THINK LIKE A PROGRAMMER

DYNAMIC PROGRAMMING

Announcement

- Homework 1 due
- Mini-HW 5 released
 - Due on 10/25 (Thu) 14:20
- Homework 2 released
 - Due on 11/06 (Tue) 18:00 (3.5 weeks)
 - A4 hardcopy submitted to a box @R307
 - Softcopy submitted to NTU COOL before the deadline

Frequently check the website for the updated information!

Mini-HW 5

Consider the classical Sequence Alignment problem. In this mini HW, we want to use *dynamic programming* to find the minimal cost for aligning two sequence. The cost of deletion, insertion and substitution are 1, 1, 2 respectively.

(1) Consider two strings s1="ABCADB" and s2="CABDAB". Please fill the DP table below and tell me the distance between s1 and s2. For example, the 1 in the table means the edit distance of "AB" and "CAB" is 1 (50%)

S1 \ S2	#	С	А	В	D	А	В
#	0		2				
А							
В				1			
С							
А							
D	5						
В							

(2) Explain how you fill the DP table. (50%)

(You can briefly explain or write down the math equation of recurrence relation)

Outline

- Dynamic Programming
- DP #1: Rod Cutting
- DP #2: Stamp Problem
- DP #3: Knapsack Problem
 - 0/1 Knapsack
 - Unbounded Knapsack
 - Multidimensional Knapsack
 - Fractional Knapsack
- DP #4: Matrix-Chain Multiplication
- DP #5: Sequence Alignment Problem
 - Longest Common Subsequence (LCS) / Edit Distance
 - Viterbi Algorithm
 - Space Efficient Algorithm
- DP #6: Weighted Interval Scheduling

動腦一下-囚犯問題

- 有100個死囚,隔天執行死刑,典獄長開恩給他們一個存活的機會。
- 當隔天執行死刑時,每人頭上戴一頂帽子(黑或白)排成一隊伍,在 死刑執行前,由隊伍中最後的囚犯開始,每個人可以猜測自己頭上 的帽子顏色(只允許說黑或白),猜對則免除死刑,猜錯則執行死刑。
- 若這些囚犯可以前一天晚上先聚集討論方案,是否有好的方法可以 使總共存活的囚犯數量期望值最高?

猜測規則

- 囚犯排成一排,每個人可以看到前面所有人的帽子,但看不到自己 及後面囚犯的。
- 由最後一個囚犯開始猜測,依序往前。

Example: 奇數者猜測內 容為前面一位的帽子顏 色 → 存活期望值為75人

Vote for Your Answer

DP#4: Matrix-Chain Multiplication

Textbook Chapter 15.2 – Matrix-chain multiplication

Matrix-Chain Multiplication

- Input: a sequence of *n* matrices $\langle A_1, \dots, A_n \rangle$
- Output: the product of $A_1A_2 \dots A_n$

Observation

$$C(i,j) = \sum_{k=1}^{n} A(i,q) \cdot B(k,j)$$

- Each entry takes q multiplications
- There are total pr entries

 $\implies \Theta(q)\Theta(pr) = \Theta(pqr)$

Matrix multiplication is associative: A(BC) = (AB)C. The time required by obtaining $A \times B \times C$ could be affected by which two matrices multiply first.

Matrix-Chain Multiplication Problem

- Input: a sequence of integers l₀, l₁, ..., l_n
 - l_{i-1} is the number of rows of matrix A_i
 - *l_i* is the number of columns of matrix *A_i*
- Output: a <u>order</u> of performing n 1 matrix multiplications in the minimum number of operations to obtain the product of $A_1A_2 \dots A_n$

Do not need to compute the result but find the fast way to get the result! (computing "how to fast compute" takes less time than "computing via a bad way"

Brute-Force Naïve Algorithm

P_n: how many ways for n matrices to be multiplied

$$P_{n} = \begin{cases} 1 & \text{if } n = 1\\ \sum_{k=1}^{n-1} P_{k} P_{n-k} & \text{if } n \ge 2\\ (A_{1}A_{2} \cdots A_{k}) (A_{k+1}A_{k+2} \cdots A_{n}) \end{cases}$$

• The solution of P_n is Catalan numbers, $\Omega\left(\frac{4^n}{n^2}\right)$, or is also $\Omega(2^n)$ Exercise 15.2-3

