
Java Programming 2
Quick Review on Object-Oriented Programming (OOP)

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University



1 class Lecture7 {
2

3 // Object−Oriented Programming (OOP)
4

5 }
6

7 // Keywords:
8 class, new, this, static, null, extends, super, final, abstract,
9 interface, implements, protected, package, import, enum

Zheng-Liang Lu Java Programming 2 1



Object & Class

• An object keeps its own states in fields (attributes) and
exposes its behaviors through associated methods.

• To create these objects, we collect all attributes associated
with functions and put them in a new class.

• A class is the blueprint to create instances, aka runtime
objects.

• A class acts as a derived type.

• Classes are the building blocks in Java.

Zheng-Liang Lu Java Programming 2 2



Example: Points

• We define a new class as follows:
• give a class name with the first letter capitalized, by

convention;
• declare data and function members in the class body.

1 public class Point {
2

3 // Data members.
4 double x, y;
5

6 }

• Now we use this class to create some points.

Zheng-Liang Lu Java Programming 2 3



1 public class PointDemo {
2

3 public static void main(String[] args) {
4

5 Point p1 = new Point();
6 p1.x = 1;
7 p1.y = 2;
8

9 Point p2 = new Point();
10 p2.x = 3;
11 p2.y = 4;
12

13 System.out.printf("(%.2f, %.2f)\n", p1.x, p1.y);
14 System.out.printf("(%.2f, %.2f)\n", p2.x, p2.y);
15

16 }
17

18 }

• Could you draw the current state of memory allocation when
the program reaches Line 15?

Zheng-Liang Lu Java Programming 2 4



Encapsulation

• Each member may have an access modifier, say public and
private.
• public: accessible by all classes.
• private: accessible only within its own class.

• In OOP, we hide internal states and expose methods which
perform actions on these fields.

• So all fields should be declared private.
• However, this private modifier does not guarantee any

information security.1

• What private is good for maintainability and modularity.2

1Thanks to a lively discussion on January 23, 2017.
2Read http://stackoverflow.com/questions/9201603/

are-private-members-really-more-secure-in-java.
Zheng-Liang Lu Java Programming 2 5

http://stackoverflow.com/questions/9201603/are-private-members-really-more-secure-in-java
http://stackoverflow.com/questions/9201603/are-private-members-really-more-secure-in-java


Function Members

• As said, the fields are hidden.
• So we provide getters and setters for an object, if necessary:

• getter: return the state of the object.
• setter: set a value to the state of the object.

• For example, getX() and getY() are getters; setX() and setY()
are setters in the class Point.

Zheng-Liang Lu Java Programming 2 6



Example: Point (Encapsulated)

1 public class Point {
2

3 // Data members: fields or attributes
4 private double x, y;
5

6 // Function members: methods
7 public double getX() { return x; }
8 public double getY() { return y; }
9 public void setX(double a) { x = a; }

10 public void setY(double b) { y = b; }
11

12 }

Zheng-Liang Lu Java Programming 2 7



Constructors

• A constructor follows the new operator, acting like other
methods.

• However, its name should be identical to the name of the
class and it has no return type.
• A class may have several constructors if needed.

• Recall method overloading.

• Note that constructors belong to the class but not objects.
• In other words, constructors cannot be invoked by any object.

• If you don’t define any explicit constructor, Java assumes a
default constructor for you.
• Moreover, adding any explicit constructor disables the default

constructor.

Zheng-Liang Lu Java Programming 2 8



Parameterized Constructors

• You can initialize an object when the object is ready.

• For example,

1 public class Point {
2 ...
3 // Default constructor
4 public Point() {
5 // Do something in common.
6 }
7

8 // Parameterized constructor
9 public Point(double a, double b) {

10 x = a;
11 y = b;
12 }
13 ...
14 }

Zheng-Liang Lu Java Programming 2 9



Self Reference

• You can refer to any (instance) member of the current object
within methods and constructors by using this.
• The most common reason for using the this keyword is

because a field is shadowed by method parameters.
• Recall the variable scope.

• You can also use this to call another constructor in the same
class, say this().

Zheng-Liang Lu Java Programming 2 10



Example: Point (Revisited)

1 public class Point {
2 ...
3 public Point(double x, double y) {
4

5 this.x = x;
6 this.y = y;
7

8 }
9 ...

10 }

• However, the this operator cannot be used in static methods.

Zheng-Liang Lu Java Programming 2 11



Instance Members

• Be aware that data members and function members are
declared w/o static in this lecture.

• They are called instance members, which are available only
after one object is created.
• Semantically, each object has its own states associated with

the accessory methods applying on.
• For example, getX() could be invoked when a specific Point

object is specified.

Zheng-Liang Lu Java Programming 2 12



Example: Distance Measurement Between Points

1 public class Point {
2

3 /* Ignore the previous part. */
4

5 public double getDistanceFrom(Point that) {
6 return Math.sqrt(Math.pow(this.x − that.x, 2)
7 + Math.pow(this.y − that.y, 2));
8 }
9

10 }

• In OOP design, it is important to clarify the responsibility
among objects of various types, aka single responsibility
principle.3

• High cohesion, low coupling.
• The Hollywood principle: don’t call us, we’ll call you.

