

（2）Greedy（1）

Algorithm Design and Analysis

园立素涭大常
National Taiwan University Slides credited from Hsueh－I Lu，Hsu－Chun Hsiao，\＆Michael Tai

Outline

- Greedy Algorithms
- Greedy \#1: Activity-Selection / Interval Scheduling
- Greedy \#2: Coin Changing
- Greedy \#3: Fractional Knapsack Problem
- Greedy \#4: Breakpoint Selection
- Greedy \#5: Huffman Codes
- Greedy \#6: Task-Scheduling
- Greedy \#7: Scheduling to Minimize Lateness

Algorithm Design Strategy

－Do not focus on＂specific algorithms＂
＂But＂some strategies＂to＂design＂algorithms

- First Skill：Divide－and－Conquer（各個擊破）
- Second Skill：Dynamic Programming（動態規劃）
- Third Skill：Greedy（貪婪法則）

Greedy Algorithms

Textbook Chapter 16 - Greedy Algorithms
Textbook Chapter 16.2 - Elements of the greedy strategy

What is Greedy Algorithms?

- always makes the choice that looks best at the moment
- makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution
- not always yield optimal solution; may end up at local optimal
global maximal

Greedy: move towards max gradient and hope it is global maximum

Algorithm Design Paradigms

- Dynamic Programming
- has optimal substructure
- make an informed choice after getting optimal solutions to subproblems
- dependent or overlapping subproblems

- Greedy Algorithms
- has optimal substructure
- make a greedy choice before solving the subproblem
- no overlapping subproblems
\checkmark Each round selects only one subproblem
\checkmark The subproblem size decreases

Subproblem Solution

Greedy Procedure

1. Cast the optimization problem as one in which we make a choice and remain one subproblem to solve
2. Demonstrate the optimal substructure
\checkmark Combining an optimal solution to the subproblem via greedy can arrive an optimal solution to the original problem
3. Prove that there is always an optimal solution to the original problem that makes the greedy choice

Greedy Algorithms

To yield an optimal solution, the problem should exhibit

1. Optimal Substructure : an optimal solution to the problem contains within it optimal solutions to subproblems
2. Greedy-Choice Property : making locally optimal (greedy) choices leads to a globally optimal solution

Proof of Correctness Skills

- Optimal Substructure : an optimal solution to the problem contains within it optimal solutions to subproblems
- Greedy-Choice Property : making locally optimal (greedy) choices leads to a globally optimal solution
" Show that it exists an optimal solution that "contains" the greedy choice using exchange argument
- For any optimal solution OPT, the greedy choice g has two cases
- $\quad g$ is in OPT: done
- g not in OPT: modify OPT into OPT' s.t. OPT' contains g and is at least as good as OPT

\checkmark If OPT' is better than OPT, the property is proved by contradiction
\checkmark If OPT' is as good as OPT, then we showed that there exists an optimal solution containing g by construction

Activity-Selection / Interval Scheduling

Textbook Chapter 16.1 - An activity-selection problem

Activity－Selection／Interval Scheduling

－Input：n activities with start times s_{i} and finish times f_{i}（the activities are sorted in monotonically increasing order of finish time $f_{1} \leq f_{2} \leq \cdots \leq f_{n}$ ）
－Output：the maximum number of compatible activities
－Without loss of generality：$s_{1}<s_{2}<\cdots<s_{n}$ and $f_{1}<f_{2}<\cdots<f_{n}$
－大的包小的則不考慮大的 \rightarrow 用小的取代大的一定不會變差
activity index

Weighted Interval Scheduling

Weighted Interval Scheduling Problem

Input: n jobs with $\left\langle s_{i}, f_{i}, v_{i}\right\rangle, p(j)=$ largest index $i<j$ s.t. jobs i and j are compatible
Output: the maximum total value obtainable from compatible

- Subproblems
- WIS (i) : weighted interval scheduling for the first i jobs
- Goal: WIS (n)
- Dynamic programming algorithm

$$
M_{i}= \begin{cases}0 & \text { if } i=0 \\ \max \left(v_{i}+M_{p(i)}, M_{i-1}\right) & \text { otherwise }\end{cases}
$$

Activity-Selection Problem

Activity-Selection Problem

Input: n activities with $\left\langle s_{i}, f_{i}\right\rangle, p(j)=$ largest index $i<j$ s.t. i and j are compatible Output: the maximum number of activities

- Dynamic programming

$$
M_{i}= \begin{cases}0 & \text { if } i=0 \\ \max \left(1+M_{p(i)}, M_{i-1}\right) & \text { otherwise }\end{cases}
$$

- Optimal substructure is already proved
- Greedy algorithm

$$
M_{i}= \begin{cases}0 & \text { if } i=0 \\ 1+M_{p(i)} & \text { otherwise }\end{cases}
$$

Greedy-Choice Property

- Goal: $1+M_{p(i)} \geq M_{i-1}$
- Proof
- Assume there is an OPT solution for the first $i-1$ activities $\left(M_{i-1}\right)$
- A_{j} is the last activity in the OPT solution $\rightarrow M_{i-1}=1+M_{p(j)}$
- Replacing A_{j} with A_{i} does not make the OPT worse

$$
1+M_{p(i)} \geq 1+M_{p(j)}=M_{i-1}
$$

Pseudo Code

Activity-Selection Problem

Input: n activities with $\left\langle s_{i}, f_{i}\right\rangle, p(j)=$ largest index $i<j$ s.t. i and j are compatible Output: the maximum number of activities

```
Act-Select(n, s, f, v, p)
    M[0] = 0
    for i = 1 to n
        if p[i] >= 0
            M[i] = 1 + M[p[i]]
    return M[n]
```

```
Find-Solution(M, n)
    if n = 0
        return {}
    return {n} U Find-Solution(p[n])
```

(B6) Coin Changing

Textbook Exercise 16.1

Coin Changing Problem

- Input: n dollars and unlimited coins with values $\left\{v_{i}\right\}(1,5,10,50)$
- Output: the minimum number of coins with the total value n
- Cashier's algorithm: at each iteration, add the coin with the largest value no more than the current total

Step 1: Cast Optimization Problem

Coin Changing Problem

Input: n dollars and unlimited coins with values $\left\{v_{i}\right\}(1,5,10,50)$
Output: the minimum number of coins with the total value n

- Subproblems
- C (i) : minimal number of coins for the total value i
- Goal: C(n)

Step 2: Prove Optimal Substructure

Coin Changing Problem

Input: n dollars and unlimited coins with values $\left\{v_{i}\right\}(1,5,10,50)$
Output: the minimum number of coins with the total value n

- Suppose OPT is an optimal solution to C (i) , there are 4 cases:
- Case 1: coin 1 in OPT
- OPT\coin1 is an optimal solution of $C\left(i-v_{1}\right)$
- Case 2: coin 2 in OPT
- OPT\coin2 is an optimal solution of $C\left(i-v_{2}\right)$
- Case 3: coin 3 in OPT

$$
C_{i}=\min _{j}\left(1+C_{i-v_{j}}\right)
$$

- OPT\coin3 is an optimal solution of $C\left(i-V_{3}\right)$
- Case 4: coin 4 in OPT
- OPT \backslash coin4 4 is an optimal solution of $C\left(i-V_{4}\right)$

Step 3: Prove Greedy-Choice Property

Coin Changing Problem

Input: n dollars and unlimited coins with values $\left\{v_{i}\right\}(1,5,10,50)$
Output: the minimum number of coins with the total value n

- Greedy choice: select the coin with the largest value no more than the current total
- Proof via contradiction (use the case $10 \leq i<50$ for demo)
- Assume that there is no OPT including this greedy choice (choose 10)
\rightarrow all OPT use $1,5,50$ to pay i
- 50 cannot be used
- \#coins with value $5<2 \rightarrow$ otherwise we can use a 10 to have a better output
- \#coins with value $1<5 \rightarrow$ otherwise we can use a 5 to have a better output
- We cannot pay i with the constraints (at most $5+4=9$)
(2) To Be Continued...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox \& post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

