

Announcement

- Mini-HW 6 Released
- Due on 11/01 (Thur) 14:20
- 11/01 Midterm Review QA Session
- Optional participation
- Homework 2
- Due on 11/06 (Tue) 18:00
- 11/08 Midterm Exam

Mini-HW 6

Piepie is an experienced cake baker. To bake a cake, he needs to mix all of the ingredients together into batter(麵糊). However, the process of stirring requests lots of body strength, which is equal to the sum of weight of what you mixed. And, you can only mix two bowls of batter into one each time.

Here's an example:

- If there are three ingredients, \{eggs, butter, flour\}, you can either (a.) mix eggs and butter together first, include the flour at last. Or, you can also (b.) mix eggs and flour together first, than include the eggs at last. But you CAN'T put all of the three things together in one sitting.
- If the weight of $\{$ eggs, butter, flour\} are $\{3,5,10\}$, then the (a.) approach should require $(3+5)+$ $(8+10)=26$ units of body strength, while the (b.) approach requires ($3+10$)+(13+8)=34 units of body strength.

Now, given an sorted sequence of the weight of N ingredients, please design a greedy algorithm to tell Piepie whats the order of stirring, so that he can use least body strength to complete the cake. (40\%)

Please prove the correctness of your algorithm, including Greedy-choice property (30\%) \& Optimal substructure (30\%). Your algorithm should have an $O(N \log N)$ time complexity.

Midterm!!!

- Date: 11/08 (Thursday)
- Time: 14:20-17:20 (3 hours)
- Location: R102, R103, R104 (check the seat assignment before entering the room)
- Content
- Recurrence and Asymptotic Analysis
- Divide and Conquer
- Dynamic Programming
- Greedy
- Based on slides, assignments, and some variations (practice via textbook exercises)
- Format: Yes/No, Multiple-Choice, Short Answer, Prove/Explanation
- Easy: ~60\%, Medium: ~30\%, Hard: ~10\%
- Close book

Outline

- Greedy Algorithms
- Greedy \#1: Activity-Selection / Interval Scheduling
- Greedy \#2: Coin Changing
- Greedy \#3: Fractional Knapsack Problem
- Greedy \#4: Breakpoint Selection
- Greedy \#5: Huffman Codes
- Greedy \#6: Scheduling to Minimize Lateness
- Greedy \#7: Task-Scheduling
(6) Coin Changing

Textbook Exercise 16.1

Coin Changing Problem

- Input: n dollars and unlimited coins with values $\left\{v_{i}\right\}(1,5,10,50)$
- Output: the minimum number of coins with the total value n
- Cashier's algorithm: at each iteration, add the coin with the largest value no more than the current total

Step 1: Cast Optimization Problem

Coin Changing Problem

Input: n dollars and unlimited coins with values $\left\{v_{i}\right\}(1,5,10,50)$
Output: the minimum number of coins with the total value n

- Subproblems
- C (i) : minimal number of coins for the total value i
- Goal: C (n)

Step 2: Prove Optimal Substructure

Coin Changing Problem

Input: n dollars and unlimited coins with values $\left\{v_{i}\right\}(1,5,10,50)$
Output: the minimum number of coins with the total value n

- Suppose OPT is an optimal solution to C (i) , there are 4 cases:
- Case 1: coin 1 in OPT
- OPT\coin1 is an optimal solution of $C\left(i-v_{1}\right)$
- Case 2: coin 2 in OPT
- OPT\coin2 is an optimal solution of $C\left(i-v_{2}\right)$
- Case 3: coin 3 in OPT

$$
C_{i}=\min _{j}\left(1+C_{i-v_{j}}\right)
$$

- OPT\coin3 is an optimal solution of $C\left(i-V_{3}\right)$
- Case 4: coin 4 in OPT
- OPT \backslash coin4 4 is an optimal solution of $C\left(i-V_{4}\right)$

Step 3: Prove Greedy-Choice Property

Coin Changing Problem

Input: n dollars and unlimited coins with values $\left\{v_{i}\right\}(1,5,10,50)$
Output: the minimum number of coins with the total value n