3Also see
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design).

Zheng-Liang Lu Java Programming 2 13

https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)


Static Members

• Static members are ready once a class is loaded.
• For example, main().
• You may try static initialization blocks.4

• These members can be invoked directly by class name in
absence of any instance.
• For example, Math.PI.

• In particular, static methods perform algorithms.
• For example, Math.random() and Arrays.sort().

• Note that a static method can access other static members.
(Trivial.)

• However, static methods cannot access to instance members
directly. (Why?)

4See
https://docs.oracle.com/javase/tutorial/java/javaOO/initial.html.

Zheng-Liang Lu Java Programming 2 14

https://docs.oracle.com/javase/tutorial/java/javaOO/initial.html


Example
1 public class Point {
2

3 /* Ignore the previous part. */
4

5 public static double measure(Point first, Point second) {
6 // You cannot use this in static context.
7 return Math.sqrt(Math.pow(first.x − second.x, 2)
8 + Math.pow(first.y − second.y, 2));
9

10 }
11

12 }

1 public class PointDemo {
2

3 public static void main(String[] args) {
4

5 /* Ignore the previous part. */
6 System.out.println(Point.measure(p1, p2));
7

8 }
9 }

Zheng-Liang Lu Java Programming 2 15



Another Example: Singleton Pattern
• The singleton pattern is one of design patterns.5

• For some situations, you need only one object of this type in
the system.

1 public class Singleton {
2

3 // Do not allow to invoke the constructor by others.
4 private Singleton() {}
5

6 // Will be ready as soon as the class is loaded.
7 private static Singleton instance = new Singleton();
8

9 // Only way to obtain this singleton by the outside world.
10 public static Singleton getInstance() {
11 return instance;
12 }
13 }

5Design patterns are a collection of highly-reusable solutions to a commonly
occurring problem within a given context in software design. The term “design
pattern” is named by Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, often referred to as the Gang of Four (GoF).

Zheng-Liang Lu Java Programming 2 16



Object Elimination: Garbage Collection (GC)6

• Java handles object deallocation by GC.
• Timing: preset period or when memory stress occurs.

• GC is a daemon thread, which searches for those unreferenced
objects.
• An object is unreferenced when it is no longer referenced by

any part of your program. (How?)
• To make the object unreferenced, simply assign null to the

reference variable.

• Note that you may invoke System.gc() to execute a
deallocation procedure.
• However, frequent invocation of GC is time-consuming.

6http://www.oracle.com/webfolder/technetwork/tutorials/obe/

java/gc01/index.html

Zheng-Liang Lu Java Programming 2 17

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html


Unified Modeling Language7

• Unified Modeling Language (UML) is a tool for specifying,
visualizing, constructing, and documenting the artifacts of
software systems, as well as for business modeling and other
non-software systems.
• Free software:

• http://staruml.io/ (available for all platforms)

7See http://www.tutorialspoint.com/uml/ and
http://www.mitchellsoftwareengineering.com/IntroToUML.pdf.

Zheng-Liang Lu Java Programming 2 18

http://staruml.io/
http://www.tutorialspoint.com/uml/
http://www.mitchellsoftwareengineering.com/IntroToUML.pdf


Example: Class Diagram for Point

• + refers to public.

• − refers to private.

Zheng-Liang Lu Java Programming 2 19



HAS-A Relationship

• Association is a weak relationship where all objects have their
own lifetime and there is no ownership.
• For example, teacher ↔ student; doctor ↔ patient.

• If A uses B, then it is an aggregation, stating that B exists
independently from A.
• For example, knight ↔ sword; company ↔ employee.

• If A owns B, then it is a composition, meaning that B has no
meaning or purpose in the system without A. (We will see this
later.)
• For example, house ↔ room.

Zheng-Liang Lu Java Programming 2 20



Example: Lines (Aggregation)

• +2: two Point objects used in one Line object.

Zheng-Liang Lu Java Programming 2 21



1 public class Line {
2

3 private Point head, tail;
4

5 public Line(Point p1, Point p2) {
6 head = p1;
7 tail = p2;
8 }
9

10 /* Ignore some methods. */
11

12 public double getLength() {
13 return head.getDistanceFrom(tail);
14 }
15

16 }

Zheng-Liang Lu Java Programming 2 22



Exercise: Circles

1 public class Circle {
2

3 private Point center;
4 private double radius;
5

6 public Circle(Point c, double r) {
7 center = c;
8 radius = r;
9 }

10

11 public double getArea() {
12 return radius * radius * Math.PI;
13 }
14

15 public boolean isOverlapped(Circle that) {
16 return this.radius + that.radius >
17 this.center.getDistanceFrom(that.center);
18 }
19

20 }

Zheng-Liang Lu Java Programming 2 23



First IS-A Relationship: Class Inheritance

• We can define new classes by inheriting states and behaviors
commonly used in predefined classes (aka prototypes).

