
Slides credited from Hsu-Chun Hsiao

▪ Mini-HW 6 Released
▪ Due on 11/01 (Thur) 14:20

▪ 11/01 Midterm Review QA Session
▪ Optional participation

▪ Homework 2
▪ Due on 11/06 (Tue) 18:00

▪ 11/08 Midterm Exam

2

3

▪ Date: 11/08 (Thursday)

▪ Time: 14:20-17:20 (3 hours)

▪ Location: R102, R103, R104 (check the seat assignment before entering the room)

▪ Content
▪ Recurrence and Asymptotic Analysis
▪ Divide and Conquer
▪ Dynamic Programming
▪ Greedy

▪ Based on slides, assignments, and some variations (practice via textbook exercises)

▪ Format: Yes/No, Multiple-Choice, Short Answer, Prove/Explanation

▪ Easy: ~60%, Medium: ~30%, Hard: ~10%

▪ Close book

4

▪ Greedy Algorithms

▪ Greedy #1: Activity-Selection / Interval Scheduling

▪ Greedy #2: Coin Changing

▪ Greedy #3: Fractional Knapsack Problem

▪ Greedy #4: Breakpoint Selection

▪ Greedy #5: Huffman Codes

▪ Greedy #6: Scheduling to Minimize Lateness

▪ Greedy #7: Task-Scheduling

5

Textbook Exercise 16.1

6

▪ Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)

▪ Output: the minimum number of coins with the total value 𝑛

▪ Cashier’s algorithm: at each iteration, add the coin with the largest
value no more than the current total

7

Does this algorithm return the OPT?

▪ Subproblems
▪ C(i): minimal number of coins for the total value 𝑖

▪ Goal: C(n)

8

Coin Changing Problem
Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)
Output: the minimum number of coins with the total value 𝑛

▪ Suppose OPT is an optimal solution to C(i), there are 4 cases:
▪ Case 1: coin 1 in OPT

▪ OPT\coin1 is an optimal solution of C(i – v1)

▪ Case 2: coin 2 in OPT

▪ OPT\coin2 is an optimal solution of C(i – v2)

▪ Case 3: coin 3 in OPT

▪ OPT\coin3 is an optimal solution of C(i – v3)

▪ Case 4: coin 4 in OPT

▪ OPT\coin4 is an optimal solution of C(i – v4)

9

Coin Changing Problem
Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)
Output: the minimum number of coins with the total value 𝑛

▪ Greedy choice: select the coin with the largest value no more than the
current total

▪ Proof via contradiction (use the case 10 ≤ 𝑖 < 50 for demo)
▪ Assume that there is no OPT including this greedy choice (choose 10)

→ all OPT use 1, 5, 50 to pay 𝑖

▪ 50 cannot be used

▪ #coins with value 5 < 2 → otherwise we can use a 10 to have a better output

▪ #coins with value 1 < 5 → otherwise we can use a 5 to have a better output

▪ We cannot pay 𝑖 with the constraints (at most 5 + 4 = 9)

10

Coin Changing Problem
Input: 𝑛 dollars and unlimited coins with values 𝑣𝑖 (1, 5, 10, 50)
Output: the minimum number of coins with the total value 𝑛

Textbook Exercise 16.2-2

11

▪ Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

▪ Output: the maximum value for the knapsack with capacity of 𝑊

▪ Variants of knapsack problem
▪ 0-1 Knapsack Problem: 每項物品只能拿一個

▪ Unbounded Knapsack Problem: 每項物品可以拿多個

▪ Multidimensional Knapsack Problem: 背包空間有限

▪ Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

▪ Fractional Knapsack Problem: 物品可以只拿部分

12

▪ Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖
are positive integers)

▪ Output: the maximum value for the knapsack with capacity of 𝑊

▪ Variants of knapsack problem
▪ 0-1 Knapsack Problem: 每項物品只能拿一個

▪ Unbounded Knapsack Problem: 每項物品可以拿多個

▪ Multidimensional Knapsack Problem: 背包空間有限

▪ Multiple-Choice Knapsack Problem: 每一類物品最多拿一個

▪ Fractional Knapsack Problem: 物品可以只拿部分

13

▪ Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖 (𝑣𝑖 and 𝑤𝑖 are
positive integers)

▪ Output: the maximum value for the knapsack with capacity of 𝑊, where
we can take any fraction of items