- Greedy choice: select the coin with the largest value no more than the current total
- Proof via contradiction (use the case $10 \leq i<50$ for demo)
- Assume that there is no OPT including this greedy choice (choose 10)
\rightarrow all OPT use $1,5,50$ to pay i
- 50 cannot be used
- \#coins with value $5<2 \rightarrow$ otherwise we can use a 10 to have a better output
- \#coins with value $1<5 \rightarrow$ otherwise we can use a 5 to have a better output
- We cannot pay i with the constraints (at most $5+4=9$)

Fractional Knapsack Problem

Textbook Exercise 16.2-2

Knapsack Problem

－Input：n items where i－th item has value v_{i} and weighs $w_{i}\left(v_{i}\right.$ and w_{i} are positive integers）
－Output：the maximum value for the knapsack with capacity of W
－Variants of knapsack problem

- 0－1 Knapsack Problem：每項物品只能拿一個
- Unbounded Knapsack Problem：每項物品可以拿多個
- Multidimensional Knapsack Problem：背包空間有限
- Multiple－Choice Knapsack Problem：每一類物品最多拿一個
- Fractional Knapsack Problem：物品可以只拿部分

Knapsack Problem

－Input：n items where i－th item has value v_{i} and weighs $w_{i}\left(v_{i}\right.$ and w_{i} are positive integers）
－Output：the maximum value for the knapsack with capacity of W
－Variants of knapsack problem

- 0－1 Knapsack Problem：每項物品只能拿一個
- Unbounded Knapsack Problem：每項物品可以拿多個
- Multidimensional Knapsack Problem：背包空間有限
- Multiple－Choice Knapsack Problem：每一類物品最多拿一個
- Fractional Knapsack Problem：物品可以只拿部分

Fractional Knapsack Problem

- Input: n items where i-th item has value v_{i} and weighs $w_{i}\left(v_{i}\right.$ and w_{i} are positive integers)
- Output: the maximum value for the knapsack with capacity of W, where we can take any fraction of items
- Greedy algorithm: at each iteration, choose the item with the highest $\frac{v_{i}}{w_{i}}$ and continue when $W-w_{i}>0$

Step 1: Cast Optimization Problem

Fractional Knapsack Problem

Input: n items where i-th item has value v_{i} and weighs w_{i}
Output: the max value within W capacity, where we can take any fraction of items

- Subproblems
- $\operatorname{F-KP}$ (i, w) : fractional knapsack problem within w capacity for the first i items
- Goal: $\operatorname{F-KP}(\mathrm{n}, \mathrm{W})$

Step 2: Prove Optimal Substructure

Fractional Knapsack Problem

Input: n items where i-th item has value v_{i} and weighs w_{i}
Output: the max value within W capacity, where we can take any fraction of items

- Suppose OPT is an optimal solution to $\mathrm{F}-\mathrm{KP}$ (i, w) , there are 2 cases:
- Case 1: full/partial item i in OPT
- Remove w^{\prime} of item i from OPT is an optimal solution of $\mathrm{F}-\mathrm{KP}\left(\mathrm{i}-1, \mathrm{w}-\mathrm{w}^{\prime}\right)$
- Case 2: item i not in OPT
- OPT is an optimal solution of $\mathrm{F}-\mathrm{KP}(\mathrm{i}-1, \mathrm{w})$

Step 3: Prove Greedy-Choice Property

Fractional Knapsack Problem

Input: n items where i-th item has value v_{i} and weighs w_{i}
Output: the max value within W capacity, where we can take any fraction of items

- Greedy choice: select the item with the highest $\frac{v_{i}}{w_{i}}$
- Proof via contradiction ($\left.j=\underset{i}{\operatorname{argmax}} \frac{v_{i}}{w_{i}}\right)$
- Assume that there is no OPT including this greedy choice
- If $W \leq w_{j}$, we can replace all items in OPT with item j
- If $W>w_{j}$, we can replace any item weighting w_{j} in OPT with item j
- The total value must be equal or higher, because item j has the highest $\frac{v_{i}}{w_{i}}$

Breakpoint Selection

Breakpoint Selection Problem

- Input: a planned route with $n+1$ gas stations b_{0}, \ldots, b_{n}; the car can go at most C after refueling at a breakpoint
- Output: a refueling schedule $\left(b_{0} \rightarrow b_{n}\right)$ that minimizes the number of stops Ideally: stop when out of gas