• A class is a subclass of some class, which is called the
superclass, by using the extends keyword.

• For example,

1 // Superclass (or parent class)
2 class A {
3 void doAction() {} // A can run doAction().
4 }
5

6 // Subclass (or child class)
7 class B extends A {} // B can also run doAction().

• Note that Java allows single inheritance only.

Zheng-Liang Lu Java Programming 2 24



Example: Human & Dog

Photo credit: https://www.sunnyskyz.com/uploads/2016/12/nlf37-dog.jpg

Zheng-Liang Lu Java Programming 2 25

https://www.sunnyskyz.com/uploads/2016/12/nlf37-dog.jpg


Before Using Inheritance

1 public class Human {
2

3 public void eat() {}
4 public void exercise() {}
5 public void writeCode() {}
6

7 }

1 public class Dog {
2

3 public void eat() {}
4 public void exercise() {}
5 public void wag() {}
6

7 }

Zheng-Liang Lu Java Programming 2 26



After Using Inheritance

Animal

Human Dog

• Move the common part between Human and Dog to another
class, say Animal, as the superclass.

Zheng-Liang Lu Java Programming 2 27



1 public class Animal { // extends Object; implicitly.
2

3 public void eat() {}
4 public void exercise() {}
5

6 }

1 public class Human extends Animal {
2

3 public void writeCode() {}
4

5 }

1 public class Dog extends Animal {
2

3 public void wag() {}
4

5 }

Zheng-Liang Lu Java Programming 2 28



Exercise: Add Cat to Animal Hierarchy8

https://cdn2.ettoday.net/images/2590/2590715.jpg

8See https://petsmao.nownews.com/20170124-10587.
Zheng-Liang Lu Java Programming 2 29

https://cdn2.ettoday.net/images/2590/2590715.jpg
https://petsmao.nownews.com/20170124-10587


Animal

Human DogCat

1 public class Cat extends Animal {
2

3 public void stepping() {}
4

5 }

• You could add more kinds of animals by extending Animal!

• Again, code reuse.

Zheng-Liang Lu Java Programming 2 30



Constructor Chaining

• Once the constructor of the subclass is invoked, JVM will
invoke the constructor of its superclass, recursively.

• So you might think that there will be a whole chain of
constructors called, all the way back to the constructor of the
class Object, the topmost class in Java.

• In this sense, we could say that every class is an immediate or
a distant subclass of Object.

Zheng-Liang Lu Java Programming 2 31



Illustration for Class Hierarchy9

9See Fig. 3-1 in p. 113 of Evans and Flanagan.
Zheng-Liang Lu Java Programming 2 32



The super Operator

• Recall that this is used to refer to the object itself.

• You can use super to refer to (non-private) members of the
superclass.

• Note that super() can be used to invoke the constructor of its
superclass, just similar to this().

Zheng-Liang Lu Java Programming 2 33



Method Overriding

• A subclass is supposed to re-implement the methods inherited
from its superclass.
• The requirement of method overriding is as follows:

• method signature identical to the one of its superclass;
• same return type;
• non-reduced visibility relative to the one of its superclass.10

• Note that you cannot override the static methods.

• You should use the annotation11 @Override to help you.

1 class B extends A {
2

3 @Override
4 void doAction() { /* New impl. w/o changing API. */ }
5

6 }

10For example, you cannot reduce the visibility from public to private.
11See https://docs.oracle.com/javase/tutorial/java/annotations/.

Zheng-Liang Lu Java Programming 2 34

https://docs.oracle.com/javase/tutorial/java/annotations/


Example

Zheng-Liang Lu Java Programming 2 35



Example: Overriding toString()

• Object provides the method toString() which is deliberately
designed to be invoked by System.out.println()!

• By default, it returns a hash code.12

• It could be overridden so that it returns an informative string.

1 public class Point {
2 ...
3 @Override
4 public String toString() {
5 return "(" + x + ", " + y + ")";
6 }
7 ...
8 }

12See https://en.wikipedia.org/wiki/Java_hashCode().
Zheng-Liang Lu Java Programming 2 36

https://en.wikipedia.org/wiki/Java_hashCode()


Another Example: ArrayList (Revisited)

1 import java.util.Arrays;
2 import java.util.ArrayList;
3

4 public class ArrayListDemo2 {
5

6 public static void main(String[] args) {
7

8 String[] fx1 = {"TWD", "CAD", "JPY"};
9 ArrayList<String> fx2 =

10 new ArrayList<>(Arrays.asList(fx1));
11 System.out.println(fx2); // Output [TWD, CAD, JPY].
12

13 }
14

15 }

• Use Arrays.asList() to convert arrays to ArrayList objects.

• Much better!!!

Zheng-Liang Lu Java Programming 2 37



Subtype Polymorphism14

• The word polymorphism literally means “many forms.”

• One of OOP design rules is to separate the interface from
implementations and program to abstraction, not to
implementation.13

• Subtype polymorphism fulfills this rule.
• How to make a “single” interface for different

implementations?
• Use the superclass of those types as the placeholder.

