

Threads in Java

A thread is a call sequence that executes independently of others, while at the same time
possibly sharing system resources.

First, we show how this concept is realized in Java. Next, we demonstrate how different threads
can be synchronized using Java language constructs.

Table of contents

1. Basics .. 3

1.1. Construction of Java threads... 3

1.2. Using threads within complex class hierarchies.. 8

2. Synchronization of threads ... 10

2.1. Sharing resources ... 10

2.1.1. First try to solve the problem.. 16

2.1.2. Second try ... 18

2.2. Synchronized methods und blocks ... 21

2.3. Termination of Threads .. 32

2.3.1. Using join to get results of thread computations .. 33

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 1/81

2.3.2. Termination of Threads stop()... 38

2.4. wait und notify.. 41

2.4.1. Erroneous experiments .. 42

2.4.2. Correct solution without active waiting ... 44

2.4.3. wait and notify with Petri nets... 51

2.5. wait and notifyAll .. 53

2.5.1. First erroneous try .. 54

2.5.2. Correct solution with wait and notifyAll .. 65

2.5.3. wait and notifyAll whith Petri nets ... 67

3. Scheduling ... 71

3.1. Thread priorities.. 72

3.2. Thread interruption.. 76

4. Background Threads .. 80

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 2/81

1. Basics

1.1. Construction of Java threads

Every program consists of at least one thread – the one that runs the main method of the
class provided as a start up argument to the Java virtual machine (JVM).

Other internal background threads may also be started during JVM initialization.

However, all user-level threads are explicitly constructed and started from the main
thread, or from any other threads that they in turn create.

The code of a thread has to be realized within a method with name run.

public void run() {
 // Code will be executed into a separate thread.
}

A program creating threads can use the class Thread and overwrite its run-Method (inter-
faces are discussed later):

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 3/81

$ cat MyThread.java
public class MyThread extends Thread
{
 public void run() {
 System.out.println("Hello World");
 }

 public static void main(String[] args) {
 MyThread t = new MyThread();
 t.start();
 }
}
$

The method start()is defined within the class thread and starts a thread by executing its run-
method.

In our example, first a thread t is created (new…), next its start-method is called, executing
the run-method which prints out “Hello world”.

When creating more than one thread, it is not possible to determine the execution se-
quence (as shown into the following example):

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 4/81

$ cat Loop1.java
public class Loop1 extends Thread
{
 private String myName;

 public Loop1(String name) {
 myName = name;

Identifier for the thread

 }

 public void run() {
 for(int i = 1; i <= 10000; i++)
 {
 System.out.println(myName + " (" + i + ")");
 }
 }

 public static void main(String[] args) {
 Loop1 t1 = new Loop1("Thread 1");
 Loop1 t2 = new Loop1("Thread 2");
 Loop1 t3 = new Loop1("Thread 3");
 t1.start();

creating 3 threads

 t2.start();
 t3.start();
 }

starting each thread

}
$

Output of the program:

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 5/81

$ java Loop1
…
Thread 1 (7823)
Thread 2 (8886)
Thread 1 (7824)
Thread 2 (8887)
Thread 1 (7825)
Thread 2 (8888)
Thread 1 (7826)
Thread 3 (6647)
Thread 2 (8889)
Thread 3 (6648)
Thread 2 (8890)
Thread 3 (6649)
Thread 2 (8891)
Thread 3 (6650)
Thread 2 (8892)
…

One idea to force the execution sequence could be to let one thread sleep for a certain time
(but as shown, this will not work):

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 6/81

$ cat Loop3.java
public class Loop3 extends Thread
{ public Loop3(String name) {
 super(name);
 }
 public void run() {
 for(int i = 1; i <= 10000; i++)
 { System.out.println(getName() + " (" + i + ")");
 try {
 sleep(10);
 }
 catch(InterruptedException e) {
 }
 }
 }

 public static void main(String[] args) {
 Loop3 t1 = new Loop3("Thread 1");
 Loop3 t2 = new Loop3("Thread 2");
 Loop3 t3 = new Loop3("Thread 3");
 t1.start();
 t2.start();
 t3.start();
 }
}
$

The method getName of the class Thread returns the thread identifier as string;

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 7/81

sleep is a static-Method of the class Thread letting the thread sleep for 10 millisecs.

Output:

java Loop3
…
Thread 1 (100)
Thread 2 (98)
Thread 3 (97)
Thread 1 (101)
Thread 3 (98)
Thread 2 (99)
Thread 1 (102)
Thread 3 (99)
Thread 2 (100)
Thread 1 (103)
…
$

1.2. Using threads within complex class hierarchies
If the run-method itself is part of a derived class, the class can not be derived from the class
Thread (Java does not support multiple inheritance).

In this case the interface Runnable of the package java.lang can be used:

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 8/81

$ cat MyRunnableThread.java
public class MyRunnableThread implements Runnable
{
 public void run()
 {
 System.out.println("Hello World");
 }

 public static void main(String[] args)
 {
 MyRunnableThread runner = new MyRunnableThread();
 Thread t = new Thread(runner);
 t.start();
 }
}
$

The class Thread itself implements Runnable. Thus, the code runs into a Runnable using it as
an argument to the thread constructor.

Most of the time, we will not use this method, because our examples are as easy as possible
and no complex class hierarchies are necessary.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 9/81

2. Synchronization of threads

2.1. Sharing resources

If several threads share resources they have to „agree“ who is allowed to do which action
on what time.

We demonstrate the possibilities of Java.

For this, the possibilities offered by java are shown demonstrating an example of a banking
account.

A bank is modelled by 4 classes:

1. Class account represents a bank account with

 attributes

o balance to hold the actual balance

 methods

o set(value) to deposit (positive value) or withdraw (a negative value) money

o get()to request the actual balance

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 10/81

class account {
 private float balance;

 public void set(float amount) {
 balance = amount;
 }

 public float get() {
 return balance;
 }
}

2. The class bank represents a bank with accounts on which some booking-operation can
take place. The constructor is responsible for initializing all accounts.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 11/81

class bank {
 private account[] accounts;
 String bankName;

 public bank(String bankName) {
 this.bankName = bankName;

 accounts = new account[100];
 for(int i = 0; i < accounts.length; i++) {
 accounts[i] = new account();
 }
 }

 public void booking(String employee,
 int accountnr, float amount) {
 float oldBalance = accounts[accountnr].get();
 float newBalance = oldBalance + amount;
 accounts[accountnr].set(newBalance);
 }
}

A booking operation has to be done by an employee, who first has to read the ac-
tual balance, next to set the balance of a special account.
Until now, we do not play with threads.

3. We use threads to realize the class employee. The name of the thread will be the name
of an employee. Thus each employee of a bank becomes a thread. Bookings could be

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 12/81

simulated by random numbers, generated in the run-method – we always use accountnr 1
and deposit 1000 times 1 USD.

class bankEmplojee extends Thread {
 private bank bank;
 public String name;

 public bankEmplojee(String name, bank bank) {
 super(name);
 this.bank = bank;
 this.name = name;
 start(); // thread started in the constructor
 }

 public void run() {
 for(int i = 0; i < 1000; i++) {
 int accountnr = 1; // better random number
 float amount = 1; // better random number

 bank.booking(name, accountnr, amount);
 }
 }
}

4. Our bank (class bankoperation) only has two employees. They start working when the ob-
jects are generated.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 13/81

public class BankOperation {
 public static void main(String[] args) {
 bank DeutscheBank = new bank("DeutscheBank");
 bankEmplojee eve = new bankEmplojee("Eve", DeutscheBank);
 bankEmplojee hanna = new bankEmplojee("Hanna", DeutscheBank);
 }
}

This finalized the implementation of a bank.

Let us run the program and see what will happen after the bank has closed the doors?

We extended the program to log each transaction into a log file and store account infor-
mation into a file during an end-of-day processing.

The situation should be: the balance of account 1 is 2000.

$ java BankOperation.java
$
$ head accounts.DeutscheBank
account 0: 0.0
account 1: 1114.0

we have lost a lot of transactions !

account 2: 0.0
…
$

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 14/81

This problem occurs, when more threads use common objects (here the ar-
ray account) without implementing protection mechanisms.

But how can this happen?

Let’s start our analysis with the following situation: Eve and Hanna are booking 1 USD onto
account 1. Initially the balance is 0.

Thread Eve

public void booking(String employee = “Eve”,
 int accountnr = 1,
 float amount = 1) {
 float oldBalance = accounts[accountnr].get();
switch to thread Hanna
 float newBalance = oldBalance + amount;
 accounts[accountnr].set(newBalance);
}

accounts[1] = 0

oldBalance = 0

Thread Hanna

public void booking(String employee = “Hanna”,
 int accountnr = 1,
 float amount = 1) {
 float oldBalance = accounts[accountnr].get();
 float newBalance = oldBalance + amount;
 accounts[accountnr].set(newBalance);
}
switch to thread Eve

accounts[1] = 0

oldBalance = 0
newBalance = 1
accounts[1] = 1

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 15/81

Thread Eve

public void booking(String employee = “Eve”,
 int accountnr = 1,
 float amount = 1) {
 float oldBalance = accounts[accountnr].get();
continue after having switched
 float newBalance = oldBalance + amount;
 accounts[accountnr].set(newBalance);
}

oldBalance = 0

newBalance = 1
accounts[1] = 1

Now the deposit of Hanna is lost!

Thus, the origin of the lost booking is that one booking transaction consists of more than one
statement and between these statements, the scheduler switched between threads.

2.1.1. First try to solve the problem

Within the class bank, we realize booking by one Java statement:

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 16/81

class account {
 private float balance;

 public void booking(float amount) {
 balance += amount;
 }
}
class bank {
 private account[] accounts;
 String bankName;

 public bank(String bankName) {
 this.bankName = bankName;

 accounts = new account[100];
 for(int i = 0; i < accounts.length; i++) {
 accounts[i] = new account();
 }
 }

 public void booking(String employee, int accountnr, float amount) {
 accounts[accountnr].booking(amount);
 }
}

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 17/81

This idea is not a solution, because a Java-program is compiled into byte code. The java com-
piler produces from the Java statement

 balance += amount;

the following code (here mnemonic code):

 1: LOAD(balance);
 2: ADD(amount);
 3: STORE(balance);

Java
compiler

Thus, the JVM executes 3 statement and we have the same problem: switching between state-
ments.

2.1.2. Second try

We have to find a solution from an application point of view:

An employee may only start booking if no other employee is booking.

This is a solution from the employee’s point of view. But how can we implement that in Java?

The first implementation idea is:

We let all classes but bank unchanged. Into bank, we program a lock mechanism which
may prevent two employees booking at the same time.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 18/81

class bank {
 private account[] accounts;
 String bankName;
 private boolean lock;

 public bank(String bankName) {
 this.bankName = bankName;

 accounts = new account[100];
 for(int i = 0; i < accounts.length; i++) {
 accounts[i] = new account();
 }
 lock = false; // initialize to “not locked”
 }

 public void booking(String employee,
 int accountnr, float amount) {
 while(lock); // wait unit “not locked”
 lock = true; // lock

 float oldBalance = accounts[accountnr].get();
 float newBalance = oldBalance + amount;
 accounts[accountnr].set(newBalance);

 lock = false; // unlock
 }
}

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 19/81

The booking statements are encapsulated by a lock mechanism: first we wait until we can’t find
a lock, after we can enter, we lock, perform the booking operation, unlock and return.