Actually: may not be able to find the gas station when out of gas

- Greedy algorithm: go as far as you can before refueling

Step 1: Cast Optimization Problem

Breakpoint Selection Problem

Input: $n+1$ breakpoints b_{0}, \ldots, b_{n}; gas storage is C
Output: a refueling schedule $\left(b_{0} \rightarrow b_{n}\right)$ that minimizes the number of stops

- Subproblems
- B (i) : breakpoint selection problem from b_{i} to b_{n}
- Goal: B(0)

Step 2: Prove Optimal Substructure

Breakpoint Selection Problem

Input: $n+1$ breakpoints b_{0}, \ldots, b_{n}; gas storage is C
Output: a refueling schedule $\left(b_{0} \rightarrow b_{n}\right)$ that minimizes the number of stops

- Suppose OPT is an optimal solution to B (i) where j is the largest index satisfying $b_{j}-b_{i} \leq C$, there are $j-i$ cases
- Case 1: stop at b_{i+1}
- OPT $+\left\{b_{i+1}\right\}$ is an optimal solution of $\mathrm{B}(\mathrm{i}+1)$
- Case 2: stop at b_{i+2}
- OPT $+\left\{b_{i+2}\right\}$ is an optimal solution of $\mathrm{B}(\mathrm{i}+2)$
$B_{i}=\min _{i<k \leq j}\left(1+B_{k}\right)$
- Case $j-i$: stop at b_{j}
- OPT+\{ $\left\{b_{j}\right\}$ is an optimal solution of $B(j)$

Step 3: Prove Greedy-Choice Property

Breakpoint Selection Problem

Input: $n+1$ breakpoints b_{0}, \ldots, b_{n}; gas storage is C
Output: a refueling schedule $\left(b_{0} \rightarrow b_{n}\right)$ that minimizes the number of stops

- Greedy choice: go as far as you can before refueling (select b_{j})
- Proof via contradiction
- Assume that there is no OPT including this greedy choice (after b_{i} then stop at $\left.b_{k}, k \neq j\right)$
- If $k>j$, we cannot stop at b_{k} due to out of gas
- If $k<j$, we can replace the stop at b_{k} with the stop at b_{j}
- The total value must be equal or higher, because we refuel later ($b_{j}>b_{k}$)

$$
B_{i}=\min _{i<k \leq j}\left(1+B_{k}\right) \Longrightarrow B_{i}=1+B_{j}
$$

Pseudo Code

Breakpoint Selection Problem

Input: $n+1$ breakpoints b_{0}, \ldots, b_{n}; gas storage is C
Output: a refueling schedule $\left(b_{0} \rightarrow b_{n}\right)$ that minimizes the number of stops

```
BP-Select(C, b)
    Sort(b) s.t. b[0] < b[1] < ... < b[n]
    p = 0
    S = {0}
    for i = 1 to n - 1
        if b[i + 1] - b[p] > C
            if i == p
            return "no solution"
        A = A U {i}
        p = i
return A
```

$$
T(n)=\Theta(n \log n)
$$

Huffman Codes

Textbook Chapter 16.3 - Huffman codes

Encoding \& Decoding

- Code (編碼) is a system of rules to convert information-such as a letter, word, sound, image, or gesture-into another, sometimes shortened or secret, form or representation for communication through a channel or storage in a medium.

Encoding \& Decoding

- Goal
- Enable communication and storage
- Detect or correct errors introduced during transmission
- Compress data: lossy or lossless

Lossy Data Compression: Autoencoder

Lossless Data Compression

- Goal: encode each symbol using an unique binary code (w/o ambiguity)
- How to represent symbols?
- How to ensure decode(encode(x))=x?
- How to minimize the number of bits?

Lossless Data Compression

- Goal: encode each symbol using an unique binary code (w/o ambiguity)
- How to represent symbols?
- How to ensure decode(encode(x))=x?
- How to minimize the number of bits?