13GoF (1995). The original statement is “program to interface, not to
implementation.”

14Also read http://www.javaworld.com/article/3033445/learn-java/

java-101-polymorphism-in-java.html.
Zheng-Liang Lu Java Programming 2 38

http://www.javaworld.com/article/3033445/learn-java/java-101-polymorphism-in-java.html
http://www.javaworld.com/article/3033445/learn-java/java-101-polymorphism-in-java.html


Example: Dependency Reduction (Decoupling)

1 class HighSchoolStudent {
2

3 void doHomework() {}
4

5 }
6

7 class CollegeStudent {
8

9 void writeFinalReports() {}
10

11 }

• Now let these two kinds of students go study.

Zheng-Liang Lu Java Programming 2 39



1 public class PolymorphismDemo {
2

3 public static void main(String[] args) {
4

5 HighSchoolStudent Emma = new HighSchoolStudent();
6 goStudy(Emma);
7

8 CollegeStudent Richard = new CollegeStudent();
9 goStudy(Richard);

10

11 }
12

13 public static void goStudy(HighSchoolStudent student) {
14 student.doHomework();
15 }
16

17 public static void goStudy(CollegeStudent student) {
18 student.writeFinalReports();
19 }
20

21 // What if the 3rd kind of students comes into the system?
22

23 }

Zheng-Liang Lu Java Programming 2 40



Using Inheritance & Subtype Polymorphism

1 class Student {
2 void doMyJob() { /* Do not know the detail yet. */}
3 }
4

5 class HighSchoolStudent extends Student {
6

7 void doHomework() {}
8 @Override
9 void doMyJob() { doHomework(); }

10

11 }
12

13 class CollegeStudent extends Student {
14

15 void writeFinalReports() {}
16 @Override
17 void doMyJob() { writeFinalReports(); }
18

19 }

Zheng-Liang Lu Java Programming 2 41



1 public class PolymorphismDemo {
2

3 public static void main(String[] args) {
4

5 Student Emma = new HighSchoolStudent();
6 goStudy(Emma);
7

8 Student Richard = new CollegeStudent();
9 goStudy(Richard);

10

11 }
12

13 // We can handle all kinds of students in this way!!!
14 public static void goStudy(Student student) {
15 student.doMyJob();
16 }
17

18 }

• This example illustrates the mechanism between toString()
and println().

Zheng-Liang Lu Java Programming 2 42



Why OOP?15

• OOP is the solid foundation of modern (large-scale) software
design.
• In particular, great reuse mechanism and abstraction are

realized by these three concepts:
• encapsulation isolates the internals (private members) from the

externals, fulfilling the abstraction and providing the sufficient
accessibility (public methods);

• inheritance provides method overriding w/o changing the
method signature;

• polymorphism exploits the superclass as a placeholder to
manipulate the implementations (subtype objects).

• We use PIE as the shorthand for these three concepts.

15See https://en.wikipedia.org/wiki/Programming_paradigm

Zheng-Liang Lu Java Programming 2 43

https://en.wikipedia.org/wiki/Programming_paradigm


Zheng-Liang Lu Java Programming 2 44



• This leads to the production of frameworks16, which actually
do most of the job, leaving the (application) programmer only
with the job of customizing with business logic rules and
providing hooks into it.

• This greatly reduces programming time and makes feasible the
creation of larger and larger systems.
• In analog, we often manipulate objects in an abstract level; we

don’t need to know the details when we use them.
• For example, using computers and cellphones, driving a car,

and so on.

16See https://spring.io/.
Zheng-Liang Lu Java Programming 2 45

https://spring.io/


Another Example

1 class Animal {
2 /* Ignore the previous part. */
3 void speak() {}
4 }
5

6 class Dog extends Animal {
7 @Override
8 void speak() { System.out.println("Woof! Woof!"); }
9 }

10

11 class Cat extends Animal {
12 @Override
13 void speak() { System.out.println("Meow˜"); }
14 }
15

16 class Bird extends Animal {
17 @Override
18 void speak() { System.out.println("Tweet!"); }
19 }

Zheng-Liang Lu Java Programming 2 46



1 public class PolymorphismDemo2 {
2

3 public static void main(String[] args) {
4

5 Animal[] animals = {new Dog(), new Cat(), new Bird()};
6

7 for (Animal animal: animals) {
8 animal.speak();
9 }

10

11 }
12

13 }

• Again, Animal is a placeholder for its three subtypes.

Zheng-Liang Lu Java Programming 2 47



Liskov Substitution Principle17

• For convenience, let U be a subtype of T.

• We manipulate objects (right-hand side) via references
(left-hand side)!

• Liskov states that T-type objects may be replaced with
U-type objects without altering any of the desirable properties
of T (correctness, task performed, etc.).

17See
https://en.wikipedia.org/wiki/Liskov_substitution_principle.

Zheng-Liang Lu Java Programming 2 48

https://en.wikipedia.org/wiki/Liskov_substitution_principle


Casting

• Upcasting18 is to cast the U object/variable to the T variable.