This implementation seems to be correct – but on thinking about that solution, we find fol-
lowing problems:

1. Two employees can not work simultaneously, but it would not cause a problem if they
would book different accounts.

2. Active waiting (while(lock);) consumes CPU time by doing nothing.

3. But the principle problem is, that this implementation does not solve our problem:
Active waiting is not an indivisible operation, the byte code looks like:

while (lock);

lock = true;

1: LOAD(lock);
2: JUMPTRUE 1;

3: LOADNUM(TRUE);
4: STORE(lock)

If the scheduler switches between operation 1 and 2 and the lock is not set (lock==false),
a waiting thread can enter and perform the booking.

We now demonstrate a correct solution, using Java elements to synchronize threads.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 20/81

2.2. Synchronized methods und blocks

A correct but (still inefficient) solution for the problem 2 (active waiting) and 3 (lost transac-
tion) uses Java’s synchronized methods. We only have to add the keyword synchronized to
mark the booking method.

Every instance of class Object and its subclasses possesses a lock. Scalars of type int,
float, etc. are no Objects and therefore can be locked only via their enclosing objects.

The synchronized keyword is not considered to be part of a method’s signature. So the syn-
chronized modifier is not automatically inherited when subclasses override superclass meth-
ods, and methods in interfaces cannot be declared as synchronized.

In addition to synchronized methods, any Java block can be marked as synchronized; in this
case synchronization takes an argument of which object to lock (we will see that later).

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 21/81

Locking follows a build-in acquire-release protocol, controlled only by use of the synchro-
nized keyword:

A lock is acquired on entry to a synchronized method or block, and released on exit,
even if the exit occurs due to an exception.

Thread A

synchronized
action() { lock
.. Thread B
}

Thread A is executing a synchronized method, locking thereby the object. Thread B wants
to execute the same method (of the same object), it is blocked until thread A has finished
the execution of the synchronized method; than the lock is released.

This mechanism is implemented within the JVM without active waiting; the blocked thread
will not further be considered as ready by the scheduler.

A synchronized method or block obeys the acquire-release protocol only with respect to other
synchronized methods or blocks on the same target object. Methods that are not synchro-
nized may still execute at any time, even if a synchronized method is in progress. In other
words, synchronized is not equivalent to atomic, but synchronization can be used to achieve
atomicity.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 22/81

Now we can change our coding of the bank example: booking becomes a synchronized method.
This solves the lost transaction problem and the active waiting problem!

$ cat Bankoperation.java
…
class bank {
 private account[] accounts;
 String bankName;

 public bank(String bankName) {
 this.bankName = bankName;

 accounts = new account[100];
 for(int i = 0; i < accounts.length; i++) {
 accounts[i] = new account();
 }
 }

 public synchronized void booking(String employee,
 int accountnr, float amount) {
 float oldBalance = accounts[accountnr].get();
 float newBalance = oldBalance + amount;
 accounts[accountnr].set(newBalance);
 }
}
…

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 23/81

By this approach, the bank-Object is locked, but we only have to lock one special account.
Thus, problem 1 is still open.

The solution uses the Java feature to mark a block synchronized identifying the object to lock
as argument.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 24/81

$ cat Bankoperation.java
class bank {
 private account[] accounts;
 String bankName;

 public bank(String bankName) {
 this.bankName = bankName;

 accounts = new account[100];
 for(int i = 0; i < accounts.length; i++) {
 accounts[i] = new account();
 }
 }

 public void booking(String employee,
 int accountnr, float amount) {

 synchronized (accounts[accountnr]) {

Only one account
is locked!

 float oldBalance = accounts[accountnr].get();
 float newBalance = oldBalance + amount;
 accounts[accountnr].set(newBalance);
 }
 }
}

Common usage of objects can be synchronized using the keyword synchronized. However, an
application scenario where all threads are only reading shared objects attributes would be not
effective because of unnecessary overhead (set and unset a lock).

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 25/81

We can formulate the following general rule:

If several threads share an object, where at least one thread changes that objects state
(values of its attributes) than all methods accessing the object (no matter reading or writ-
ing) have to be marked synchronized.

To understand the behaviour of synchronized, we could use a Petri net:

A Petri net is a model that is used e.g. to describe concurrent processes.
It consists of links and two types of nodes: states and transitions.

Links always connect a state
and a transition, which is
possible in both directions. So it's
not possible to connect two
states or two transitions with
each other. Further, every node
can have a name that illustrates
the meaning it has in the context
of the Petri net. Every state has
also a certain number of tokens
and every transition has a certain
priority.

token state

transition
transition

state

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 26/81

When you designed a Petri net, you probably might want to simulate it. Simulating a Petri
net works as following:

States can have a number of tokens, that are taken or given away when certain transi-
tions 'fire'. A transition is able to fire (or is enabled), if for every of it's incoming links
there is at least one token in the connected state. So when the transition fires (in the
Simulator this happens, in fact, when you click on it), it takes one token of every state
from which a link goes to it and gives one token to every state it has an outgoing link
to.

($ petrinet.sh Netz_bsp01)

can fire

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 27/81

For not every transition must have the same number of incoming and outgoing links, the
amount of tokens in the whole Petri net after firing a transition has not to be the same as
before!

The possibility of firing enabled transitions can also be limited by the priorities of transi-
tions: If transitions that have common incoming states are enabled, in fact only those with
the highest priority really can fire.

Now we can consider a Java program and its Petri net to see the locking mechanism.

In that program all threads share one object.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 28/81

class K {
 public synchronized void m1() {
 action1();
 }
 public synchronized void m2() {
 action2();
 }
 private void action1() { … }
 private void action2() { … }
}

class T extends Thread {
 private K einK;
 public T(K k) {
 einK = k;
 }

 public void run() {
 while (…) {
 switch (…) {
 case …: einK.m1(); break;
 case …: einK.m2(); break;
 }
 }
 }
}

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 29/81

($ petrinet.ksh)

A state represents the posi-
tion between two Java
statements.

A transition represents a Java
statement.

A token represents a thread,
i.e. the lock for the shared K-
Object.

To start a thread (transition
„synchBegin“) we need a token
on states “start” and “lock”.

If a transaction fires, the token
will be taken away from “lock”;
thus, no other thread is able to
start until a token becomes
available on “lock”. This only
happens, when the active
thread terminates.

Hence, only one thread is able
to enter the critical region at a
time.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 30/81

Classroom exercise

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 31/81

2.3. Termination of Threads

A thread terminates when its run method has terminated, or in case of the “master” thread,
when the main method has terminated (daemons are considered separately).

The class Tread has a method isAlive which can be used to check whether a thread is still liv-
ing. Using this method, you could implement active waiting in the following way (but there is
never a need to do it):

// MyThread is assumed to be a subclass of Thread
MyThread t = new myThread();
t.start();
while (t.isAlive())
 ;
// here we have: t.isAlive == false, thread t has terminated

In some application scenarios, it is necessary to wait until a thread has terminated its ac-
tivities (because its results are needed to do further computations). For this purpose, the
method join (of class Thread) can be used. A call of join terminates, if the corresponding
thread has finalized its activities.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 32/81

// MyThread is assumed to be a subclass of Thread
MyThread t = new myThread();
t.start();
t.join(); // block until t has terminated.
 ;
// here we have: t.isAlive == false, thread t has terminated

2.3.1. Using join to get results of thread computations
We consider an example where an array of Boolean is analyzed by several threads; each thread
is responsible for a special range of the array.

1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 1

Each thread’s task is to count the true
(1) values within its part of the array.

T1 T2 T3 T4

1 3 0 4
main

The main method accumulates the re-
sults.

8

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 33/81

$ cat AsynchRequest.java
class Service implements Runnable
{
 private boolean[] array;
 private int start;
 private int end;
 private int result;

 public Service(boolean[] array, int start, int end) {
 this.array = array;
 this.start = start;
 this.end = end;
 }

 public int getResult() {
 return result;
 }

 public void run() {
 for(int i = start; i <= end; i++) { // count true values
 if(array[i])
 result++;
 }
 }
}

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 34/81

public class AsynchRequest
{
 private static final int ARRAY_SIZE = 100000;
 private static final int NUMBER_OF_SERVERS = 100;

 public static void main(String[] args) {
 // start time
 long startTime = System.currentTimeMillis();

 // array creation, init with random boolean values
 boolean[] array = new boolean[ARRAY_SIZE];
 for(int i = 0; i < ARRAY_SIZE; i++) {
 if(Math.random() < 0.1) array[i] = true;
 else array[i] = false;
 }

 // creation of array for service objects and threads
 Service[] service = new Service[NUMBER_OF_SERVERS];
 Thread[] serverThread = new Thread[NUMBER_OF_SERVERS];

 int start = 0;
 int end;
 int howMany = ARRAY_SIZE / NUMBER_OF_SERVERS;

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 35/81

 // creation of services and threads
 for(int i = 0; i < NUMBER_OF_SERVERS; i++) {
 end = start + howMany - 1;
 service[i] = new Service(array, start, end);
 serverThread[i] = new Thread(service[i]);
 serverThread[i].start(); // start thread i
 start = end + 1;
 }

 // wait for termination of each service (thread)
 try {
 for(int i = 0; i < NUMBER_OF_SERVERS; i++)
 serverThread[i].join();
 } catch(InterruptedException e) {
 }

 // accumulate service results
 int result = 0;
 for(int i = 0; i < NUMBER_OF_SERVERS; i++) {
 result += service[i].getResult();
 }

 // end time
 long endTime = System.currentTimeMillis();
 float time = (endTime-startTime) / 1000.0f;
 System.out.println("computation time: " + time);

wait for termination of
service thread no i.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 36/81

 // print result
 System.out.println("result: " + result);
 }
}
$

Execution:

$ java AsynchRequest
computation time: 0.11
result: 9942
$ java AsynchRequest
computation time: 0.11
result: 9923
$ java AsynchRequest
computation time: 0.121
result: 10092
$

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 37/81

2.3.2. Termination of Threads stop()

The class Thread has a build-in method stop(). Thread.stop causes a thread to abruptly
throw a ThreadDeath exception regardless of what it is doing.

Like interrupt, stop does not abort waits for locks or IO. But unlike interrupt, it is not
strictly guaranteed to wait, sleep or join.

The usage of stop can be dangerous. Because stop generates asynchronous signals, activities
can be terminated while they are in the middle of operations or code segments that absolutely
must roll back or roll forward for consistency reasons.

This behaviour has been the reason for mark it being deprecated.

Example:

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 38/81

class C {
 private int v; // invariant: v >= 0
 synchronized void f() {
 v = -1; // temporarily set to illegal value as flag
 compute(); // possible stop point (*)
 v = 1;
 }

 synchronized void g() {
 while (v!= 0) {
 --v;
 something();
 }
 }
}

If a Thread.stop happens to cause termination at line (*), then the object will be broken: upon
thread termination, it will remain in an inconsistent state because variable v is set to an illegal
(negative) value.

Any call on the object from other threads might make it perform undesired or dangerous ac-
tion: for example, here the loop in method g will spin “infinite” (2*Integer.MAX_VALUE) times
as v wraps around the negatives.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 39/81

Classroom exercise

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 40/81

2.4. wait und notify

synchronized methods can be used to guarantee consistent states of objects, even if a lot
of threads share the object.