> find a binary tree

10101101011010100101010010 T T C G G T T T G G G A T

Code

Symbol	A	B	C	D	E	F
Frequency (K)	45	13	12	16	9	5
Fixed-length	000	001	010	011	100	101
Variable-length	0	101	100	111	1101	1100

- Fixed-length: use the same number of bits for encoding every symbol
- Ex. ASCII, Big5, UTF

- The length of this sequence is

$$
\begin{aligned}
& (45+13+12+16+9+5) \cdot 3 \\
& =300
\end{aligned}
$$

- Variable-length: shorter codewords for more frequent symbols

- The length of this sequence is

$$
\begin{aligned}
& 45 \cdot 1+(13+12+16) \cdot 3+(9+5) \cdot 4 \\
& =224
\end{aligned}
$$

Lossless Data Compression

- Goal: encode each symbol using an unique binary code (w/o ambiguity)
- How to represent symbols?
- How to ensure decode(encode(x))=x?
- How to minimize the number of bits?

Prefix Code

- Definition: a variable-length code where no codeword is a prefix of some other codeword

Symbol	A	B	C	D	E	F	
Frequency (K)	45	13	12	16	9	5	
	Prefix code	0	101	100	111	1101	1100
	Not prefix code	0	$\mathbf{1 0 1}$	$\mathbf{1 0}$	111	1101	1100

- Ambiguity: decode(1011100) can be 'BF' or 'CDAA'

Lossless Data Compression

- Goal: encode each symbol using an unique binary code (w/o ambiguity)
- How to represent symbols?
- How to ensure decode(encode(x))=x?
- How to minimize the number of bits?

Letter Frequency Distribution

Total Length of Codes

- The weighted depth of a leaf $=$ weight of a leaf $($ freq $) \times$ depth of a leaf
- Total length of codes = Total weighted depth of leaves
- Cost of the tree T

$$
B(T)=\sum_{c \in C} \operatorname{freq}(c) \cdot d_{T}(c)
$$

- Average bits per character

$$
\frac{B(T)}{100}=\sum_{c \in C} \text { relative-freq }(c) \cdot d_{T}(c)
$$

How to find the optimal prefix code to minimize the cost?

Prefix Code Problem

- Input: n positive integers $w_{1}, w_{2}, \ldots, w_{n}$ indicating word frequency
- Output: a binary tree of n leaves, whose weights form $w_{1}, w_{2}, \ldots, w_{n}$ s.t. the cost of the tree is minimized

$$
T^{*}=\arg \min _{T} B(T)=\arg \min _{T} \sum_{c \in C} \operatorname{freq}(c) \cdot d_{T}(c)
$$

Step 1: Cast Optimization Problem

Prefix Code Problem

Input: n positive integers $w_{1}, w_{2}, \ldots, w_{n}$ indicating word frequency
Output: a binary tree of n leaves with minimal cost

- Subproblem: merge two characters into a new one whose weight is their sum
- PC (i): prefix code problem for i leaves
- Goal: PC (n)

```
    PC(n) }->\textrm{PC}(\textrm{n}-1
```

- Issues
- It is not the subproblem of the original problem
- The cost of two merged characters should be considered

Example

Step 2: Prove Optimal Substructure

Prefix Code Problem

Input: n positive integers $w_{1}, w_{2}, \ldots, w_{n}$ indicating word frequency
Output: a binary tree of n leaves with minimal cost

- Suppose T^{\prime} is an optimal solution
- T is an optimal solution to to $\operatorname{PC}\left(i, \quad\left\{w_{1 \ldots i-1}, z\right\}\right)$ PC(i+1, $\left.\left\{w_{1 \ldots i-1}, x, y\right\}\right)$

Step 2: Prove Optimal Substructure

- $T^{\prime \prime}$

- T

$$
\begin{aligned}
B(T) & =B\left(T^{\prime}\right)-\operatorname{freq}(z) d_{T^{\prime}}(z)+\operatorname{freq}(x) d_{T}(x)+\operatorname{freq}(y) d_{T}(y) \\
& =B\left(T^{\prime}\right)-(\operatorname{freq}(x)+\operatorname{freq}(y)) d_{T^{\prime}}(z)+\operatorname{freq}(x)\left(1+d_{T^{\prime}}(z)\right)+\operatorname{freq}(y)\left(1+d_{T^{\prime}}(z)\right) \\
& =B\left(T^{\prime}\right)+\operatorname{freq}(x)+\operatorname{freq}(y)
\end{aligned}
$$

Step 2: Prove Optimal Substructure

- Optimal substructure: T^{\prime} is OPT if and only if T is OPT

Greedy Algorithm Design

Prefix Code Problem

Input: n positive integers $w_{1}, w_{2}, \ldots, w_{n}$ indicating word frequency
Output: a binary tree of n leaves with minimal cost