1 U u1 = new U(); // Trivial.
2 T t1 = u1; // OK.
3 T t2 = new U(); // OK.

• Downcasting19 is to cast the T variable to a U variable.

1 U u2 = (U) t2; // OK, but dangerous. Why?
2 U u3 = new T(); // Error! Why?

18A widening conversion; back compatibility.
19A narrow conversion; forward advance.

Zheng-Liang Lu Java Programming 2 49



Solution: instanceof

• Upcasting is wanted and always allowed. (Why?)
• However, downcasting is not always true even when you use

cast operators.
• In fact, type checking at compile time becomes unsound if any

cast operator is used. (Why?)

• Even worse, a T-type variable can point to all siblings of
U-type.
• Recall that a T-type variable works as a placeholder.

• Run-time type information (RTTI) is needed to resolve the
error: ClassCastException.

• We can use instanceof to check if the referenced object is of
the target type at runtime.

Zheng-Liang Lu Java Programming 2 50



Example

A

B C

D E

F

• The class inheritance can be
represented by a digraph (directed
graph).

• For example, D is a subtype of A
and B, which are both reachable
from D on the digraph.

Zheng-Liang Lu Java Programming 2 51



1 class A {}
2 class B extends A {}
3 class C extends A {}
4 class D extends B {}
5 class E extends B {}
6 class F extends D {}
7

8 public class InstanceofDemo {
9

10 public static void main(String[] args) {
11

12 Object o = new D();
13

14 System.out.println(o instanceof A); // Output true.
15 System.out.println(o instanceof B); // Output true.
16 System.out.println(o instanceof C); // Output false.
17 System.out.println(o instanceof D); // Output true.
18 System.out.println(o instanceof E); // Output false.
19 System.out.println(o instanceof F); // Output false.
20

21 }
22

23 }

Zheng-Liang Lu Java Programming 2 52



Abstract Classes

• An abstract class is a class declared abstract.

• Typically, abstract classes sit at the top of one class hierarchy,
acting as placeholders.20

• The abstract classes may have some methods without
implementation21 and declared abstract.
• They are abstract methods.
• If a class has one or more abstract methods, then the class

itself must be declared abstract.

• All abstract classes cannot be instantiated.

• When inheriting an abstract class, the editor could help you
recall every abstract methods.

20For example, abstract factory pattern.
21The methods are declared without braces, and followed by a semicolon.

Zheng-Liang Lu Java Programming 2 53



Example

• In UML, abstract methods and classes are in italic.

• The method draw() and resize() can be implemented when
the specific shape is known.

Zheng-Liang Lu Java Programming 2 54



The final Keyword22

• A final variable is a variable which can be initialized once and
cannot be changed later.
• The compiler makes sure that you can do it only once.
• A final variable is often declared with static keyword and

treated as a constant, for example, Math.PI.

• A final method is a method which cannot be overridden by
subclasses.
• You might wish to make a method final if it has an

implementation that should not be changed and it is critical to
the consistent state of the object.

• A class that is declared final cannot be inherited.
• For example, again, Math.

22In Java, the keyword const is reserved.
Zheng-Liang Lu Java Programming 2 55



Another IS-A Relationship: Interface Inheritance

• Objects of different types are supposed to work together
without a proper vertical relationship.

• For example, consider Bird inherited from Animal and
Airplane inherited from Transportation.

• Both Bird and Airplane are able to fly in the sky, say by
calling the method fly().

• In semantics, the method fly() could not be defined in their
superclasses. (Why?)

Zheng-Liang Lu Java Programming 2 56



• We wish those flyable objects go flying by calling one API,
just like the way of Student.

• Recall that Object is the superclass of everything.
• So, how about using Object as the placeholder?

• Not really. (Why?)

• Clearly, we need a horizontal relationship: interface.

1 public interface Flyable {
2

3 void fly(); // Implicitly public and abstract.
4

5 }

Zheng-Liang Lu Java Programming 2 57



Object

Animal

Bird...

Transportation

Airplane ...

Flyable

Zheng-Liang Lu Java Programming 2 58



1 class Animal {}
2 class Bird extends Animal implements Flyable {
3

4 void flyByFlappingWings() {
5 System.out.println("Flapping wings!");
6 }
7

8 @Override
9 public void fly() { flyByFlappingWings(); }

10

11 }
12

13 class Transportation {}
14 class Airplane extends Transportation implements Flyable {
15

16 void flyByCastingMagic() {
17 System.out.println("#$%@$ˆ@!#$!");
18 }
19

20 @Override
21 public void fly() { flyByCastingMagic(); }
22

23 }

Zheng-Liang Lu Java Programming 2 59



https://i.imgur.com/y2bmNpz.jpg

Zheng-Liang Lu Java Programming 2 60



1 public class InterfaceDemo {
2

3 public static void main(String[] args) {
4

5 Bird owl = new Bird();
6 goFly(owl);
7

8 Airplane a380 = new Airplane();
9 goFly(a380);

10

11 }
12

13 public static void goFly(Flyable flyableObj) {
14

15 flyableObj.fly();
16

17 }
18

19 }

• Again, a uniform interface with multiple implementations!

