient xmlrpc = new XmlRpcClient ("http://localhost:8080/RPC2");

 // build parameter for the request
 Vector params = new Vector ();
 params.addElement ("some parameter");

 // call the remote procedure
 String result = (String) xmlrpc.execute ("method.name", params);

Note that execute can throw XmlRpcException and IOException, which must be caught or
declared by your code.

3.3.2. Server Side XML-PRC

On the server side, you can either embed the XML-RPC library into an existing server frame-
work, or use the built-in special purpose HTTP server. Let's first look at how to register
handler objects to tell an XML-RPC server how to map incoming requests to actual methods.

XML-RPC Handler Objects

The org.apache.xmlrpc.XmlRpcServer and org.apache.xmlrpc.WebServer classes provide
methods that let your register and unregister Java objects as XML-RPC handlers:

addHandler (String name, Object handler);

removeHandler (String name);

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 50/60

http://xml.apache.org/xmlrpc/apidocs/org/apache/xmlrpc/XmlRpcServer.html
http://xml.apache.org/xmlrpc/apidocs/org/apache/xmlrpc/WebServer.html

Depending on what kind of handler object you give to the server, it will do one of the follow-
ing things:

1. If you pass the XmlRpcServer any Java object, the server will try to resolve incoming
calls via object introspection, i.e. by looking for public methods in the handler object
corresponding to the method name and the parameter types of incoming requests.
The input parameters of incoming XML-RPC requests must match the argument types of
the Java method (see conversion table), or otherwise the method won't be found. The re-
turn value of the Java method must be supported by XML-RPC.
(We will use that kind of handler object.)

2. If you pass the XmlRpcServer an object that implements interface
org.apache.xmlrpc.XmlRpcHandler or org.apache.xmlrpc.AuthenticatedXmlRpcHandler
the execute() method will be called for every incoming request. You are then in full con-
trol of how to process the XML-RPC request, enabling you to perform input and output
parameter checks and conversion, special error handling etc.

In both cases, incoming requests will be interpreted as handlerName.methodName with han-
dlerName being the String that the handler has been registered with, and methodName being
the name of the method to be invoked. You can work around this scheme by registering a
handler with the name "$default". In this case you can drop the handlerName. part from the
method name.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 51/60

http://xml.apache.org/xml-rpc/types.html
http://xml.apache.org/xmlrpc/apidocs/org/apache/xmlrpc/XmlRpcHandler.html
http://xml.apache.org/xmlrpc/apidocs/org/apache/xmlrpc/AuthenticatedXmlRpcHandler.html

Using the build-in HTTP-Server

The XML-RPC library comes with its own built-in HTTP server. This is not a general pur-
pose web server, its only purpose is to handle XML-RPC requests. The HTTP server can be
embedded in any Java application with a few simple lines:

 // create Web-Server
 WebServer webserver = new WebServer (port);
 // add handler for a request
 webserver.addHandler ("examples", someHandler);

A special bonus when using the built in Web server is that you can set the IP addresses of cli-
ents from which to accept or deny requests. This is done via the following methods:

 webserver.setParanoid (true); // deny all clients
 webserver.acceptClient ("192.168.0.*"); // allow local access
 webserver.denyClient ("192.168.0.3"); // except for this one
 ...
 webserver.setParanoid (false); // disable client filter

If the client filter is activated, entries to the deny list always override those in the accept list.
Thus, webserver.denyClient ("*.*.*.*") would completely disable the web server.

Using XML-RPC within a Servlet environment (we do not use it in our example)

The XML-RPC library can be embedded into any Web server framework that supports reading
HTTP POSTs from an InputStream. The typical code for processing an incoming XML-RPC re-
quest looks like this:

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 52/60

 XmlRpcServer xmlrpc = new XmlRpcServer ();
 xmlrpc.addHandler ("examples", new ExampleHandler ());
 ...
 byte[] result = xmlrpc.execute (request.getInputStream ());
 response.setContentType ("text/xml");
 response.setContentLength (result.length);
 OutputStream out = response.getOutputStream();
 out.write (result);
 out.flush ();

Note that the execute method does not throw any exception, since all errors are encoded into
the XML result that will be sent back to the client.

A full example servlet is included in the package. There is a sample XML-RPC Servlet included
in the library. You can use it as a starting point for your own needs.

3.3.3. Data types

The following table explains how data types are converted between their XML-RPC representa-
tion and Java.

Note that the automatic invocation mechanism expects your classes to take the primitive
data types as input parameters. If your class defines any other types as input parameters (in-
cluding java.lang.Integer, long, float), that method won't be usable from XML-RPC
unless you write your own handler.

For return values, both the primitive types and their wrapper classes work fine.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 53/60

http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec

XML-RPC data type Java date type
<i4> or <int> int

<boolean> boolean

<string> java.lang.String

<double> double

<dateTime.iso8601> java.util.Date

<struct> java.util.Hashtable

<array> java.util.Vector

<base64> byte[]

3.4. XML-RPC Example

As an example of XML-PRC, we discuss a calculator with the basic operation “add”, “multiply”,
“substract” and “divide”.

First, we implement a XML-RPC server.

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 54/60

 import java.util.Hashtable;
 import org.apache.xmlrpc.*;

 public class JavaServer {
 …

 public Hashtable add (int x, int y) {
 …
 }

 public static void main (String [] args) {
 try {
 // start XML-RPC server; Invoke me as <http://localhost:8080/RPC2>.
 System.out.println("Starting XML-RPC server");
 WebServer server = new WebServer(8080);

 // register our handler
 server.addHandler("calc", new JavaServer());

 } catch (Exception exception) {
 System.err.println("JavaServer: " + exception.toString());
 }
 } // main
 }

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 55/60

A simple client could have the form:

import java.util.Vector;
import java.util.Hashtable;
import org.apache.xmlrpc.*;

public class JavaClient {
 // The location of our server.
 private final static String server_url =
 "http://localhost:8080/RPC2";

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 56/60

 public static void main (String [] args) {
 try {
 // Create an object to represent our server.
 XmlRpcClient server = new XmlRpcClient(server_url);

 // Build our parameter list.
 Vector params = new Vector();
 params.addElement(new Integer(5));
 params.addElement(new Integer(0));

 // Call the server, and get our result.
 Hashtable result = (Hashtable) server.execute("calc.add", params);
 int sum = ((Integer) result.get("add")).intValue();

 // Print out our result.
 System.out.println("Sum: " + Integer.toString(sum));

 } catch (XmlRpcException exception) {
 System.err.println("JavaClient: XML-RPC Fault #" +
 Integer.toString(exception.code) + ": " + exception.toString());
 } catch (Exception exception) {
 System.err.println("JavaClient: " + exception.toString());
 }
 }
}

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 57/60

The full server code is:
$ cat JavaServer.java
 import java.util.Hashtable;
 import org.apache.xmlrpc.*;

 public class JavaServer {

 public JavaServer () {
 // Our handler is a regular Java object. It can have a
 // constructor and member variables in the ordinary fashion.
 // Public methods will be exposed to XML-RPC clients.
 System.out.println("Handler registered as 'calc''");
 }

 public Hashtable add (int x, int y) {
 Hashtable result = new Hashtable();
 result.put("add", new Integer(x + y));
 return result;
 }

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 58/60

 public Hashtable sub (int x, int y) {
 Hashtable result = new Hashtable();
 result.put("sub", new Integer(x - y));
 return result;
 }

 public Hashtable mul (int x, int y) {
 Hashtable result = new Hashtable();
 result.put("mul", new Integer(x * y));
 return result;
 }

 public Hashtable div (int x, int y) {
 Hashtable result = new Hashtable();
 if (y == 0)
 result.put("div error", new Integer(0));
 else
 result.put("div", new Integer(x / y));
 return result;
 }

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 59/60

Parallel Programming in Java: MultithradedServer Prof. Dr. Alois Schütte 60/60

 public static void main (String [] args) {
 try {

 // start XML-RPC server; Invoke me as <http://localhost:8080/RPC2>.
 System.out.println("Starting XML-RPC server");
 WebServer server = new WebServer(8080);

 // register our handler
 server.addHandler("calc", new JavaServer());

 } catch (Exception exception) {
 System.err.println("JavaServer: " + exception.toString());
 }
 }
 }
$

How can we test our server to be multithreaded?

	Client-Server Modell
	Socket communication
	Basics
	Example – Echoserver
	Socket basics in Java
	Opening a socket
	Creating an input stream
	Creating an output stream
	Close sockets

	Client program
	Simple server program
	Multithreaded server

	Remote Procedure Call
	Basics
	XML-RPC Specification
	Requests
	Types
	Response
	Strategies/Goals
	FAQ

	Apache XML-RPC
	Client classes
	Server Side XML-PRC
	XML-RPC Handler Objects
	Using the build-in HTTP-Server
	Using XML-RPC within a Servlet environment (we do not use it in our example)

	Data types

	XML-RPC Example