- Greedy choice: merge repeatedly until one tree left
- Select two trees x, y with minimal frequency roots freq (x) and freq (y)
- Merge into a single tree by adding root z with the frequency freq $(x)+\operatorname{freq}(y)$

Example

Initial set (store in a priority queue)

Example

13

Example

Example

45

Example

(47)

Step 3: Prove Greedy-Choice Property

Prefix Code Problem

Input: n positive integers $w_{1}, w_{2}, \ldots, w_{n}$ indicating word frequency
Output: a binary tree of n leaves with minimal cost

- Greedy choice: merge two nodes with min weights repeatedly
- Proof via contradiction
- Assume that there is no OPT including this greedy choice
- x and y are two symbols with lowest frequencies
- a and b are siblings with largest depths
- WLOG, assume freq $(a) \leq \operatorname{freq}(b)$ and freq $(x) \leq \operatorname{freq}(y)$
$\rightarrow \operatorname{freq}(x) \leq \operatorname{freq}(a)$ and freq $(y) \leq \operatorname{freq}(b)$

- Exchanging a with x and then b with y can make the tree equally or better

Step 3: Prove Greedy-Choice Property

$$
\begin{aligned}
B(T)-B\left(T^{\prime}\right) & =\sum_{s \in S} \operatorname{freq}(s) d_{T}(s)-\sum_{s \in S} \operatorname{freq}(s) d_{T^{\prime}}(s) \\
& =\operatorname{freq}(x) d_{T}(x)+\operatorname{freq}(a) d_{T}(a)-\operatorname{freq}(x) d_{T^{\prime}}(x)-\operatorname{freq}(a) d_{T^{\prime}}(a) \\
& =\operatorname{freq}(x) d_{T}(x)+\operatorname{freq}(a) d_{T}(a)-\operatorname{freq}(x) d_{T}(a)-\operatorname{freq}(a) d_{T}(x) \\
& =(\operatorname{freq}(a)-\operatorname{freq}(x))\left(d_{T}(a)-d_{T}(x)\right) \geq 0 \because \operatorname{freq}(x) \leq \operatorname{freq}(a)
\end{aligned}
$$

- Because T is OPT, T' must be another optimal solution.

Step 3: Prove Greedy-Choice Property

$$
\begin{aligned}
B\left(T^{\prime}\right)-B\left(T^{\prime \prime}\right) & =\sum_{s \in S} \operatorname{freq}(s) d_{T^{\prime}}(s)-\sum_{s \in S} \operatorname{freq}(s) d_{T^{\prime \prime}}(s) \\
& =\operatorname{freq}(y) d_{T^{\prime}}(y)+\operatorname{freq}(b) d_{T^{\prime}}(b)-\operatorname{freq}(y) d_{T^{\prime \prime}}(y)-\operatorname{freq}(b) d_{T^{\prime \prime}}(b) \\
& =\operatorname{freq}(y) d_{T^{\prime}}(y)+\operatorname{freq}(b) d_{T^{\prime}}(b)-\operatorname{freq}(y) d_{T^{\prime}}(b)-\operatorname{freq}(b) d_{T^{\prime}}(y) \\
& =(\operatorname{freq}(b)-\operatorname{freq}(y))\left(d_{T^{\prime}}(b)-d_{T^{\prime}}(y)\right) \geq 0 \quad \because \operatorname{freq}(y) \leq \operatorname{freq}(b)
\end{aligned}
$$

" Because T' is OPT, T" must be another optimal solution.

Correctness and Optimality

- Theorem: Huffman algorithm generates an optimal prefix code
- Proof
- Use induction to prove: Huffman codes are optimal for n symbols
- $n=2$, trivial
- For a set S with $n+1$ symbols,

1. Based on the greedy choice property, two symbols with minimum frequencies are siblings in T
2. Construct T^{\prime} by replacing these two symbols x and y with z s.t. $S^{\prime}=$ $(S \backslash\{x, y\}) \cup\{z\}$ and $\operatorname{freq}(z)=\operatorname{freq}(x)+\operatorname{freq}(y)$
3. Assume T^{\prime} is the optimal tree for n symbols by inductive hypothesis
4. Based on the optimal substructure property, we know that when T^{\prime} is optimal, T is optimal too (case $n+1$ holds)

This induction proof framework can be applied to prove its optimality using the optimal substructure and the greedy choice property.