Zheng-Liang Lu Java Programming 2 61



A Deep Dive on Interfaces

• An interface is a contract between the object and the client.

• As shown, an interface is a reference type, just like classes.

• Unlike classes, interfaces are used to define methods without
implementation so that they cannot be instantiated (directly).

• Also, interfaces are stateless.

• A class could implement multiple interfaces by providing
method bodies for each predefined signature.

Zheng-Liang Lu Java Programming 2 62



• Note that an interface can extend another interfaces!
• Like a collection of contracts, in some sense.

• For example, Runnable, Callable23, Serializable24, and
Comparable.
• In JDK8, we have new features as follows:

• we can declare final static non-blank fields and methods;
• we can also define default methods which are already

implemented;
• Java defines functional interfaces for lambdas which are widely

used in the Stream framework. (Stay tuned in Java
Programming 2!)

23Both are related to Java multithreading.
24Used for an object which can be represented as a sequence of bytes. This

is called object serialization.
Zheng-Liang Lu Java Programming 2 63



Timing for Interfaces & Abstract Classes

• Consider using abstract classes if you want to:
• share code among several closely related classes, and
• declare non-static or non-final fields.

• Consider using interfaces for any of situations as follows:
• unrelated classes would implement your interface;
• specify the behavior of a particular data type, but not

concerned about who implements its behavior;
• take advantage of multiple inheritance.

Zheng-Liang Lu Java Programming 2 64



Exercise: RPG

Zheng-Liang Lu Java Programming 2 65



• First, Wizard, SeaDragon, and Merchant are three of
Characters.

• In particular, Wizard fights with SeaDragon by invoking
attack().

• Wizard buys and sells stuffs with Merchant by invoking
buyAndSell().

• However, SeaDragon cannot buy and sell stuffs; Merchant
cannot attack others.

Zheng-Liang Lu Java Programming 2 66



Character

Wizard SeadragonMerchant

Combat Trade

Zheng-Liang Lu Java Programming 2 67



1 abstract public class Character {}

1 public interface Combat {
2 void attack(Combat enemy);
3 }

1 public interface Trade {
2 void buyAndSell(Trade counterpart);
3 }

Zheng-Liang Lu Java Programming 2 68



1 public class Wizard extends Character implements Combat, Trade {
2 @Override
3 public void attack(Combat enemy) {}
4 @Override
5 public void buyAndSell(Trade counterpart) {}
6 }

1 public class SeaDragon extends Character implements Combat {
2 @Override
3 public void attack(Combat enemy) {}
4 }

1 public class Merchant extends Character implements Trade {
2 @Override
3 public void buyAndSell(Trade counterpart) {}
4 }

Zheng-Liang Lu Java Programming 2 69



HAS-A (Delegation) vs. IS-A (Inheritance)

• Class inheritance is a powerful way to achieve code reuse.

• However, class inheritance violates encapsulation!

• This is because a subclass depends on the implementation
details of its superclass for its proper function.

• To solve this issue, we favor delegation over inheritance.25

25GoF (1995); Also see Item 18 in Bloch (2018).
Zheng-Liang Lu Java Programming 2 70



Example: Strategy Pattern

• This pattern defines a family of algorithms by encapsulating
each one, and making them interchangeable.
• It involves the following OO design principles:

• encapsulate what varies;
• code to an interface;
• use delegation.

Zheng-Liang Lu Java Programming 2 71



Special Issue: Wrapper Classes

Zheng-Liang Lu Java Programming 2 72



Autoboxing and Unboxing of Primitives

• The Java compiler automatically wraps the primitives in
corresponding type, and unwraps them where appropriate.

1 ...
2 Integer i = 1; // Autoboxing.
3 Integer j = 2;
4 Integer k = i + 1; // Autounboxing and then autoboxing.
5

6 System.out.println(k); // Output 2.
7 System.out.println(k == j); // Output true.
8

9 Integer m = new Integer(i);
10 System.out.println(m == i); // Output false?
11 System.out.println(m.equals(i)); // Output true!?
12 ...

Zheng-Liang Lu Java Programming 2 73



Immutable Objects

• An object is considered immutable if its state cannot change
after it is constructed.

• Often used for value objects.

• Imagine that there is a pool for immutable objects.

• After the value object is first created, this value object is
reused if needed.
• This implies that another object is created when we operate

on the immutable object.
• Another example is String objects.26

• Using immutable objects is a good practice when it comes to
concurrent programming.27

26For you information, StringBuffer is the mutable version of String objects.
27See http://www.javapractices.com/topic/TopicAction.do?Id=29.

Zheng-Liang Lu Java Programming 2 74

http://www.javapractices.com/topic/TopicAction.do?Id=29


Zheng-Liang Lu Java Programming 2 75



1 ...
2 String str1 = "NTU";
3 String str2 = "ntu";
4

5 System.out.println("str1 = " + str1.toLowerCase());
6 System.out.println("str1 = " + str1);
7

8 str1 = str1.toLowerCase();
9 System.out.println("str1 = " + str1);

10 System.out.println(str1 == str2); // False?!
11 System.out.println(str1.equals(str2)); // True!
12 System.out.println(str1.intern() == str2); // True!!
13 ...