Step 1: Characterize an OPT Solution

Matrix-Chain Multiplication Problem

Input: a sequence of integers $l_0, l_1, ..., l_n$ indicating the dimensionality of A_i Output: a order of matrix multiplications with the minimum number of operations

- Subproblems
 - M(i, j): the min #operations for obtaining the product of $A_i \dots A_j$
 - Goal: M(1, n)
- Optimal substructure: suppose we know the OPT to M(i, j), there are k cases:
 i ≤ k < j

 $A_i A_{i+1} \dots A_k$

 $A_{k+1}A_{k+2}\dots A_j$

Case k: there is a cut right after A_k in OPT
 左右所花的運算量是M(i, k)及M(k+1, j)的最佳解

Step 2: Recursively Define the Value of an OPT Solution

Matrix-Chain Multiplication Problem

Input: a sequence of integers $l_0, l_1, ..., l_n$ indicating the dimensionality of A_i Output: a order of matrix multiplications with the minimum number of operations

Suppose we know the optimal solution to M(i, j), there are k cases:

$$M_{i,j} = \begin{cases} 0 & i \ge j \\ \min_{i \le k < j} (M_{i,k} + M_{k+1,j} + l_{i-1}l_k l_j) & i < j \end{cases}$$

Matrix-Chain Multiplication Problem

Input: a sequence of integers $l_0, l_1, ..., l_n$ indicating the dimensionality of A_i Output: a order of matrix multiplications with the minimum number of operations

$$M_{i,j} = \begin{cases} 0 & i \ge j \\ \min_{i \le k < j} (M_{i,k} + M_{k+1,j} + l_{i-1}l_k l_j) & i < j \end{cases}$$

- How many subproblems to solve
 - #combination of the values *i* and *j* s.t. $1 \le i \le j \le n$ $T(n) = C_2^n + n = \Theta(n^2)$ $i \ne j$ i = j


```
T(n) = \Theta(n^3)
```


Dynamic Programming Illustration

How to decide the order of the matrix multiplication?


```
Matrix-Chain(n, 1)
initialize two tables M[1..n][1..n] and B[1..n-1][2..n]
for i = 1 to n
    M[i][i] = 0 // boundary case
for p = 2 to n // p is the chain length
    for i = 1 to n - p + 1 // all i, j combinations
    j = i + p - 1
    M[i][j] = ∞
    for k = i to j - 1 // find the best k
    q = M[i][k] + M[k + 1][j] + 1[i - 1] * 1[k] * 1[j]
        if q < M[i][j]
        M[i][j] = q
        B[i][j] = k // backtracking
return M and B</pre>
```

```
Print-Optimal-Parens(B, i, j)
if i == j
print A<sub>i</sub>
else
print "("
Print-Optimal-Parens(B, i, B[i][j])
Print-Optimal-Parens(B, B[i][j] + 1, j)
print ")"
```

 $T(n) = \Theta(n^3)$

```
T(n) = \Theta(n)
```


Exercise

Matrix		A_1		<i>A</i> ₂		<i>A</i> ₃		A ₄			<i>A</i> ₅		<i>A</i> ₆		
Dimension 30 x 35		5	35 x 15		15 x 5		5 x 10		10	10 x 20		20 x 25			
			j								j				
$M_{i,j}$	1	2	3	4	5	6		$B_{i,j}$	1	2	3	4	5	6	
1	0	15,750	7,875	9,375	11,875	15,125		1		1		3	3	3	
2		0	2,625	4,375	7,125	10,500		2			2	3	3	3	
3			0	750	2,500	53,75	i	3				3	3	3	i
4				0	1,000	3,500		4					4	5	
5					0	5,000		5						5	
6						0		6							

 $((A_1(A_2A_3))((A_4A_5)A_6))$

DP#5: Sequence Alignment

Textbook Chapter 15.4 – Longest common subsequence Textbook Problem 15-5 – Edit distance

Monkey Speech Recognition

- 猴子們各自講話,經過語音辨識系統後,哪一支猴子發出最接近英文字"banana"的語音為優勝者
- How to evaluate the similarity between two sequences?

banana

Longest Common Subsequence (LCS)