Pseudo Code

Prefix Code Problem

Input: n positive integers $w_{1}, w_{2}, \ldots, w_{n}$ indicating word frequency Output: a binary tree of n leaves with minimal cost

```
Huffman(S)
    n = |S|
    Q = Build-Priority-Queue(S)
    for i = 1 to n - 1
        allocate a new node z
    z.left = x = Extract-Min(Q)
    z.right = y = Extract-Min(Q)
    freq(z) = freq(x) + freq(y)
    Insert(Q, z)
    Delete(Q, x)
    Delete(Q, y)
    return Extract-Min(Q) // return the prefix tree
```

 \(T(n)=\Theta(n \log n)\)

Drawbacks of Huffman Codes

- Huffman's algorithm is optimal for a symbol-by-symbol coding with a known input probability distribution
- Huffman's algorithm is sub-optimal when
- blending among symbols is allowed
- the probability distribution is unknown
- symbols are not independent

Scheduling to Minimize Lateness

Scheduling to Minimize Lateness

- Input: a finite set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n tasks, their processing time $t_{1}, t_{2}, \ldots, t_{n}$, and integer deadlines $d_{1}, d_{2}, \ldots, d_{n}$

Job	1	2	3	4
Processing Time $\left(t_{i}\right)$	3	5	3	2
Deadline $\left(d_{i}\right)$	4	6	7	8

- Output: a schedule that minimizes the maximum lateness

Scheduling to Minimize Lateness

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_{1}, t_{2}, \ldots, t_{n}$, and deadlines $d_{1}, d_{2}, \ldots, d_{n}$ Output: the schedule that minimizes the maximum lateness

- Let a schedule H contains $s(H, j)$ and $f(H, j)$ as the start time and finish time of job j
- $f(H, j)-s(H, j)=t_{j}$
- Lateness of job j in H is $L(H, j)=\max \left\{0, f(H, j)-d_{j}\right\}$
- The goal is to minimize $\max _{j} L(H, j)=\max _{j}\left\{0, f(H, j)-d_{j}\right\}$

Possible Greedy Choices

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_{1}, t_{2}, \ldots, t_{n}$, and deadlines $d_{1}, d_{2}, \ldots, d_{n}$ Output: the schedule that minimizes the maximum lateness

- Greedy idea
- Shortest-processing-time-first w/o idle time?
- Earliest-deadline-first w/o idle time?

Practice: prove that any schedule w/ idle is not optimal

Possible Greedy Choices

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_{1}, t_{2}, \ldots, t_{n}$, and deadlines $d_{1}, d_{2}, \ldots, d_{n}$ Output: the schedule that minimizes the maximum lateness

- Idea
- Shortest-processing-time-first w/o idle time?

Job	1	2
Processing Time $\left(t_{i}\right)$	1	2
Deadline $\left(d_{i}\right)$	10	2

Possible Greedy Choices

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_{1}, t_{2}, \ldots, t_{n}$, and deadlines $d_{1}, d_{2}, \ldots, d_{n}$ Output: the schedule that minimizes the maximum lateness

- Idea
- Earliest-deadline-first w/o idle time?
- Greedy algorithm

```
Min-Lateness(n, t[], d[])
    sort tasks by deadlines s.t. d[1]\leqd[2]\leq ...Sd[n]
    ct = 0 // current time
    for j = 1 to n
        assign job j to interval (ct, ct + t[j])
        s[j] = ct
        f[j] =s[j] + t[j]
        ct = ct + t[j]
    return s[], f[]
```

$T(n)=\Theta(n \log n)$

Prove Correctness
 - Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_{1}, t_{2}, \ldots, t_{n}$, and deadlines $d_{1}, d_{2}, \ldots, d_{n}$ Output: the schedule that minimizes the maximum lateness

- Greedy choice: first select the task with the earliest deadline
- Proof via contradiction
- Assume that there is no OPT including this greedy choice
- If OPT processes a_{1} as the i-th task $\left(a_{k}\right)$, we can switch a_{k} and a_{1} into OPT'
- The maximum lateness must be equal or lower $\rightarrow L\left(\mathrm{OPT}^{\prime}\right) \leq L(\mathrm{OPT})$
exchange argument