• You can use equals() to check if the text is identical to the
other.

• You may use intern() to check the String pool containing the
String object whose text is identical to the other.28

28See the Interning Pattern in GoF (1995).
Zheng-Liang Lu Java Programming 2 76



Special Issue: Enumeration

• An enum type is a special type for a set of predefined options.

• You can use a static method values() to enumerate all options.

• This mechanism enhances type safety and makes the source
code more readable!

Zheng-Liang Lu Java Programming 2 77



Example: Colors

1 public enum Color {
2

3 RED, BLUE, GREEN;
4

5 public static Color random() {
6

7 Color[] colors = values();
8 return colors[(int) (Math.random() * colors.length)];
9

10 }
11

12 }

• Color is indeed a subclass of Enum with three final and static
references to Color objects corresponding to the enumerated
values.

• We could also equip the enum type with static methods.

Zheng-Liang Lu Java Programming 2 78



1 public class EnumDemo {
2

3 public static void main(String[] args) {
4

5 Color crayon color = Color.RED;
6 Color tshirt color = Color.random();
7 System.out.println(crayon color == tshirt color);
8

9 }
10

11 }

Zheng-Liang Lu Java Programming 2 79



Exercise
1 public class PowerMachine {
2

3 private PowerState state;
4

5 public void setState(PowerState state) {
6 this.state = state;
7 }
8

9 public PowerState getState() { return state; }
10

11 }
12

13 enum PowerState {
14

15 ON("The power is on."), OFF("The power is off."),
16 SUSPEND("The power is low.");
17

18 private String status;
19 private PowerState(String str) { status = str; }
20

21 }

Zheng-Liang Lu Java Programming 2 80



Behind enum?
1 public enum Action {PLAY, WORK, SLEEP, EAT}

1 public class Action {
2

3 public final static Action PLAY = new Action("PLAY");
4 public final static Action WORK = new Action("WORK");
5 public final static Action SLEEP = new Action("SLEEP");
6 public final static Action EAT = new Action("EAT");
7

8 private final String text;
9

10 public static Action[] values() {
11 return new Action[] {PLAY, WORK, SLEEP, EAT};
12 }
13

14 private Action(String str) { text = str;}
15

16 // Some functionalities are not listed explicitly.
17 // Check java.lang.Enum.
18

19 }

Zheng-Liang Lu Java Programming 2 81



Special Issue: Packages, Imports, and Access Control

• The first statement, other than comments, in a Java source
file, must be a package declaration, if there exists.

• A package is a grouping of related types providing access
protection (shown below) and namespace management.

Scope \ Modifier private (package) protected public

Within the class X X X X
Within the package x X X X
Inherited classes x x X X
Out of package x x x X

Zheng-Liang Lu Java Programming 2 82



Example

1 package www.csie.ntu.edu.tw;
2

3 public class Util {
4

5 void doAction1() {}
6 public void doAction2() {}
7 protected void doAction3() {}
8 public static void doAction4() {}
9

10 }

• Use package to indicate the package the class belongs to.

• The package is implemented by folders.

Zheng-Liang Lu Java Programming 2 83



1 import www.csie.ntu.edu.tw.Greeting;
2

3 public class ImportDemo {
4

5 public static void main(String[] args) {
6

7 Util util = new Util();
8 util.doAction1(); // Error!
9 util.doAction2(); // OK!

10 util.doAction3(); // Error!!
11 Util.doAction4(); // OK!!
12

13 }
14

15 }

• As you can see, doAction1() is not visible. (Why?)

• Note that protected members are visible under inheritance,
even if separated in different packages.

Zheng-Liang Lu Java Programming 2 84



Example: More about Imports

1 import www.csie.ntu.edu.tw.*; // Import all classes.
2 import static www.csie.ntu.edu.tw.Util.doAction4;
3

4 public class GreetingDemo {
5

6 public static void main(String[] args) {
7

8 Util util = new Util();
9 util.doAction2(); // ok!

10 Util.doAction4(); // ok!!
11

12 doAction4(); // No need to indicate the class name.
13 }
14

15 }

• Use the wildcard (*) to import all classes within the package.

• We could also import static members in the package only.

Zheng-Liang Lu Java Programming 2 85



Special Issue: Nested Classes

• A nested class is a member of its enclosing class.

• Nesting classes increases encapsulation and also leads to more
readable and maintainable code.

• Especially, it is a good practice to seal classes which are only
used in one place.

Zheng-Liang Lu Java Programming 2 86



Family of Nested Classes

Nested Classes

Nested Classes w/o static

Inner Classes Method-Local Classes Anonymous Classes

Static Nested Classes

Zheng-Liang Lu Java Programming 2 87



Example: Stack by Linked List

Zheng-Liang Lu Java Programming 2 88



1 public class LinkedListStack {
2

3 private Node first; // Trait of linked list!
4

5 private class Node {
6 String item;
7 Node next;
8 }
9

10 public String pop() {
11 String item = first.item;
12 first = first.next; // Deja vu?
13 return item;
14 }
15

16 public void push(String item) {
17 oldfirst = first;
18 first = new Node();
19 first.item = item;
20 first.next = oldfirst;
21 }
22

23 }

Zheng-Liang Lu Java Programming 2 89



1 public class LinkedListStackDemo {
2

3 public static void main(String[] args) {
4

5 LinkedListStack langs = new LinkedListStack();
6 langs.push("Java");
7 langs.push("C++");
8 langs.push("Python");
9

10 System.out.println(langs.pop()); // Output Python.
11 System.out.println(langs.pop()); // Output C++.
12 System.out.println(langs.pop()); // Output Java.
13

14 }
15

16 }

• Note that the method push() and pop() run in O(1) time!

• The output shows the FILO (first-in last-out) property of
stack.

Zheng-Liang Lu Java Programming 2 90



Exercise: House & Rooms

Zheng-Liang Lu Java Programming 2 91



1 import java.util.ArrayList;
2

3 public class House {
4

5 private ArrayList<Room> rooms = new ArrayList<>();
6

7 private class Room {
8 String name;
9

10 @Override
11 public String toString() { return name; }
12 }
13

14 public void add(String name) {
15 Room room = new Room();
16 room.name = name;
17 rooms.add(room);
18 }
19

20 @Override
21 public String toString() { return rooms.toString(); }
22

23 }

Zheng-Liang Lu Java Programming 2 92



1 public class HouseDemo {
2

3 public static void main(String[] args) {
4

5 House home = new House();
6 home.add("Living room");
7 home.add("Bedroom");
8 home.add("Bathroom");
9 home.add("Kitchen");

10 home.add("Storeroom");
11

12 System.out.println(home);
13

14 }
15

16 }

Zheng-Liang Lu Java Programming 2 93



Anonymous Class

• Anonymous classes enable you to declare and instantiate the
class at the same time.

• They are like inner classes except that they don’t have a name.

• Use anonymous class if you need only one instance of the
inner class.

Zheng-Liang Lu Java Programming 2 94



Example: Button

1 abstract class Button {
2 abstract void onClicked();
3 }
4

5 public class AnonymousClassDemo1 {
6

7 public static void main(String[] args) {
8

9 Button btnOK = new Button() {
10 @Override
11 public void onClicked() {
12 System.out.println("OK");
13 }
14 };
15

16 btnOK.onClicked();
17 }
18 }

Zheng-Liang Lu Java Programming 2 95



Exercise: Fly Again

1 public class AnonymousClassDemo2 {
2

3 public static void main(String[] args) {
4

5 Flyable butterfly = new Flyable() {
6 @Override
7 public void fly() { /* ... */ }
8 };
9

10 butterfly.fly();
11 }
12 }

• We can instantiate objects for one interface by using
anonymous classes.

Zheng-Liang Lu Java Programming 2 96



Special Issue: Iterator Patterns

• An iterator is a simple and standard interface to enumerate
elements in the data structure.
• In Java, we now proceed to reveal the mechanism of for-each

loops:
• One class implementing the interface Iterable should provide

the detail of the method iterator().
• The method iterator() should return an iterator defined by the

interface Iterator, which has two unimplemented methods:
hasNext() and next().

• Now your data structure could be compatible with for-each
loops!

Zheng-Liang Lu Java Programming 2 97



Example

1 import java.util.Iterator;
2

3 class Box implements Iterable<String> {
4

5 String[] items = {"Java", "C++", "Python"};
6

7 public Iterator<String> iterator() {
8

9 return new Iterator<String>() {
10 private int ptr = 0;
11 public boolean hasNext() { return ptr < items.length; }
12 public String next() { return items[ptr++]; }
13 };
14

15 }
16 }

Zheng-Liang Lu Java Programming 2 98



1 public class IteratorDemo {
2 public static void main(String[] args) {
3

4 Box books = new Box();
5

6 // for−each loop
7 /*
8 for (String book: books) {
9 System.out.println(book);

10 }
11 */
12

13 Iterator iter = books.iterator();
14 while (iter.hasNext())
15 System.out.println(iter.next());
16 }
17 }

Zheng-Liang Lu Java Programming 2 99



Static Nested Class

• A static nested class is an enclosed class declared static.

• Note that only nested class can be static.

• As a static member, it can access to other static members
without instantiating the enclosing class.

• In particular, a static nested class can be instantiated directly,
without instantiating the enclosing class object first; it acts
like a minipackage.

Zheng-Liang Lu Java Programming 2 100



Example

1 public class StaticClassDemo {
2

3 public static class Greeting {
4

5 @Override
6 public String toString() {
7 return "This is a static class.";
8 }
9

10 }
11

12 public static void main(String[] args) {
13 System.out.println(new StaticClassDemo.Greeting());
14 }
15

16 }

Zheng-Liang Lu Java Programming 2 101