There exists application scenarios where consistency is not sufficient; in addition application
specific conditions have to be fulfilled.

We demonstrate this implementing a parking garage. The actual state of a parking garage is
defined by the number of free parking places. Cars are modelled by thread whereby a car
can enter or leave the parking garage; each of these methods changes the actual state of the
garage:

• When a car enters, the number of free places is decremented; leaving implies incrementing
the free places.

• The number of free places can not be decremented, if the parking garage has become full
(free places == 0)

• A parking garage can simultaneously be used by more than one car (each changing the
state), therefore methods enter() and leave() have to be marked as synchronized.

First, we develop two not satisfying realization for our problem “free places”, after that, we
show a correct solution.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 41/81

2.4.1. Erroneous experiments
$ cat ParkingGarage1.java
class ParkingGarage {
 private int places;

 public ParkingGarage(int places) {
 if(places < 0)
 places = 0;
 this.places = places;
 }

 // enter parking garage
 public synchronized void enter() {
 while (places == 0); // active wait
 places--;
 }

 // leave parking garage
 public synchronized void leave() {
 places++;
 }
}
$

This approach has two problems:

1. Active waiting -> performance!

2. The program is not working as it
is desired when the parking ga-
rage has become full
(places==0):

a new car C1 enters and is in the
while loop (waiting for a place);
no other car is able lo leave, be-
cause the lock held be car C1
trying to enter will never be re-
leased.

The origin of the problem is (active) waiting for a free place within a synchronized method
(enter). Thus, we try to modify the approach waiting outside a synchronized method.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 42/81

$ cat ParkingGarage2.java
class ParkingGarage2 {
 private int places;

 public ParkingGarage2(int places) {
 if(places < 0)
 places = 0;
 this.places = places;
 }

 private synchronized boolean isFull() {
 return (places == 0);
 }
 private synchronized void reducePlaces() {
 places--;
 }

 // enter parking garage
 public void enter() {
 while (isFull()); // active wait
 reducePlaces();
 }
 // leave parking garage
 public synchronized void leave() {
 places++;
 }
}
$

Method enter is now not synchro-
nized, that means we do not wait
within a synchronized method.

But this approach has other prob-
lems:

1. We still use active waiting

2. The shared object (places) is
managed by two synchronized
methods (isFull, reducePlaces).
That cause the some problem we
had in the bank example:
a car can enter, if the scheduler
switches the threads just after the
while loop in enter, before reduce-
Places is executed.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 43/81

2.4.2. Correct solution without active waiting

As we saw, waiting for a free place is neither correct within a locked state (of the object Park-
ingGarage) nor within an unlocked state.

Java offers methods of the class Object for waiting and notification.

wait(), notify() and notifyAll are methods of class Object:

public class Object {
 …
 public final void wait() throws InterruptedException {…}
 public final void notify() { …}

public final void notifyll() { …}
}

All these methods may be invoked only when the synchronization lock is held on their tar-
gets. This, of course cannot be verified at compile time. Failure to comply causes these opera-
tions to throw an IllegalMonitorStateException at run time.

A wait invocation results in the following actions:

 If the current thread has been interrupted, then wait exits immediately, throwing an In-
terruptedException. Otherwise, (normal case) the current thread is blocked.

 The JVM places the thread in the internal and otherwise inaccessible wait set associated
with the target object. (It is really a wait set, not a waiting queue).

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 44/81

 The synchronization lock for the target object is released, but all other locks held by the
tread are retained.

A notify invocation results in the following actions:

 If one exists, an arbitrarily chosen thread, say T, is removed by the JVM from the inter-
nal wait set associated with the target object. There is no guarantee about which waiting
thread will be selected when the wait set contains more than one thread.

 T must re-obtain the synchronization lock for the target object, which will always cause it
to block al least until the tread calling notify releases the lock. It will continue to block if
some other thread obtain the lock first.

 T is then resumed from the point of its wait.

A notifyAll works in the same way as notify expect that the steps occur (in effect, simultane-
ously) for all threads in the wait set for the object. However, because they must acquire the
lock, threads continue at a time.

The following picture illustrates some of the underlying mechanics, using the useless class X.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 45/81

class X {
 synchronized void w() {
 before();// some actons
 wait(); // Thread.wait
 after(); // some actions
 }
 synchronized void n() {
 notifyall();// Thread.notify
 }

 void before {}
 void before {}
}

T1 T2 T3

begin x.w()
 acquire lock
before();

begin x.w() wait();
 blocks release lock
 enter wait set
 acquire lock
before(); begin x.n()
wait(); wait for locks
 release lock
 enter wait set acquire lock

notifyall();
 release lock exit wait set exit wait set
 wait for locks w

 acq

aft
 re acquire lock

after();
 release lock

T1

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte

ait for locks

uire lock
er();
lease lock

T2

 46/81

Using these concepts, we are able to find a solution for he parking garage problem:

 method enter uses Thread.wait instead of active waiting and

 method leave performs Thread.notify in order to let cars enter the parking garage.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 47/81

$ cat ParkingGarageOperation.java
class ParkingGarage {
 private int places;

 public ParkingGarage(int places) {
 if (places < 0)
 places = 0;
 this.places = places;
 }

 public synchronized void enter() { // enter parking garage
 while (places == 0) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }
 places--;
 }

 public synchronized void leave() { // leave parking garage
 places++;
 notify();
 }
}