▪ Greedy algorithm: at each iteration, choose the item with the highest
𝑣𝑖

𝑤𝑖

and continue when 𝑊 −𝑤𝑖 > 0

14

▪ Subproblems
▪ F-KP(i, w): fractional knapsack problem within 𝑤 capacity for the first 𝑖 items

▪ Goal: F-KP(n, W)

15

Fractional Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

▪ Suppose OPT is an optimal solution to F-KP(i, w), there are 2 cases:
▪ Case 1: full/partial item 𝑖 in OPT

▪ Remove 𝑤′ of item 𝑖 from OPT is an optimal solution of F-KP(i - 1, w – w’)

▪ Case 2: item 𝑖 not in OPT

▪ OPT is an optimal solution of F-KP(i - 1, w)

16

Fractional Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

▪ Greedy choice: select the item with the highest
𝑣𝑖

𝑤𝑖

▪ Proof via contradiction (𝑗 = argmax
𝑖

𝑣𝑖

𝑤𝑖
)

▪ Assume that there is no OPT including this greedy choice

▪ If 𝑊 ≤ 𝑤𝑗, we can replace all items in OPT with item 𝑗

▪ If 𝑊 > 𝑤𝑗, we can replace any item weighting 𝑤𝑗 in OPT with item 𝑗

▪ The total value must be equal or higher, because item 𝑗 has the highest
𝑣𝑖

𝑤𝑖

17

Fractional Knapsack Problem
Input: 𝑛 items where 𝑖-th item has value 𝑣𝑖 and weighs 𝑤𝑖

Output: the max value within 𝑊 capacity, where we can take any fraction of items

Do other knapsack problems have this property?

18

▪ Input: a planned route with 𝑛 + 1 gas stations 𝑏0, … , 𝑏𝑛; the car can go at
most 𝐶 after refueling at a breakpoint

▪ Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

▪ Greedy algorithm: go as far as you can before refueling 19

1 2 3 4 5

Ideally: stop when out of gas

Actually: may not be able to find the gas station when out of gas

1 2 3 4 5 6

▪ Subproblems
▪ B(i): breakpoint selection problem from 𝑏𝑖 to 𝑏𝑛
▪ Goal: B(0)

20

Breakpoint Selection Problem
Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

▪ Suppose OPT is an optimal solution to B(i) where 𝑗 is the largest
index satisfying 𝑏𝑗 − 𝑏𝑖 ≤ 𝐶, there are 𝑗 − 𝑖 cases

▪ Case 1: stop at 𝑏𝑖+1
▪ OPT+{bi+1} is an optimal solution of B(i + 1)

▪ Case 2: stop at 𝑏𝑖+2
▪ OPT+{bi+2} is an optimal solution of B(i + 2)

:

▪ Case 𝑗 − 𝑖: stop at 𝑏𝑗
▪ OPT+{bj} is an optimal solution of B(j)

21

Breakpoint Selection Problem
Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

▪ Greedy choice: go as far as you can before refueling (select 𝑏𝑗)

▪ Proof via contradiction
▪ Assume that there is no OPT including this greedy choice (after 𝑏𝑖 then stop

at 𝑏𝑘, 𝑘 ≠ 𝑗)

▪ If 𝑘 > 𝑗, we cannot stop at 𝑏𝑘 due to out of gas

▪ If 𝑘 < 𝑗, we can replace the stop at 𝑏𝑘 with the stop at 𝑏𝑗

▪ The total value must be equal or higher, because we refuel later (𝑏𝑗 > 𝑏𝑘)

22

Breakpoint Selection Problem
Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

23

Breakpoint Selection Problem
Input: 𝑛 + 1 breakpoints 𝑏0, … , 𝑏𝑛; gas storage is 𝐶
Output: a refueling schedule (𝑏0→𝑏𝑛) that minimizes the number of stops

BP-Select(C, b)

Sort(b) s.t. b[0] < b[1] < … < b[n]

p = 0

S = {0}

for i = 1 to n - 1

if b[i + 1] – b[p] > C

if i == p

return “no solution”

A = A ∪ {i}

p = i

return A

Textbook Chapter 16.3 – Huffman codes

24

▪ Code (編碼) is a system of rules to convert information—such as a
letter, word, sound, image, or gesture—into another, sometimes
shortened or secret, form or representation for communication
through a channel or storage in a medium.

25

input
message

decoded
message

Encoder Decoder
encoded
message

▪ Goal
▪ Enable communication and storage

▪ Detect or correct errors introduced during transmission

▪ Compress data: lossy or lossless

26

Snoopy SnoopyEncoder Decoder
536E6F6F7079

Encoder Decoder

27

28

▪ Goal: encode each symbol using an unique binary code (w/o ambiguity)
▪ How to represent symbols?

▪ How to ensure decode(encode(x))=x?

▪ How to minimize the number of bits?

29

▪ Goal: encode each symbol using an unique binary code (w/o ambiguity)
▪ How to represent symbols?

▪ How to ensure decode(encode(x))=x?

▪ How to minimize the number of bits?

A G T C

0 1

0 1 0 1

10101101011010100101010010

T T C G G T T T G G G A T

find a binary tree

▪ Fixed-length: use the same number
of bits for encoding every symbol
▪ Ex. ASCII, Big5, UTF

▪ The length of this sequence is

▪ Variable-length: shorter codewords
for more frequent symbols

▪ The length of this sequence is

30

Symbol A B C D E F

Frequency (K) 45 13 12 16 9 5

Fixed-length 000 001 010 011 100 101

Variable-length 0 101 100 111 1101 1100

E F

0 1

0 1

0 1

A B

0 1

C D

0 1

0

0 1

0

1

0 1

A

1
C D

1

0

E

B

F

0

31

▪ Goal: encode each symbol using an unique binary code (w/o ambiguity)
▪ How to represent symbols?

▪ How to ensure decode(encode(x))=x?

▪ How to minimize the number of bits?

use codes that are uniquely decodable

▪ Definition: a variable-length code where no codeword is a
prefix of some other codeword

▪ Ambiguity: decode(1011100) can be ‘BF’ or ‘CDAA’

32

prefix codes are uniquely decodable

Symbol A B C D E F

Frequency (K) 45 13 12 16 9 5

Variable-length
Prefix code 0 101 100 111 1101 1100

Not prefix code 0 101 10 111 1101 1100

33

▪ Goal: encode each symbol using an unique binary code (w/o ambiguity)
▪ How to represent symbols?

▪ How to ensure decode(encode(x))=x?

▪ How to minimize the number of bits?

more frequent symbols should use shorter codewords

34

shorter codewords longer codewords

35

▪ The weighted depth of a leaf = weight of a leaf (freq) × depth of a leaf

▪ Total length of codes = Total weighted depth of leaves

▪ Cost of the tree 𝑇

▪ Average bits per character

0 1

0

1

0 1

A:45

1

C:12 D:16

1

0

E:9

B:13

F:5

0

100

55

25 30

14
How to find the optimal prefix

code to minimize the cost?

▪ Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency

▪ Output: a binary tree of 𝑛 leaves, whose weights form 𝑤1, 𝑤2, … , 𝑤𝑛 s.t.
the cost of the tree is minimized

36

▪ Subproblem: merge two characters into a new one whose weight is their sum
▪ PC(i): prefix code problem for 𝑖 leaves

▪ Goal: PC(n)

▪ Issues
▪ It is not the subproblem of the original problem

▪ The cost of two merged characters should be considered

37

Prefix Code Problem
Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency
Output: a binary tree of 𝑛 leaves with minimal cost

PC(n)→ PC(n - 1)

38

0 1

0

1

0 1

A:45

1

C:12 D:16

1

0

E:9

B:13

F:5

0

100

55

25 30

14

0 1

1

0 1

A:45

C:12 D:16

1

0

B:13

0

100

55

25 30

EF:14

▪ Suppose 𝑇’ is an optimal solution
to PC(i, {w1…i-1, z})

39

Prefix Code Problem
Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency
Output: a binary tree of 𝑛 leaves with minimal cost

z

x y

▪ 𝑇 is an optimal solution to
PC(i+1, {w1…i-1, x, y})

▪ 𝑇’

40

z

x y

▪ 𝑇

▪ Optimal substructure: T’ is OPT if and only if T is OPT

41

TT’

The difference is

▪ Greedy choice: merge repeatedly until one tree left
▪ Select two trees 𝑥, 𝑦 with minimal frequency roots freq 𝑥 and freq 𝑦

▪ Merge into a single tree by adding root 𝑧 with the frequency freq 𝑥 + freq 𝑦

42

Prefix Code Problem
Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency
Output: a binary tree of 𝑛 leaves with minimal cost

43

4516 14

5 9

12 134516 5 9 12 13

Initial set (store in a priority queue)

44

4516 14

5 9

25

12 13

4516 14

5 9

12 13

45

45

16

30

14

5 9

25

12 13

4516 14

5 9

25

12 13

46

55 45

16

30

14

5 9

25

12 13

45

16

30

14

5 9

25

12 13

47

55 45

16

30

14

5 9

25

12 13

100

55 45

16

30

14

5 9

25

12 13

▪ Greedy choice: merge two nodes with min weights repeatedly

▪ Proof via contradiction
▪ Assume that there is no OPT including this greedy choice

▪ 𝑥 and 𝑦 are two symbols with lowest frequencies

▪ 𝑎 and 𝑏 are siblings with largest depths

▪ WLOG, assume freq 𝑎 ≤ freq 𝑏 and freq 𝑥 ≤ freq 𝑦

→ freq 𝑥 ≤ freq 𝑎 and freq 𝑦 ≤ freq 𝑏

▪ Exchanging 𝑎 with 𝑥 and then 𝑏 with 𝑦 can make the tree equally or better

48

Prefix Code Problem
Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency
Output: a binary tree of 𝑛 leaves with minimal cost

x

y

a b

OPT: T

49

x

y

a b

OPT: T

a

y

x b

T’

▪ Because T is OPT, T’ must be another optimal solution.

50

x

y

a b

OPT: T

a

y

x b

T’

a

b

x y

T’’

▪ Because T’ is OPT, T’’ must be another optimal solution.

Practice: prove the optimal tree must be a full tree

▪ Theorem: Huffman algorithm generates an optimal prefix code

▪ Proof

▪ Use induction to prove: Huffman codes are optimal for 𝑛 symbols

▪ 𝑛 = 2, trivial

▪ For a set 𝑆 with 𝑛 + 1 symbols,

1. Based on the greedy choice property, two symbols with minimum
frequencies are siblings in T

2. Construct T’ by replacing these two symbols 𝑥 and 𝑦 with 𝑧 s.t. 𝑆′ =
(𝑆\{𝑥, 𝑦}) ∪ 𝑧 and freq 𝑧 = freq 𝑥 + freq 𝑦

3. Assume T’ is the optimal tree for 𝑛 symbols by inductive hypothesis

4. Based on the optimal substructure property, we know that when T’ is
optimal, T is optimal too (case 𝑛 + 1 holds)

51
This induction proof framework can be applied to prove its optimality

using the optimal substructure and the greedy choice property.

52

Huffman(S)

n = |S|

Q = Build-Priority-Queue(S)

for i = 1 to n – 1

allocate a new node z

z.left = x = Extract-Min(Q)

z.right = y = Extract-Min(Q)

freq(z) = freq(x) + freq(y)

Insert(Q, z)

Delete(Q, x)

Delete(Q, y)

return Extract-Min(Q) // return the prefix tree

Prefix Code Problem
Input: 𝑛 positive integers 𝑤1, 𝑤2, … , 𝑤𝑛 indicating word frequency
Output: a binary tree of 𝑛 leaves with minimal cost

▪ Huffman’s algorithm is optimal for a symbol-by-symbol
coding with a known input probability distribution

▪ Huffman’s algorithm is sub-optimal when
▪ blending among symbols is allowed

▪ the probability distribution is unknown

▪ symbols are not independent

53

54

▪ Input: a finite set 𝑆 = 𝑎1, 𝑎2, … , 𝑎𝑛 of 𝑛 tasks, their processing time
𝑡1, 𝑡2, … , 𝑡𝑛, and integer deadlines 𝑑1, 𝑑2, … , 𝑑𝑛

▪ Output: a schedule that minimizes the maximum lateness

55

Job 1 2 3 4

Processing Time (𝑡𝑖) 3 5 3 2

Deadline (𝑑𝑖) 4 6 7 8

𝑎4 𝑎1 𝑎3 𝑎2

0 2 5 8 13

Lateness 0 1 1 7

▪ Let a schedule 𝐻 contains 𝑠 𝐻, 𝑗 and 𝑓 𝐻, 𝑗 as the start time and finish
time of job 𝑗
▪ 𝑓 𝐻, 𝑗 − 𝑠 𝐻, 𝑗 = 𝑡𝑗