- Input: two sequences
$$X=\langle x_1,x_2,\cdots,x_m
angle$$

 $Y=\langle y_1,y_2,\cdots,y_n
angle$

- Output: longest common subsequence of two sequences
 - The maximum-length sequence of characters that appear left-to-right (but not necessarily a continuous string) in both sequences

$$X =$$
 banana $X =$ banana $Y =$ aeniqadikjaz $Y =$ svkbrlvpnzanczyqza $X \rightarrow$ ba-n--an $X \rightarrow$ ---ba---n-an $Y \rightarrow$ -aeniqadikjaz $Y \rightarrow$ svkbrlvpnzanczyqza

Edit Distance

- Input: two sequences
$$X=\langle x_1,x_2,\cdots,x_m
angle$$

 $Y=\langle y_1,y_2,\cdots,y_n
angle$

Output: the minimum cost of transformation from X to Y

Quantifier of the dissimilarity of two strings

Sequence Alignment Problem

- Input: two sequences
$$X=\langle x_1,x_2,\cdots,x_m
angle$$

 $Y=\langle y_1,y_2,\cdots,y_n
angle$

- Output: the minimal cost $M_{m,n}$ for aligning two sequences
 - Cost = #insertions $\times C_{INS}$ + #deletions $\times C_{DEL}$ + #substitutions $\times C_{p,q}$

Step 1: Characterize an OPT Solution

Sequence Alignment Problem

Input: two sequences $X = \langle x_1, x_2, \cdots, x_m \rangle$ $Y = \langle y_1, y_2, \cdots, y_n \rangle$

Output: the minimal cost $M_{m,n}$ for aligning two sequences

- Subproblems
 - SA(i, j): sequence alignment between prefix strings x_1, \dots, x_i and y_1, \dots, y_j
 - Goal: SA(m, n)
- Optimal substructure: suppose OPT is an optimal solution to SA (i, j), there are 3 cases:
 - Case 1: x_i and y_i are aligned in OPT (match or substitution)
 - OPT/ $\{x_i, y_j\}$ is an optimal solution of SA (i-1, j-1)
 - Case 2: x_i is aligned with a gap in OPT (deletion)
 - OPT is an optimal solution of SA (i-1, j)
 - Case 3: y_i is aligned with a gap in OPT (insertion)
 - OPT is an optimal solution of SA (i, j-1)

Step 2: Recursively Define the Value of an OPT Solution

Sequence Alignment Problem

Input: two sequences $X = \langle x_1, x_2, \cdots, x_m \rangle$ $Y = \langle y_1, y_2, \cdots, y_n \rangle$ Output: the minimal cost $M_{m,n}$ for aligning two sequences

- Suppose OPT is an optimal solution to SA (i, j), there are 3 cases:
 - Case 1: x_i and y_i are aligned in OPT (match or substitution)
 - OPT/ $\{x_i, y_j\}$ is an optimal solution of SA(i-1, j-1) $M_{i,j} = M_{i-1,j-1} + C_{x_i,y_j}$
 - Case 2: x_i is aligned with a gap in OPT (deletion)
 - OPT is an optimal solution of SA (i-1, j)
 - Case 3: y_i is aligned with a gap in OPT (insertion)
 - OPT is an optimal solution of SA (i, j-1)
- Recursively define the value

$$M_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0\\ iC_{\text{DEL}} & \text{if } j = 0\\ \min(M_{i-1,j-1} + C_{x_i,y_j}, M_{i-1,j} + C_{\text{DEL}}, M_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \end{cases}$$

 $M_{i,j} = M_{i-1,j} + C_{\text{DEL}}$

 $M_{i,j} = M_{i,j-1} + C_{\rm INS}$

Sequence Alignment Problem Input: two sequences Output: the minimal cost $M_{m,n}$ for aligning two sequences

$$M_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0\\ iC_{\text{DEL}} & \text{if } j = 0\\ \min(M_{i-1,j-1} + C_{x_i,y_j}, M_{i-1,j} + C_{\text{DEL}}, M_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \end{cases}$$

Sequence Alignment Problem

Input: two sequences Output: the minimal cost $M_{m,n}$ for aligning two sequences

Sequence Alignment Problem

Input: two sequences Output: the minimal cost $M_{m,n}$ for aligning two sequences

$$M_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0\\ iC_{\text{DEL}} & \text{if } j = 0\\ \min(M_{i-1,j-1} + C_{x_i,y_j}, M_{i-1,j} + C_{\text{DEL}}, M_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \end{cases}$$

Sequence Alignment Problem

Input: two sequences Output: the minimal cost $M_{m,n}$ for aligning two sequences

$$M_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0 \\ iC_{\text{DEL}} & \text{if } j = 0 \\ \min(M_{i-1,j-1} + C_{x_i,y_j}, M_{i-1,j} + C_{\text{DEL}}, M_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \\ a & e & n & i & q & a & d & i & k & j & a & z \\ \end{cases} \\ C_{\text{DEL}} = 4, C_{\text{INS}} = 4 & \texttt{XY 0 1 1 2 3 4 5 6 7 8 9 10 11 122} \\ \hline 0 & 0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 & 48 \\ \hline 1 & 4 & 7 & 11 & 15 & 19 & 23 & 27 & 31 & 35 & 39 & 43 & 47 & 51 \\ \hline a & 2 & 8 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 \\ n & 3 & 12 & 8 & 12 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 \\ \hline a & 4 & 16 & 12 & 15 & 12 & 15 & 19 & 16 & 20 & 24 & 28 & 32 & 36 & 40 & 44 \\ a & 4 & 16 & 12 & 15 & 12 & 15 & 19 & 16 & 20 & 24 & 28 & 32 & 36 & 40 \\ n & 5 & 20 & 16 & 19 & 15 & 19 & 22 & 20 & 23 & 27 & 31 & 35 & 39 & 43 \\ a & 6 & 24 & 20 & 23 & 19 & 22 & 26 & 22 & 6 & 30 & 34 & 38 & 35 & 39 \\ \hline \end{array}$$

Sequence Alignment Problem

Input: two sequences Output: the minimal cost $M_{m,n}$ for aligning two sequences

Bottom-up method: solve smaller subproblems first

 $M_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0\\ iC_{\text{DEL}} & \text{if } j = 0\\ \min(M_{i-1,j-1} + C_{x_i,y_j}, M_{i-1,j} + C_{\text{DEL}}, M_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \end{cases}$

Find-Solution(M)
if m = 0 or n = 0
return {}
v = min(M[m-1][n-1] + C_{xm,yn}, M[m-1][n] + C_{DEL}, M[m][n-1] + C_{INS})
if v = M[m-1][n] + C_{DEL} // \uparrow: deletion
return Find-Solution(m-1, n)
if v = M[m][n-1] + C_{INS} // \leftarrow: insertion
return Find-Solution(m, n-1)
return {(m, n)} U Find-Solution(m-1, n-1) //
$$: match/substitution$$


```
\begin{array}{l} \text{Seq-Align}(\textbf{X}, \textbf{Y}, \textbf{C}_{\text{DEL}}, \textbf{C}_{\text{INS}}, \textbf{C}_{\text{p},\text{q}}) \\ \text{for } \textbf{j} = 0 \text{ to } n \\ & \textbf{M}[0][\textbf{j}] = \textbf{j} * \textbf{C}_{\text{INS}} \; // \; |\textbf{X}| = 0, \; \text{cost} = |\textbf{Y}| * \text{penalty} \\ \text{for } \textbf{i} = 1 \text{ to } m \\ & \textbf{M}[\textbf{i}][0] = \textbf{i} * \textbf{C}_{\text{DEL}} \; // \; |\textbf{Y}| = 0, \; \text{cost} = |\textbf{X}| * \text{penalty} \\ \text{for } \textbf{i} = 1 \text{ to } m \\ & \text{for } \textbf{j} = 1 \text{ to } m \\ & \text{for } \textbf{j} = 1 \text{ to } n \\ & \textbf{M}[\textbf{i}][\textbf{j}] = \min(\textbf{M}[\textbf{i}-1][\textbf{j}-1] + \textbf{C}_{\text{xi},\text{yi}}, \; \textbf{M}[\textbf{i}-1][\textbf{j}] + \textbf{C}_{\text{DEL}}, \; \textbf{M}[\textbf{i}][\textbf{j}-1] + \textbf{C}_{\text{INS}}) \\ & \text{return } \textbf{M}[\textbf{m}][\textbf{n}] \end{array}
```