A car is a thread, where we let it drive (using sleep()) before entering the parking garage. We
also use sleep to simulate the pause within the garage.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 48/81

class Car extends Thread {
 private ParkingGarage parkingGarage;

 public Car(String name, ParkingGarage p) {
 super(name);
 this.parkingGarage = p;
 start();
 }

 public void run() {
 while (true) {
 try {
 sleep((int)(Math.random() * 10000)); // drive before parking
 } catch (InterruptedException e) {}
 parkingGarage.enter();
 System.out.println(getName()+": entered");
 try {
 sleep((int)(Math.random() * 20000)); // stay within the parking garage
 } catch (InterruptedException e) {}
 parkingGarage.leave();
 System.out.println(getName()+": left");
 }
 }
}

Letting a parking garage become operational, we create a garage with 10 places and let 40 cars
drive around parking and continue driving around.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 49/81

public class ParkingGarageOperation {
 public static void main(String[] args){
 ParkingGarage parkingGarage = new ParkingGarage(10);
 for (int i=1; i<= 40; i++) {
 Car c = new Car("Car "+i, parkingGarage);
 }
 }
}
$

The operational garage in action is:

$ java ParkingGarageOperation
Car 38: entered
Car 21: entered
Car 12: entered
Car 22: entered
Car 23: left
Car 5: entered
Car 32: entered
Car 28: entered
Car 18: entered
Car 5: left
Car 37: entered
Car 22: left
Car 35: entered
….

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 50/81

2.4.3. wait and notify with Petri nets

To demonstrate the behaviour of wait and notify, we use a Java class and show the correspond-
ing Petri net.

class K {
 public synchronized void m1() {
 while (…) {
 try {
 wait();
 } catch (
 InterruptedException e
) {}
 }
 action1();
 }

 public synchronized void m2() {
 action2();
 notify();
 }
 private void action1() { … }
 private void action2() { … }
}

class T extends Thread {
 private K myK;
 public T(K k) {
 myK = k;
 }

 public void run() {
 while (…) {
 switch (…) {
 case …: myK.m1(); break;
 case …: myK.m2(); break;
 }
 }
 }
}

The Petri net for m1 and m2 looks like:

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 51/81

($ petrinet.ksh)

State checkCond1 correspond with the
check of the wait condition. wait is
modelled by wait1. The number of tokens
corresponds with the number of waiting
threads. Firing of transition wait1 can be
seen as releasing a lock, which means that
further threads can call method m1.

The Petri net seems to be complex, but it is
the semantics of notify that at least one
thread may waked up. If there is no thread
waiting then the invocation of notify rests
without any effect. This semantics let the
Petri net become a little bit complex.

Use the Petri net emulator, to see how it
works!

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 52/81

2.5. wait and notifyAll

While implementing concurrent applications using wait and notify, problems can occur when
several threads are within the wait set and the wrong thread is selected by notify.

We consider this situation using the classical producer consumer relationship:

A producer generates information and sends it to a consumer. Both, consumer and pro-
ducer are realized as threads. As communication device, both partner use a shared
buffer.

The buffer will be realized by an integer. The method put will be used by the producer to store
a value into the buffer, consuming will be done by reading the content of the buffer by method
get. This scenario is illustrated next:

get() put()
Producer

buffer
Consumer

5

The implementation has to ensure that no value can be lost (put before get has be done).
Further, a value may not be received twice while consuming.
Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 53/81

We try to realize the behaviour by wait and notify: after having written a value into the buffer,
the producer waits until the consumer has notified and verse visa, the consumer waits until a
value is available into the buffer.

2.5.1. First erroneous try

Class Buffer has private attributes data (for the value) and available (flag indicating avail-
ability of a value).

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 54/81

$ cat ProduceConsume.java
class Buffer {
 private boolean available = false;
 private int data;

 public synchronized void put(int x) {
 while(available) { // wait until buffer is empty
 try {
 wait();
 } catch(InterruptedException e) {}
 }
 data = x;
 available = true;
 notify();
 }

 public synchronized int get() {
 while(!available) { // wait until data available
 try {
 wait();
 } catch(InterruptedException e) {}
 }
 available = false;
 notify();
 return data;
 }
}

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 55/81

Both, producer and consumer are implemented as threads. The constructor of each class has as
parameter a reference to the shared object (Buffer). 100 values are transferred.

$ cat ProduceConsume.java
…
class Producer extends Thread {
 private Buffer buffer;
 private int start;

 public Producer(Buffer b, int s) {
 buffer = b;
 start = s;
 }

 public void run() {
 for(int i = start; i < start + 100; i++) {
 buffer.put(i);
 }
 }
}

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 56/81

class Consumer extends Thread {
 private Buffer buffer;

 public Consumer(Buffer b) {
 buffer = b;
 }

 public void run() {
 for(int i = 0; i < 100; i++) {
 int x = buffer.get();
 System.out.println("got " + x);
 }
 }
}

Within the main method of the application class, one buffer and one producer and one con-
sumer are created.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 57/81

public class ProduceConsume {
 public static void main(String[] args) {
 Buffer b = new Buffer();
 Consumer c = new Consumer(b);
 Producer p = new Producer(b, 1);
 c.start();
 p.start();
 }
}
$

Starting the program let us have the output:

$ java ProduceConsume
got 1
got 2
got 3
got 4
got 5
…
got 100
$

As we can see, we have the desired behaviour.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 58/81

In real life situations, we find not only one producer and consumer. Rather, we have a scenario
like the following:

p1 c1
buffer

p2 c2
5

p3 c3

To implement it, we just modify the main method of our last program by adding 2 consumers
and 2 producers:

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 59/81

$ cat ProduceConsume2.java
…
public class ProduceConsume2
{
 public static void main(String[] args)
 {
 Buffer b = new Buffer();
 Consumer c1 = new Consumer(b);
 Consumer c2 = new Consumer(b);
 Consumer c3 = new Consumer(b);
 Producer p1 = new Producer(b, 1);
 Producer p2 = new Producer(b, 101);
 Producer p3 = new Producer(b, 201);
 c1.start();
 c2.start();
 c3.start();
 p1.start();
 p2.start();
 p3.start();
 }
}
$

Starting the program produces the following output (depending on operating system and Java
version)

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 60/81

$ java ProduceConsume2
got 1
got 101
got 2
got 102
got 103
got 201
got 3
got 104
got 202
…
got 230
got 231
got 33
got 8
got 232

The program hangs, no further output
is written, but the program in fact has
not yet terminated!