▪ Lateness of job 𝑗 in 𝐻 is 𝐿 𝐻, 𝑗 = max 0, 𝑓 𝐻, 𝑗 − 𝑑𝑗

▪ The goal is to minimize max
𝑗

𝐿 𝐻, 𝑗 = max
𝑗

0, 𝑓 𝐻, 𝑗 − 𝑑𝑗

56

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

▪ Greedy idea
▪ Shortest-processing-time-first w/o idle time?

▪ Earliest-deadline-first w/o idle time?

57

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Practice: prove that any schedule w/ idle is not optimal

▪ Idea
▪ Shortest-processing-time-first w/o idle time?

58

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Job 1 2

Processing Time (𝑡𝑖) 1 2

Deadline (𝑑𝑖) 10 2

𝑎1 𝑎2

0 1 3

Lateness 0 1

𝑎2 𝑎1

0 2 3

Lateness 0 0

▪ Idea
▪ Earliest-deadline-first w/o idle time?

▪ Greedy algorithm

59

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

Min-Lateness(n, t[], d[])

sort tasks by deadlines s.t. d[1]≤d[2]≤ ...≤d[n]

ct = 0 // current time

for j = 1 to n

assign job j to interval (ct, ct + t[j])

s[j] = ct

f[j] = s[j] + t[j]

ct = ct + t[j]

return s[], f[]

▪ Greedy choice: first select the task with the earliest deadline

▪ Proof via contradiction
▪ Assume that there is no OPT including this greedy choice

▪ If OPT processes 𝑎1 as the 𝑖-th task (𝑎𝑘), we can switch 𝑎𝑘 and 𝑎1 into OPT’

▪ The maximum lateness must be equal or lower → 𝐿 OPT′ ≤ 𝐿 OPT

60

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

exchange argument

▪

61

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

𝑎𝑘 𝑎1

L(OPT, k)

𝑎1 𝑎𝑘

L(OPT’, 1) L(OPT’, k)

L(OPT, 1)

OPT

OPT’

If 𝑎𝑘 is not late in OPT’: If 𝑎𝑘 is late in OPT’:

Generalization of
this property?

▪ There is an optimal scheduling w/o inversions given 𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑛
▪ 𝑎𝑖 and 𝑎𝑗 are inverted if 𝑑𝑖 < 𝑑𝑗 but 𝑎𝑗 is scheduled before 𝑎𝑖

▪ Proof via contradiction
▪ Assume that OPT has 𝑎𝑖 and 𝑎𝑗 that are inverted

▪ Let OPT’ = OPT but 𝑎𝑖 and 𝑎𝑗 are swapped

▪ OPT’ is equal or better than OPT → 𝐿 OPT′ ≤ 𝐿 OPT

62

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

▪

63

Scheduling to Minimize Lateness Problem
Input: 𝑛 tasks with their processing time 𝑡1, 𝑡2, … , 𝑡𝑛, and deadlines 𝑑1, 𝑑2, … , 𝑑𝑛
Output: the schedule that minimizes the maximum lateness

𝑎𝑗 𝑎𝑖

L(OPT, j)

𝑎𝑖 𝑎𝑗

L(OPT’, i) L(OPT’, j)

L(OPT, i)

OPT

OPT’

If 𝑎𝑗 is not late in OPT’: If 𝑎𝑗 is late in OPT’: ……

……

The earliest-deadline-first greedy algorithm is optimal

Optimal
Solution

Greedy
Choice

Subproblem
Solution

+=

Textbook Chapter 16.5 – A task-scheduling problem as a matroid

64

▪ Input: a finite set 𝑆 = 𝑎1, 𝑎2, … , 𝑎𝑛 of 𝑛 unit-time tasks, their
corresponding integer deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 (1 ≤ 𝑑𝑖 ≤ 𝑛), and
nonnegative penalties 𝑤1, 𝑤2, … , 𝑤𝑛 if 𝑎𝑖 is not finished by time 𝑑𝑖

▪ Output: a schedule that minimizes the total penalty

65

Job 1 2 3 4 5 6

Deadline (𝑑𝑖) 1 2 3 4 4 6

Penalty (w𝑖) 30 60 50 20 70 10

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 30

𝑎7 𝑎1𝑎4

20

▪ Let a schedule 𝐻 is the OPT
▪ A task 𝑎𝑖 is late in 𝐻 if 𝑓 𝐻, 𝑖 > 𝑑𝑗

▪ A task 𝑎𝑖 is early in 𝐻 if 𝑓 𝐻, 𝑖 ≤ 𝑑𝑗

▪ We can have an early-first schedule 𝐻′ with the same total penalty (OPT)

66

Task-Scheduling Problem
Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛

Output: the schedule that minimizes the total penalty

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 20

𝑎7 𝑎4

Task 1 2 3 4 5 6 7

𝑑𝑖 1 2 3 4 4 4 6

w𝑖 30 60 40 20 50 70 10

𝑎1

30

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 30

𝑎7 𝑎1𝑎4

20

𝐻′

𝐻

If the late task proceeds the early task,
switching them makes the early one
earlier and late one still late

▪ Rethink the problem: “maximize the total penalty for the set of early tasks”

▪ Greedy idea
▪ Largest-penalty-first w/o idle time?

▪ Earliest-deadline-first w/o idle time?

67

Task-Scheduling Problem
Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛

Output: the schedule that minimizes the total penalty

𝑎2 𝑎3 𝑎6 𝑎5

0 n

Penalty 20

𝑎7 𝑎4 𝑎1

30Task 1 2 3 4 5 6 7

𝑑𝑖 1 2 3 4 4 4 6

w𝑖 30 60 40 20 50 70 10

60 40 70 50 10

▪ Greedy choice: select the largest-penalty task into the early set if feasible

▪ Proof via contradiction
▪ Assume that there is no OPT including this greedy choice

▪ If OPT processes 𝑎𝑖 after 𝑑𝑖, we can switch 𝑎𝑗 and 𝑎𝑖 into OPT’

▪ The maximum penalty must be equal or lower, because 𝑤𝑖 ≥ 𝑤𝑗

68

Task-Scheduling Problem
Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛

Output: the schedule that minimizes the total penalty

𝑎𝑗
0 n

Penalty 𝑤𝑖

𝑎𝑖
𝑑𝑖

𝑎𝑖
0 n

Penalty

𝑎𝑗
𝑑𝑖

𝑤𝑗

𝑤𝑖 ≥ 𝑤𝑘 for all 𝑎𝑘 in the early set

▪ Greedy algorithm

69

Task-Scheduling Problem
Input: 𝑛 tasks with their deadlines 𝑑1, 𝑑2, … , 𝑑𝑛 and penalties 𝑤1, 𝑤2, … , 𝑤𝑛

Output: the schedule that minimizes the total penalty

Task-Scheduling(n, d[], w[])

sort tasks by penalties s.t. w[1] ≥ w[2] ≥ … ≥ w[n]

for i = 1 to n

find the latest available index j <= d[i]

if j > 0

A = A ∪ {i}

mark index j unavailable

return A // the set of early tasks

Can it be
better?

Practice: reduce the time for finding the latest available index

70

Job 1 2 3 4 5 6 7

Deadline (𝑑𝑖) 4 2 4 3 1 4 6

Penalty (w𝑖) 70 60 50 40 30 20 10

𝑎1𝑎3𝑎4 𝑎2

0 1 2 3 4 5 6 7

Total penalty = 30 + 20 = 50

20

𝑎7 𝑎5 𝑎6

30

Practice: how about the greedy algorithm using “earliest-deadline-first”

▪ “Greedy”: always makes the choice that looks best at the moment in
the hope that this choice will lead to a globally optimal solution

▪ When to use greedy
▪ Whether the problem has optimal substructure

▪ Whether we can make a greedy choice and remain only one subproblem

▪ Common for optimization problem

▪ Prove for correctness
▪ Optimal substructure

▪ Greedy choice property

71

Optimal
Solution

Greedy
Choice

Subproblem
Solution

+=

Course Website: http://ada17.csie.org

Email: ada-ta@csie.ntu.edu.tw

72

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

http://ada17.csie.org/
mailto:ada-ta@csie.ntu.edu.tw