Prove Correctness - Greedy-Choice Property

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_{1}, t_{2}, \ldots, t_{n}$, and deadlines $d_{1}, d_{2}, \ldots, d_{n}$ Output: the schedule that minimizes the maximum lateness

- $L\left(\mathrm{OPT}^{\prime}\right) \leq L(\mathrm{OPT})$
$\Longleftrightarrow \max \left(L\left(\mathrm{OPT}^{\prime}, 1\right), L\left(\mathrm{OPT}^{\prime}, k\right)\right) \leq \max (L(\mathrm{OPT}, k), L(\mathrm{OPT}, 1))$
$\Longleftrightarrow \max \left(L\left(\mathrm{OPT}^{\prime}, 1\right), L\left(\mathrm{OPT}^{\prime}, k\right)\right) \leq L(\mathrm{OPT}, 1)$
$\Longleftrightarrow L\left(\mathrm{OPT}^{\prime}, k\right) \leq L(\mathrm{OPT}, 1) \because L\left(\mathrm{OPT}^{\prime}, 1\right) \leq L(\mathrm{OPT}, 1)$

If a_{k} is not late in OPT': If a_{k} is late in OPT^{\prime} :
$L\left(\mathrm{OPT}^{\prime}, k\right)=0 \quad L\left(\mathrm{OPT}^{\prime}, k\right)=f\left(\mathrm{OPT}^{\prime}, k\right)-d_{k}$

Generalization of this property?

$$
\begin{aligned}
& =f(\mathrm{OPT}, 1)-d_{k} \\
& \leq f(\mathrm{OPT}, 1)-d_{1} \\
& =L(\mathrm{OPT}, 1)
\end{aligned}
$$

Prove Correctness
 - No Inversions

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_{1}, t_{2}, \ldots, t_{n}$, and deadlines $d_{1}, d_{2}, \ldots, d_{n}$ Output: the schedule that minimizes the maximum lateness

- There is an optimal scheduling w/o inversions given $d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ - a_{i} and a_{j} are inverted if $d_{i}<d_{j}$ but a_{j} is scheduled before a_{i}
- Proof via contradiction
- Assume that OPT has a_{i} and a_{j} that are inverted
- Let OPT' $=$ OPT but a_{i} and a_{j} are swapped
- OPT' is equal or better than OPT $\rightarrow L\left(\mathrm{OPT}^{\prime}\right) \leq L(\mathrm{OPT})$

Prove Correctness
 - No Inversions

Scheduling to Minimize Lateness Problem

Input: n tasks with their processing time $t_{1}, t_{2}, \ldots, t_{n}$, and deadlines $d_{1}, d_{2}, \ldots, d_{n}$ Output: the schedule that minimizes the maximum lateness

- $L\left(\mathrm{OPT}^{\prime}\right) \leq L(\mathrm{OPT})$
$\Longleftrightarrow \max \left(L\left(\mathrm{OPT}^{\prime}, i\right), L\left(\mathrm{OPT}^{\prime}, j\right)\right) \leq \max (L(\mathrm{OPT}, j), L(\mathrm{OPT}, i))$
$\Longleftrightarrow \max \left(L\left(\mathrm{OPT}^{\prime}, i\right), L\left(\mathrm{OPT}^{\prime}, j\right)\right) \leq L(\mathrm{OPT}, i) \because d_{i}<d_{j}$
$\Longleftrightarrow L\left(\mathrm{OPT}^{\prime}, j\right) \leq L(\mathrm{OPT}, i) \because L\left(\mathrm{OPT}^{\prime}, i\right) \leq L(\mathrm{OPT}, i)$

$L\left(\mathrm{OPT}^{\prime}, j\right)=0$
: If a_{j} is late in OPT':

$L\left(\mathrm{OPT}^{\prime}, j\right)=f\left(\mathrm{OPT}^{\prime}, j\right)-d_{j}$

$$
\begin{array}{lcc}
=f(\mathrm{OPT}, i)-d_{j} & \mathrm{~L}\left(\mathrm{OPT}^{\prime}, \mathrm{i}\right) & \mathrm{L}\left(\mathrm{OPT}^{\prime}, \mathrm{j}\right) \\
\leq f(\mathrm{OPT}, i)-d_{i} & \mathrm{OPT}^{\prime} & a_{i} \\
\ldots \ldots . . a_{j}
\end{array}
$$

