

# Algorithm Design and Analysis

YUN-NUNG (VIVIAN) CHEN HTTP://ADA.MIULAB.TW







# Mine 1

#### Outline

- Greedy Algorithms
- Greedy #1: Activity-Selection / Interval Scheduling
- Greedy #2: Coin Changing
- Greedy #3: Fractional Knapsack Problem
- Greedy #4: Breakpoint Selection
- Greedy #5: Huffman Codes
- Greedy #6: Task-Scheduling
- Greedy #7: Scheduling to Minimize Lateness

### Algorithm Design Strategy

- Do not focus on "specific algorithms"
- But "some strategies" to "design" algorithms
- First Skill: Divide-and-Conquer (各個擊破)
- Second Skill: Dynamic Programming (動態規劃)
- Third Skill: Greedy (貪婪法則)

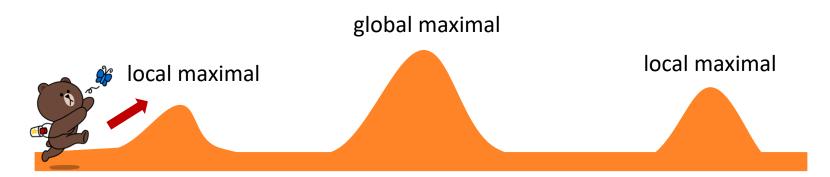
# Greedy Algorithms

Textbook Chapter 16 – Greedy Algorithms

Textbook Chapter 16.2 – Elements of the greedy strategy

### What is Greedy Algorithms?

- always makes the choice that looks best at the moment
- makes a locally optimal choice in the hope that this choice will lead to a globally optimal solution
  - not always yield optimal solution; may end up at local optimal



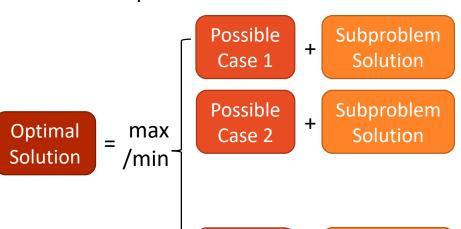
Greedy: move towards max gradient and hope it is global maximum

## Algorithm Design Paradigms

Subproblem

Solution

- Dynamic Programming
  - has optimal substructure
  - make an informed choice after getting optimal solutions to subproblems
  - dependent or overlapping subproblems



**Possible** 

Case k

+

- Greedy Algorithms
  - has optimal substructure
  - make a greedy choice before solving the subproblem
  - no overlapping subproblems
    - Each round selects only one subproblem
    - ✓ The subproblem size decreases



#### **Greedy Procedure**

- Cast the optimization problem as one in which we make a choice and remain one subproblem to solve
- 2. Demonstrate the optimal substructure
  - Combining an optimal solution to the subproblem via greedy can arrive an optimal solution to the original problem
- 3. Prove that there is always an optimal solution to the original problem that makes the greedy choice

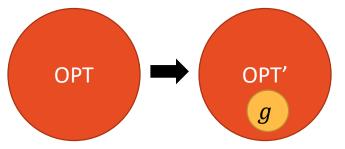
#### Greedy Algorithms

To yield an optimal solution, the problem should exhibit

- 1. Optimal Substructure: an optimal solution to the problem contains within it optimal solutions to subproblems
- 2. Greedy-Choice Property : making locally optimal (greedy) choices leads to a globally optimal solution

#### **Proof of Correctness Skills**

- Optimal Substructure: an optimal solution to the problem contains within it optimal solutions to subproblems
- Greedy-Choice Property: making locally optimal (greedy) choices leads to a globally optimal solution
  - Show that it exists an optimal solution that "contains" the greedy choice using exchange argument
  - For any optimal solution OPT, the greedy choice g has two cases
    - g is in OPT: done
    - g not in OPT: modify OPT into OPT' s.t. OPT' contains g and is at least as good as OPT