The origin of this behaviour is the scheduling mechanism: a “wrong” thread has been chosen
out of the wait set, as illustrated next.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 61/81

1. When the program starts, all consumer c1, c2 and c3 are able to run. Initially, buffer is
empty. Therefore all consumers are blocked by wait.

b wait set for b

empty c1 c2 c3

2. Now, thread p1 puts a value into the buffer b, notifying a consumer; let’s assume c1. The
result is:

wait set for b b

c2 c3 1

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 62/81

3. p1 now tries to put an additional value into b, but the buffer is not empty. This let p1 be-
come blocked and it will be inserted into the wait
set.

b wait set for b

1 c2 c3 p1

4. Let’s assume, JVM switches to producer p2. Because buffer b is still not empty, p2 will be
inserted into the wait set. The same procedure happens for p3.

wait set for b b

c2 c3 p1 p2 p3 1

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 63/81

5. There is only one thread, which can do any action: c1. It consumes a value from buffer.
Now, exactly one of the elements within the waiting set will wake up, let’s assume c2.

wait set for b b

c3 p1 p2 p3 empty

6. c1 continues, trying to get a value out of the buffer; b is empty, thus c1 blocks and is in-
serted into the waiting set. Note b is still empty!

wait set for b b

c3 p1 p2 p3 c1 empty

7.The only not blocked thread now is c2, a consumer. c2 tries to get a value and blocks, the
waiting set now holds all threads:

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 64/81

wait set for b b

c3 p1 p2 p3 c1 c2 empty

Now, we have the hanging situation: There is no tread able to run because each one is
blocked (element of the waiting set).

Step 5 was responsible for the misleading situation: consumer c1 has waked up another
consumer (c2). This was the ”wrong” thread.

The solution could be that not one thread wakes up exactly one other thread, instead one
thread should be able to wake up all threads. This will work, because all threads are waked up,
but only one is chosen and each thread tests in a while loop, whether it can continue to work.

2.5.2. Correct solution with wait and notifyAll

As we saw, the class Object has another method to wake up threads: notifyAll wakes up all
threads within the waiting set of an object.

Thus, we replace notify by notifyAll:

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 65/81

$ cat ProduceConsume3.java
…
class Buffer {
 private boolean available = false;
 private int data;
 public synchronized void put(int x) {
 while(available) {
 try {
 wait();
 } catch(InterruptedException e) {}
 }
 data = x;
 available = true;
 notifyAll();
 }
 public synchronized int get() {
 while(!available) {
 try {
 wait();
 } catch(InterruptedException e) {}
 }
 available = false;
 notifyAll();
 return data;
 }
}
...

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 66/81

Basically, you can always use notifyAll instead of notify, but as we saw, the reversal is not
always possible.

The following rule explains, when using which of the two notify methods:

Method notifyAll has to be used if at least one of the following situations take place:

1. Within the wait set, you find threads belonging to different wait conditions (for exam-
ple buffer empty and buffer full). Using notify is dangerous, because the wrong
thread could be waked up.

2. Modifying the state of an object implies that more threads are able to continue working
(for example buffer changes from empty to full ⇒ all waiting threads can continue).

2.5.3. wait and notifyAll whith Petri nets

One again, we use a short Java program to illustrate, how wait and notifyAll can be simu-
lated by a Petri net:

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 67/81

class K {
 public synchronized void m1() {
 while (…) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }
 action1();
 }

public synchronized void m2() {
 action2();
 notifyAll();
 }
 private void action1() { … }

private void action2() { … }
}

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 68/81

class T extends Thread {
 private K einK;
 public T(K k) {
 einK = k;
 }

 public void run() {
 while (…) {
 switch (…) {
 case …: einK.m1(); break;
 case …: einK.m2(); break;
 }
 }
 }
}

The following Petri net can be used to simulate invocations of method m1 and m2.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 69/81

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte

 70/81

3. Scheduling

Java has build in construct, allowing a thread to capture one the following

s

he scheduler switches threads from ready to running, assigning CPU. A thread leaves this
state when

 the run method has terminated, the thread will not longer live;

e slice has expired, the thread become ready;

states:

The JVM together
with the scheduler
of the underlying op-blocked

unblock
(end of synchronized,

timeslice expires, inter-
rupt, end of thread, notify,

notifyAll, end of IO)

erating system are
responsible for the
transition from one
state to another.

After creation, a
thread is not immedi-
ately executed; by

block
(synchronized, sleep,
join, wait, wait for IO)

unscheduled

start, it become
ready for execution.

running ready dead create

start() End of
run() scheduled

T

 the tim
Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 71/81

 a sleep, wait, join or IO operation or a synchronized metho
become blocked, the scheduler do not further consider that thread;

d or block let the thread

If the reason for blocking is not longer valid, the thread becomes ready.

3.1.

ava language makes

But threads do support priority methods that influence schedulers:

and 10 respectively)

read that created it. The

 The current priority of any thread can be accessed via method getPrioritya().

e
maximum allowed priority for a thread is bounded by its t into the

Whe
prefe higher priorities. The exact policy may and does vary across platforms.

Thread priorities

To make it possible to implement the JVM across diverse platforms, the J
no promise about scheduling or fairness.

 Each thread has a priority, ranging between MIN_PRIORITY and MAX_PRIORITY (defined 1

 By default, each new thread has the same priority as the th
initial thread associated with main by default has priority Thread.NORM_PRIORITY (5).