Task-Scheduling

Textbook Chapter 16.5 - A task-scheduling problem as a matroid

Task-Scheduling Problem

- Input: a finite set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n unit-time tasks, their corresponding integer deadlines $d_{1}, d_{2}, \ldots, d_{n}\left(1 \leq d_{i} \leq n\right)$, and nonnegative penalties $w_{1}, w_{2}, \ldots, w_{n}$ if a_{i} is not finished by time d_{i}

Job	1	2	3	4	5	6
Deadline $\left(d_{i}\right)$	1	2	3	4	4	6
Penalty $\left(\mathrm{w}_{i}\right)$	30	60	50	20	70	10

- Output: a schedule that minimizes the total penalty

Task-Scheduling Problem

Task-Scheduling Problem

Input: n tasks with their deadlines $d_{1}, d_{2}, \ldots, d_{n}$ and penalties $w_{1}, w_{2}, \ldots, w_{n}$ Output: the schedule that minimizes the total penalty

- Let a schedule H is the OPT
- A task a_{i} is late in H if $f(H, i)>d_{j}$
- A task a_{i} is early in H if $f(H, i) \leq d_{j}$

Task	1	2	3	4	5	6	7
d_{i}	1	2	3	4	4	4	6
w_{i}	30	60	40	20	50	70	10

- We can have an early-first schedule H^{\prime} with the same total penalty (OPT)

Possible Greedy Choices

Task-Scheduling Problem

Input: n tasks with their deadlines $d_{1}, d_{2}, \ldots, d_{n}$ and penalties $w_{1}, w_{2}, \ldots, w_{n}$ Output: the schedule that minimizes the total penalty

- Rethink the problem: "maximize the total penalty for the set of early tasks"

Task	1	2	3	4	5	6	7
d_{i}	1	2	3	4	4	4	6
w_{i}	30	60	40	20	50	70	10

Penalty	60	40	70	50	10		20	30	30
	a_{2}	a_{3}	a_{6}	a_{5}	a_{7}		a_{4}	a	a_{1}
	0								

- Greedy idea
- Largest-penalty-first w/o idle time?
- Earliest-deadline-first w/o idle time?

Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines $d_{1}, d_{2}, \ldots, d_{n}$ and penalties $w_{1}, w_{2}, \ldots, w_{n}$ Output: the schedule that minimizes the total penalty

- Greedy choice: select the largest-penalty task into the early set if feasible
- Proof via contradiction
- Assume that there is no OPT including this greedy choice
- If OPT processes a_{i} after d_{i}, we can switch a_{j} and a_{i} into OPT'
- The maximum penalty must be equal or lower, because $w_{i} \geq w_{j}$ Penalty

Penalty

Prove Correctness

Task-Scheduling Problem

Input: n tasks with their deadlines $d_{1}, d_{2}, \ldots, d_{n}$ and penalties $w_{1}, w_{2}, \ldots, w_{n}$ Output: the schedule that minimizes the total penalty

- Greedy algorithm

```
Task-Scheduling(n, d[], w[])
    sort tasks by penalties s.t. w[1] \geqw[2] \geq ... \geqw[n]
    for i = 1 to n
        find the latest available index j <= d[i]
        if j > 0
            A = A U {i}
            mark index j unavailable
return A // the set of early tasks
```

Practice: reduce the time for finding the latest available index

Example Illustration

Job	1	2	3	4	5	6	7
Deadline $\left(d_{i}\right)$	4	2	4	3	1	4	6
Penalty $\left(w_{i}\right)$	70	60	50	40	30	20	10

Total penalty $=30+20=50$

Concluding Remarks

- "Greedy": always makes the choice that looks best at the moment in the hope that this choice will lead to a globally optimal solution
- When to use greedy
- Whether the problem has optimal substructure
- Whether we can make a greedy choice and remain only one subproblem
- Common for optimization problem

- Prove for correctness
- Optimal substructure
- Greedy choice property

Question?

Important announcement will be sent to @ntu.edu.tw mailbox \& post to the course website

Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw