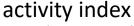
- ✓ If OPT' is better than OPT, the property is proved by contradiction
- ✓ If OPT' is as good as OPT, then we showed that there exists an optimal solution containing g by construction

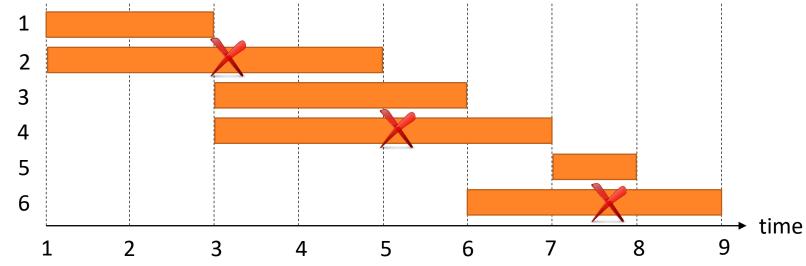
# Activity-Selection / Interval Scheduling

Textbook Chapter 16.1 – An activity-selection problem

## Activity-Selection/Interval Scheduling

- Input: n activities with start times  $s_i$  and finish times  $f_i$  (the activities are sorted in monotonically increasing order of finish time  $f_1 \le f_2 \le \cdots \le f_n$ )
- Output: the <u>maximum number</u> of compatible activities
- Without loss of generality:  $s_1 < s_2 < \dots < s_n$  and  $f_1 < f_2 < \dots < f_n$ 
  - ▶ 大的包小的則不考慮大的 → 用小的取代大的一定不會變差







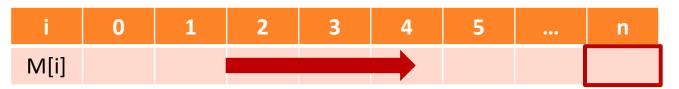
#### Weighted Interval Scheduling

#### **Weighted Interval Scheduling Problem**

Input: n jobs with  $\langle s_i, f_i, v_i \rangle$ , p(j) = largest index i < j s.t. jobs i and j are compatible Output: the maximum total value obtainable from compatible

- Subproblems
  - WIS (i): weighted interval scheduling for the first i jobs
  - Goal: WIS(n)
- Dynamic programming algorithm

$$M_i = \begin{cases} 0 & \text{if } i = 0\\ \max(v_i + M_{p(i)}, M_{i-1}) & \text{otherwise} \end{cases}$$



$$T(n) = \Theta(n)$$

#### **Activity-Selection Problem**

#### **Activity-Selection Problem**

Input: n activities with  $\langle s_i, f_i \rangle$ , p(j) = largest index i < j s.t. i and j are compatible Output: the maximum number of activities

Dynamic programming

$$M_i = \begin{cases} 0 & \text{if } i = 0\\ \max(1 + M_{p(i)}, M_{i-1}) & \text{otherwise} \end{cases}$$

- Optimal substructure is already proved
- Greedy algorithm

$$M_i = \begin{cases} 0 & \text{if } i = 0 \\ 1 + M_{p(i)} & \text{otherwise} \end{cases}$$
 select the  $i$ -th activity

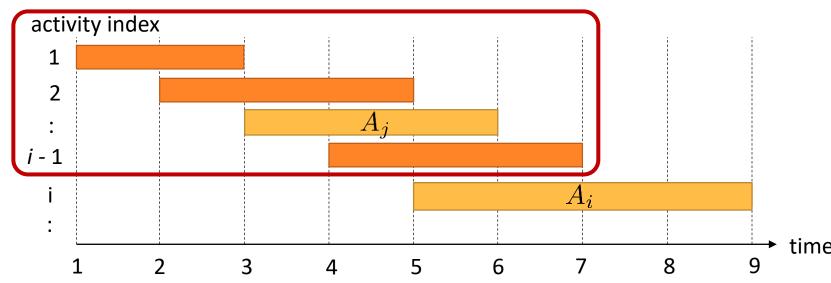
Why does the *i*-th activity must appear in an OPT?



#### **Greedy-Choice Property**

- Goal:  $1 + M_{p(i)} \ge M_{i-1}$
- Proof
  - Assume there is an OPT solution for the first i-1 activities  $(M_{i-1})$ 
    - $A_j$  is the last activity in the OPT solution  $ightarrow M_{i-1} = 1 + M_{p(j)}$
  - Replacing  $A_i$  with  $A_i$  does not make the OPT worse

$$1 + M_{p(i)} \ge 1 + M_{p(j)} = M_{i-1}$$



#### Pseudo Code

#### **Activity-Selection Problem**

Input: n activities with  $\langle s_i, f_i \rangle$ , p(j) = largest index i < j s.t. i and j are compatible Output: the maximum number of activities

```
Act-Select(n, s, f, v, p)
  M[0] = 0
  for i = 1 to n
    if p[i] >= 0
       M[i] = 1 + M[p[i]]
  return M[n]
```

$$T(n) = \Theta(n)$$

```
Find-Solution(M, n)
  if n = 0
    return {}
  return {n} U Find-Solution(p[n])
```

$$T(n) = \Theta(n)$$

Select the **last** compatible one  $(\leftarrow)$  = Select the **first** compatible one  $(\rightarrow)$ 

# Coin Changing



**Textbook Exercise 16.1** 

## Coin Changing Problem

- Input: n dollars and unlimited coins with values  $\{v_i\}$  (1, 5, 10, 50)
- Output: the minimum number of coins with the total value n
- Cashier's algorithm: at each iteration, add the coin with the largest value no more than the current total

Does this algorithm return the OPT?



### Step 1: Cast Optimization Problem

#### **Coin Changing Problem**

Input: n dollars and unlimited coins with values  $\{v_i\}$  (1, 5, 10, 50)

Output: the minimum number of coins with the total value n

#### Subproblems

- C(i): minimal number of coins for the total value i
- Goal: C(n)

#### Step 2: Prove Optimal Substructure

#### **Coin Changing Problem**

Input: n dollars and unlimited coins with values  $\{v_i\}$  (1, 5, 10, 50)

Output: the minimum number of coins with the total value n

- Suppose OPT is an optimal solution to  $\mathbb{C}(1)$ , there are 4 cases:
  - Case 1: coin 1 in OPT
    - OPT\coin1 is an optimal solution of C (i v<sub>1</sub>)
  - Case 2: coin 2 in OPT
    - OPT\coin2 is an optimal solution of C (i − v₂)
  - Case 3: coin 3 in OPT
    - OPT\coin3 is an optimal solution of C (i − v<sub>3</sub>)
  - Case 4: coin 4 in OPT
    - OPT\coin4 is an optimal solution of C (i − v<sub>4</sub>)

$$C_i = \min_j (1 + C_{i-v_j})$$

### Step 3: Prove Greedy-Choice Property

#### **Coin Changing Problem**

Input: n dollars and unlimited coins with values  $\{v_i\}$  (1, 5, 10, 50)

Output: the minimum number of coins with the total value n

- Greedy choice: select the coin with the largest value no more than the current total
- Proof via contradiction (use the case  $10 \le i < 50$  for demo)
  - Assume that there is no OPT including this greedy choice (choose 10)
    - $\rightarrow$  all OPT use 1, 5, 50 to pay i
      - 50 cannot be used
      - #coins with value  $5 < 2 \rightarrow$  otherwise we can use a 10 to have a better output
      - #coins with value  $1 < 5 \rightarrow$  otherwise we can use a 5 to have a better output
  - We cannot pay i with the constraints (at most 5 + 4 = 9)

# To Be Continued...



# Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: <a href="http://ada.miulab.tw">http://ada.miulab.tw</a>

Email: ada-ta@csie.ntu.edu.tw