Space Complexity

Space complexity

X\Y	0	1	2	3	4	5	 n	
0								
1								$ \Theta(mr$
:								
m								

If only keeping the most recent two rows: Space-Seq-Align(X, Y)

X\Y	0	1	2	3	 j	 n	
i - 1					Ļ		$\Rightarrow \Theta(n)$
i							

35

The optimal value can be computed, but the solution cannot be reconstructed

Space-Efficient Solution

Divide-and-Conquer + Dynamic Programming

• Problem: find the min-cost alignment \rightarrow find the shortest path

Shortest Path in Graph

- Each edge has a length/cost
- F(i,j): length of the shortest path from (0,0) to (i,j) (START $\rightarrow (i,j)$)
- B(i,j): length of the shortest path from (i,j) to (m,n) $((i,j) \rightarrow END)$
- F(m,n) = B(0,0)

F(2,3) = distance of the shortest path \longrightarrow B(2,3) = distance of the shortest path \longrightarrow

Recursive Equation

Each edge has a length/cost

- F(i,j): length of the shortest path from (0,0) to (i,j) (START $\rightarrow (i,j)$)
- B(i,j): length of the shortest path from (i,j) to (m,n) $((i,j) \rightarrow END)$
- Forward formulation

$$F_{i,j} = \begin{cases} jC_{\text{INS}} & \text{if } i = 0\\ iC_{\text{DEL}} & \text{if } j = 0\\ \min(F_{i-1,j-1} + C_{x_i,y_j}, F_{i-1,j} + C_{\text{DEL}}, F_{i,j-1} + C_{\text{INS}}) & \text{otherwise} \end{cases}$$

Backward formulation

$$B_{i,j} = \begin{cases} (n-j)C_{\text{INS}} & \text{if } i = 0\\ (m-i)C_{\text{DEL}} & \text{if } j = 0\\ \min(B_{i+1,j+1} + C_{x_i,y_j}, B_{i+1,j} + C_{\text{DEL}}, B_{i,j+1} + C_{\text{INS}}) & \text{otherwise} \end{cases}$$

Shortest Path Problem

F(i, j): length of the shortest path from (0,0) to (i, j)B(i, j): length of the shortest path from (i, j) to (m, n)

• <u>Observation 1</u>: the length of the shortest path from (0,0) to (m,n) that passes through (i,j) is F(i,j) + B(i,j)

 \rightarrow optimal substructure

Shortest Path Problem

F(i, j): length of the shortest path from (0,0) to (i, j)B(i, j): length of the shortest path from (i, j) to (m, n)

Observation 2: for any v in {0, ..., n}, there exists a u s.t. the shortest path between (0,0) and (m, n) goes through (u, v)

ightarrow the shortest path must go across a vertical cut

Shortest Path Problem

F(i, j): length of the shortest path from (0,0) to (i, j)B(i, j): length of the shortest path from (i, j) to (m, n)

Divide-and-Conquer Algorithm

Divide-and-Conquer Algorithm

Goal: finds optimal solution – DC-Align (X, Y)

Y) Space Complexity: O(m+n)

Time Complexity Analysis

$$T(m,n) = \begin{cases} O(m) & \text{if } n = 1\\ T(u,n/2) + T(m-u,n/2) + O(mn) & \text{if } n \ge 2 \end{cases} \implies T(m,n) = O(mn)$$

- Proof
 - There exists positive constants a, b s.t. all

$$T(m,n) \leq \begin{cases} a \cdot m & \text{if } n = 1\\ T(u,n/2) + T(m-u,n/2) + b \cdot mn & \text{if } n \ge 2 \end{cases}$$

• Use induction to prove $T(m,n) \leq kmn$

Practice to check the initial condition

$$T(m,n) \leq T(u,\frac{n}{2}) + T(m-u,\frac{n}{2}) + b \cdot mn$$

Inductive
hypothesis
$$\leq ku\frac{n}{2} + k(m-u)\frac{n}{2} + b \cdot mn$$
$$\leq (\frac{k}{2} + b)mn$$
$$\leq kmn \quad \text{when } k > 2b$$

Extension: 注音文 Recognition

• Given a graph G = (V, E), each edge $(u, v) \in E$ has an associated nonnegative probability p(u, v) of traversing the edge (u, v) and producing the corresponding character. Find the <u>most probable path</u> with the label $s = \langle \sigma_1, \sigma_2, ..., \sigma_n \rangle$.