 The priority of any thread can be dynamically changed via method setPriority(). Th
TheadGroup (we see tha

next part).

n there are more runnable (ready) threads than available CPUs, a scheduler generally
rs threads with

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 72/81

For example, some JVM implementations always select the thread with the highest current pri-
ority; some JVM implementations group priorities to classes and chose a thread belonging to
the highest class.

Priorities have no impact on semantics or correctness. In particularly, priority manipula-
tions cannot be used as a substitute for locking.

Priority should only be used to express the relative importance of different threads.

Example:

We construct an example, where 3 Threads run with different priorities, each performing only
some outputs operations.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 73/81

$ java ThreadPriority
 Thread Three: Iteration = 0
 Thread Three: Iteration = 1
 Thread Three: Iteration = 2
 Thread Three: Iteration = 3
 Thread Three: Iteration = 4
Thread One: Iteration = 0
Thread One: Iteration = 1
Thread One: Iteration = 2
Thread One: Iteration = 3
Thread One: Iteration = 4
 Thread Two: Iteration = 0
 Thread Two: Iteration = 1
 Thread Two: Iteration = 2
 Thread Two: Iteration = 3
 Thread Two: Iteration = 4
$

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 74/81

$ cat ThreadPriority.java
import java.util.*;
import java.io.*;

class ThreadPriority {
 public static void main(String [] args) {
 ThreadPriority t = new ThreadPriority();
 t.doIt();
 }

 public void doIt() {
 MyThread t1 = new MyThread("Thread One: ");
 t1.setPriority(t1.getPriority() -1); //Default Priority is 5
 t1.start();
 MyThread t2 = new MyThread("Thread Two: ");
 t2.setPriority(t2.getPriority() -2);
 t2.start();
 MyThread t3 = new MyThread("Thread Three: ");
 t3.setPriority(10);
 t3.start();
 }
}

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 75/81

class MyThread extends Thread {
 static String spacerString ="";
 public String filler;

 public MyThread(String ThreadNameIn) {
 filler = spacerString;
 spacerString = spacerString + " ";
 setName(ThreadNameIn);
 }

 public void run() {
 for (int k=0; k < 5; k++) {
 System.out.println(filler + Thread.currentThread().getName()
 + " Iteration = " + Integer.toString(k)) ;
 }
 }
 }

3.2. Thread interruption

Each thread has an associated boolean interruption status. Invoking t.interrupt for some
Threrad t sets t’s interruption status to true, unless t is engaged in Object.wait,
Thread.sleep, or Thread.join; in this case interrupt causes these action (in t) to throw In-
terruptedException, but t’s interruption status is set to false.

Example (sleep throws the exception):

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 76/81

public class TimeControl {
 Timer timer;

 TimeControl() {
 timer = new Timer();
 timer.start();
 try {
 Thread.sleep(10); // enough to init Timer
 } catch (Exception e) {}
 timer.interrupt();
 }

 public static void main(String args[]) {
 new TimeControl();
 }
}

class Timer extends Thread {
 public void run() {
 try {
 sleep(10000); // sleeps for a long time and catches InterruptedException
 } catch (InterruptedException e) {e.printStackTrace();}
 }
}
$

$ java TimeControl
java.lang.InterruptedException: sleep interrupted
 at java.lang.Thread.sleep(Native Method)
 at Timer.run(TimeControl.java:26)
$

catches InterruptedException

interrupt thread, created
by starting timer.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 77/81

The interruption status of any thread can be inspected using method isInterrupted.

public class TimeControl2 {
 Timer timer;
 TimeControl2() {
 timer = new Timer();
 timer.start();
 try {
 Thread.sleep(10); // enough to init Timer
 } catch (Exception e) {}
 System.out.println("TimeControl2 " + timer.isInterrupted());
 timer.interrupt();
 }
 public static void main(String args[]) {
 new TimeControl2();
 }
}

class Timer extends Thread {
 public void run() {
 try {
 sleep(10000); // sleeps for a long time
 } catch (Exception e) {}
 }
}

$ java TimeControl2
TimeControl2 false
$

Parallel Programming

 in Java: JavaThreads Prof. Dr. Alois Schütte 78/81

Classroom exercise

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 79/81

4. Background Threads

Until now, we only considered foreground threads. There are some activities, which are al-
ways performed within the background, for example the garbage collection.

We have to distinguish two kinds of threads:

 User threads (running in the foreground)

 Daemon Threads (running in the background).

A Java program has terminated, if all user threads are terminated.

Within the class Thread, we find two methods to influence the way a thread is running this
way:

public class Thread {
 public final void setDaemon(Boolean on) {…}
 public final Boolean isDaemon() {…}
}

If we call the setDaemon method with true as argument, the thread will become a daemon;
false as argument let the thread be a user thread (the default).

The status of a thread (user thread or daemon) does not influence the scheduler; for that,
we can user priorities.

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 80/81

Parallel Programming in Java: JavaThreads Prof. Dr. Alois Schütte 81/81

The status can only be set (by setDaemon()) after the thread has been created and before it
has been started.

The status of the main thread can not be changed; it is always a user thread.

	Basics
	Construction of Java threads
	Using threads within complex class hierarchies

	Synchronization of threads
	Sharing resources
	First try to solve the problem
	Second try

	Synchronized methods und blocks
	Termination of Threads
	Using join to get results of thread computations
	Termination of Threads stop()

	wait und notify
	Erroneous experiments
	Correct solution without active waiting
	wait and notify with Petri nets

	wait and notifyAll
	First erroneous try
	Correct solution with wait and notifyAll
	wait and notifyAll whith Petri nets

	Scheduling
	Thread priorities
	Thread interruption

	Background Threads