Viterbi Algorithm

DP#6: Weighted Interval Scheduling

Interval Scheduling

- Input: n job requests with start times s_i , finish times f_i
- Output: the maximum number of compatible jobs
- The interval scheduling problem can be solved using an "early-finish-time-first" greedy algorithm in O(n) time
 "Greedy Algorithm" + A A

Weighted Interval Scheduling

- Input: *n* job requests with start times s_i , finish times f_i , and values v_i
- Output: the maximum total value obtainable from compatible jobs

Assume that the requests are sorted in non-decreasing order ($f_i \le f_j$ when i < j) p(j) = largest index i < j s.t. jobs i and j are compatible e.g. p(1) = 0, p(2) = 0, p(3) = 1, p(4) = 1, p(5) = 4, p(6) = 3

Step 1: Characterize an OPT Solution

Weighted Interval Scheduling Problem

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) =largest index i < j s.t. jobs *i* and *j* are compatible Output: the maximum total value obtainable from compatible

- Subproblems
 - WIS (i): weighted interval scheduling for the first i jobs
 - Goal: WIS(n)
- Optimal substructure: suppose OPT is an optimal solution to WIS (i), there are 2 cases:
 - Case 1: job i in OPT
 - OPT $\{i\}$ is an optimal solution of WIS (p (i))
 - Case 2: job i not in OPT
 - OPT is an optimal solution of WIS (i-1)

Step 2: Recursively Define the Value of an OPT Solution

Weighted Interval Scheduling Problem

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) =largest index i < j s.t. jobs *i* and *j* are compatible Output: the maximum total value obtainable from compatible

- Optimal substructure: suppose OPT is an optimal solution to WIS (i), there are 2 cases:
 - Case 1: job i in OPT
 - OPT\{i} is an optimal solution of WIS (p(i))
 - Case 2: job i not in OPT
 - OPT is an optimal solution of WIS (i-1)
- Recursively define the value

$$M_{i} = \begin{cases} 0 & \text{if } i = 0\\ \max(v_{i} + M_{p(i)}, M_{i-1}) & \text{otherwise} \end{cases}$$

$$M_i = v_i + M_{p(i)}$$

$$M_i = M_{i-1}$$

Weighted Interval Scheduling Problem

TATTO /

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) =largest index i < j s.t. jobs i and j are compatible Output: the maximum total value obtainable from compatible

$$\begin{array}{l} \text{MIS(n, s, 1, v, p)} \\ \text{M[0]} = 0 \\ \text{for i = 1 to n} \\ \text{M[i]} = \max(\text{v[i]} + \text{M[p[i]], M[i - 1])} \end{array} \end{array} \\ T(n) = \Theta(n) \\ \text{return M[n]} \end{array}$$

Weighted Interval Scheduling Problem

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) =largest index i < j s.t. jobs i and j are compatible Output: the maximum total value obtainable from compatible

Weighted Interval Scheduling Problem

Input: *n* jobs with $\langle s_i, f_i, v_i \rangle$, p(j) =largest index i < j s.t. jobs i and j are compatible Output: the maximum total value obtainable from compatible

```
WIS(n, s, f, v, p)
M[0] = 0
for i = 1 to n
M[i] = max(v[i] + M[p[i]], M[i - 1])
return M[n]
```

$$T(n) = \Theta(n)$$

```
Find-Solution(M, n)
if n = 0
    return {}
if v[n] + M[p[n]] > M[n-1] // case 1
    return {n} U Find-Solution(p[n])
    return Find-Solution(n-1) // case 2
```

$$T(n) = \Theta(n)$$

Concluding Remarks

- "Dynamic Programming": solve many subproblems in polynomial time for which a naïve approach would take exponential time
- When to use DP
 - Whether subproblem solutions can combine into the original solution
 - When subproblems are <u>overlapping</u>
 - Whether the problem has <u>optimal substructure</u>
 - Common for <u>optimization</u> problem
- Two ways to avoid recomputation
 - Top-down with memoization
 - Bottom-up method
- Complexity analysis
 - Space for tabular filling
 - Size of the subproblem graph

Question?

Important announcement will be sent to @ntu.edu.tw mailbox & post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw