
Slides credited from Hsu-Chun Hsiao

 Homework 1 due

 Mini-HW 5 released
 Due on 10/25 (Thu) 14:20

 Homework 2 released
 Due on 11/06 (Tue) 18:00 (3.5 weeks)

 A4 hardcopy submitted to a box @R307

 Softcopy submitted to NTU COOL before the deadline

2

Frequently check the website for the updated information!

3

4

 Dynamic Programming

 DP #1: Rod Cutting

 DP #2: Stamp Problem

 DP #3: Knapsack Problem
 0/1 Knapsack

 Unbounded Knapsack

 Multidimensional Knapsack

 Fractional Knapsack

 DP #4: Matrix-Chain Multiplication

 DP #5: Sequence Alignment Problem
 Longest Common Subsequence (LCS) / Edit Distance

 Viterbi Algorithm

 Space Efficient Algorithm

 DP #6: Weighted Interval Scheduling

 有100個死囚，隔天執行死刑，典獄長開恩給他們一個存活的機會。

 當隔天執行死刑時，每人頭上戴一頂帽子(黑或白)排成一隊伍，在
死刑執行前，由隊伍中最後的囚犯開始，每個人可以猜測自己頭上
的帽子顏色(只允許說黑或白)，猜對則免除死刑，猜錯則執行死刑。

 若這些囚犯可以前一天晚上先聚集討論方案，是否有好的方法可以
使總共存活的囚犯數量期望值最高？

5

 囚犯排成一排，每個人可以看到前面所有人的帽子，但看不到自己
及後面囚犯的。

 由最後一個囚犯開始猜測，依序往前。

 每個囚犯皆可聽到之前所有囚犯的猜測內容。

6

……

Example: 奇數者猜測內
容為前面一位的帽子顏
色存活期望值為75人

有沒有更多人可以存活的好策略?

7

Textbook Chapter 15.2 – Matrix-chain multiplication

8

 Input: a sequence of n matrices 𝐴1, … , 𝐴𝑛

 Output: the product of 𝐴1𝐴2…𝐴𝑛

9

𝐴1 𝐴2 𝐴3 𝐴4
𝐴𝑛

……

𝐴1.cols=𝐴2.rows

𝐴1and 𝐴2are compatible.

10

 Each entry takes 𝑞 multiplications

 There are total 𝑝𝑟 entries

A B C

Matrix multiplication is associative: 𝐴 𝐵𝐶 = (𝐴𝐵)𝐶. The time required by
obtaining 𝐴 × 𝐵 × 𝐶 could be affected by which two matrices multiply first .

 Overall time is

11

= =

 Overall time is

12

= =

 Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛
 𝑙𝑖−1 is the number of rows of matrix 𝐴𝑖
 𝑙𝑖 is the number of columns of matrix 𝐴𝑖

 Output: a order of performing 𝑛 − 1 matrix multiplications in the
minimum number of operations to obtain the product of 𝐴1𝐴2…𝐴𝑛

13

𝐴1 𝐴2 𝐴3 𝐴4
𝐴𝑛

……

𝐴1.cols=𝐴2.rows

𝐴1and 𝐴2are compatible.

Do not need to compute the result but find the fast way to get the result!
(computing “how to fast compute” takes less time than “computing via a bad way”)

 𝑃𝑛: how many ways for 𝑛 matrices to be multiplied

 The solution of 𝑃𝑛 is Catalan numbers, Ω
4𝑛

𝑛
3
2

, or is also Ω 2𝑛

14

Exercise 15.2-3

 Subproblems
 M(i, j): the min #operations for obtaining the product of 𝐴𝑖 …𝐴𝑗
 Goal: M(1, n)

 Optimal substructure: suppose we know the OPT to M(i, j), there
are k cases:

 Case k: there is a cut right after Ak in OPT

15

Matrix-Chain Multiplication Problem
Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛 indicating the dimensionality of 𝐴𝑖
Output: a order of matrix multiplications with the minimum number of operations

左右所花的運算量是M(i, k)及M(k+1, j)的最佳解

𝐴𝑖𝐴𝑖+1…𝐴𝑘 𝐴𝑘+1𝐴𝑘+2…𝐴𝑗

𝑖 ≤ 𝑘 < 𝑗

 Suppose we know the optimal solution to M(i, j), there are k cases:

 Case k: there is a cut right after Ak in OPT

 Recursively define the value

16

左右所花的運算量是M(i, k)及M(k+1, j)的最佳解

Matrix-Chain Multiplication Problem
Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛 indicating the dimensionality of 𝐴𝑖
Output: a order of matrix multiplications with the minimum number of operations

𝐴𝑘+1..𝑗
𝐴𝑖.rows
=𝑙𝑖−1

𝐴𝑘.cols=𝑙𝑘

𝐴𝑘+1.rows=𝑙𝑘

𝐴𝑗.cols=𝑙𝑗

𝐴𝑖𝐴𝑖+1…𝐴𝑘 𝐴𝑘+1𝐴𝑘+2…𝐴𝑗 =

 Bottom-up method: solve smaller subproblems first

 How many subproblems to solve
 #combination of the values 𝑖 and 𝑗 s.t. 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛

17

Matrix-Chain Multiplication Problem
Input: a sequence of integers 𝑙0, 𝑙1, … , 𝑙𝑛 indicating the dimensionality of 𝐴𝑖
Output: a order of matrix multiplications with the minimum number of operations

18

Matrix-Chain(n, l)

initialize two tables M[1..n][1..n] and B[1..n-1][2..n]

for i = 1 to n

M[i][i] = 0 // boundary case

for p = 2 to n // p is the chain length

for i = 1 to n – p + 1 // all i, j combinations

j = i + p – 1

M[i][j] = ∞
for k = i to j – 1 // find the best k

q = M[i][k] + M[k + 1][j] + l[i - 1] * l[k] * l[j]

if q < M[i][j]

M[i][j] = q

return M

19

How to decide the
order of the matrix

multiplication?

1 2 3 4 5 6 … n

1 0

2 0

3 0

4 0

5 0

6 0

： 0

n 0

20

Matrix-Chain(n, l)

initialize two tables M[1..n][1..n] and B[1..n-1][2..n]

for i = 1 to n

M[i][i] = 0 // boundary case

for p = 2 to n // p is the chain length

for i = 1 to n – p + 1 // all i, j combinations

j = i + p – 1

M[i][j] = ∞
for k = i to j – 1 // find the best k

q = M[i][k] + M[k + 1][j] + l[i - 1] * l[k] * l[j]

if q < M[i][j]

M[i][j] = q

B[i][j] = k // backtracking

return M and B

Print-Optimal-Parens(B, i, j)

if i == j

print 𝐴𝑖
else

print “(”

Print-Optimal-Parens(B, i, B[i][j])

Print-Optimal-Parens(B, B[i][j] + 1, j)

print “)”

Matrix 𝑨𝟏 𝑨𝟐 𝑨𝟑 𝑨𝟒 𝑨𝟓 𝑨𝟔

Dimension 30 x 35 35 x 15 15 x 5 5 x 10 10 x 20 20 x 25

21

1 2 3 4 5 6

1 0

2 0

3 0

4 0

5 0

6 0

15,750

2,625

750

1,000

5,000

7,875

4,375

2,500

3,500

9,375

7,125

53,75

11,875

10,500

15,125

1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

1

3

3

5

3

3

3

3

3

3

Textbook Chapter 15.4 – Longest common subsequence

Textbook Problem 15-5 – Edit distance

22

 猴子們各自講話，經過語音辨識系統後，哪一支猴子發出最接近英
文字”banana”的語音為優勝者

 How to evaluate the similarity between two sequences?

23

aeniqadikjaz

svkbrlvpnzanczyqza

banana

 Input: two sequences

 Output: longest common subsequence of two sequences
 The maximum-length sequence of characters that appear left-to-right (but

not necessarily a continuous string) in both sequences

24

X = banana

Y = svkbrlvpnzanczyqza

X → ---ba---n-an-----a

Y → svkbrlvpnzanczyqza

X = banana

Y = aeniqadikjaz

X → ba-n--an---a-

Y → -aeniqadikjaz

The infinite monkey theorem: a monkey hitting keys at random for an
infinite amount of time will almost surely type a given text

4 5

 Input: two sequences

 Output: the minimum cost of transformation from X to Y
 Quantifier of the dissimilarity of two strings

25

X = banana

Y = svkbrlvpnzanczyqza

X → ---ba---n-an-----a

Y → svkbrlvpnzanczyqza

X = banana

Y = aeniqadikjaz

X → ba-n--an---a-

Y → -aeniqadikjaz

1 deletion, 7 insertions, 1 substitution 12 insertions, 1 substitution

9 13

 Input: two sequences

 Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences
 Cost = #insertions × 𝐶INS + #deletions × 𝐶DEL + #substitutions × 𝐶𝑝,𝑞

26

 Subproblems
 SA(i, j): sequence alignment between prefix strings 𝑥1, … , 𝑥𝑖 and 𝑦1, … , 𝑦𝑗
 Goal: SA(m, n)

 Optimal substructure: suppose OPT is an optimal solution to SA(i, j),
there are 3 cases:
 Case 1: 𝑥𝑖 and 𝑦𝑗 are aligned in OPT (match or substitution)

 OPT/{𝑥𝑖, , 𝑦𝑗} is an optimal solution of SA(i-1, j-1)

 Case 2: 𝑥𝑖 is aligned with a gap in OPT (deletion)
 OPT is an optimal solution of SA(i-1, j)

 Case 3: 𝑦𝑗 is aligned with a gap in OPT (insertion)
 OPT is an optimal solution of SA(i, j-1)

27

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

 Suppose OPT is an optimal solution to SA(i, j), there are 3 cases:
 Case 1: 𝑥𝑖 and 𝑦𝑗 are aligned in OPT (match or substitution)

 OPT/{𝑥𝑖, , 𝑦𝑗} is an optimal solution of SA(i-1, j-1)

 Case 2: 𝑥𝑖 is aligned with a gap in OPT (deletion)

 OPT is an optimal solution of SA(i-1, j)

 Case 3: 𝑦𝑗 is aligned with a gap in OPT (insertion)

 OPT is an optimal solution of SA(i, j-1)

 Recursively define the value

28

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

 Bottom-up method: solve smaller subproblems first

29

X\Y 0 1 2 3 4 5 … n

0

1

:

m

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

 Bottom-up method: solve smaller subproblems first

30

X\Y 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 4 8 12 16 20 24 28 32 36 40 44 48

1 4 7 11 15 19 23 27 31 35 39 43 47 51

2 8 4 8 12 16 20 23 27 31 35 39 43 47

3 12 8 12 8 12 16 20 24 28 32 36 40 44

4 16 12 15 12 15 19 16 20 24 28 32 36 40

5 20 16 19 15 19 22 20 23 27 31 35 39 43

6 24 20 23 19 22 26 22 26 30 34 38 35 39

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

a e n i q a d i k j a z

b

a

n

a

n

a

31

Seq-Align(X, Y, CDEL, CINS, Cp,q)

for j = 0 to n

M[0][j] = j * CINS // |X|=0, cost=|Y|*penalty

for i = 1 to m

M[i][0] = i * CDEL // |Y|=0, cost=|X|*penalty

for i = 1 to m

for j = 1 to n

M[i][j] = min(M[i-1][j-1]+Cxi,yi, M[i-1][j]+CDEL, M[i][j-1]+CINS)

return M[m][n]

 Bottom-up method: solve smaller subproblems first

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

32

 Bottom-up method: solve smaller subproblems first

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

X\Y 0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 4 8 12 16 20 24 28 32 36 40 44 48

1 4 7 11 15 19 23 27 31 35 39 43 47 51

2 8 4 8 12 16 20 23 27 31 35 39 43 47

3 12 8 12 8 12 16 20 24 28 32 36 40 44

4 16 12 15 12 15 19 16 20 24 28 32 36 40

5 20 16 19 15 19 22 20 23 27 31 35 39 43

6 24 20 23 19 22 26 22 26 30 34 38 35 39

a e n i q a d i k j a z

b

a

n

a

n

a

33

 Bottom-up method: solve smaller subproblems first

Sequence Alignment Problem
Input: two sequences
Output: the minimal cost 𝑀𝑚,𝑛 for aligning two sequences

Find-Solution(M)

if m = 0 or n = 0

return {}

v = min(M[m-1][n-1] + Cxm,yn, M[m-1][n] + CDEL, M[m][n-1] + CINS)

if v = M[m-1][n] + CDEL // ↑: deletion

return Find-Solution(m-1, n)

if v = M[m][n-1] + CINS // ←: insertion
return Find-Solution(m, n-1)

return {(m, n)} ∪ Find-Solution(m-1, n-1) // ↖: match/substitution

34

Find-Solution(M)

if m = 0 or n = 0

return {}

v = min(M[m-1][n-1] + Cxm,yn, M[m-1][n] + CDEL, M[m][n-1] + CINS)

if v = M[m-1][n] + CDEL // ↑: deletion

return Find-Solution(m-1, n)

if v = M[m][n-1] + CINS // ←: insertion
return Find-Solution(m, n-1)

return {(m, n)} ∪ Find-Solution(m-1, n-1) // ↖: match/substitution

Seq-Align(X, Y, CDEL, CINS, Cp,q)

for j = 0 to n

M[0][j] = j * CINS // |X|=0, cost=|Y|*penalty

for i = 1 to m

M[i][0] = i * CDEL // |Y|=0, cost=|X|*penalty

for i = 1 to m

for j = 1 to n

M[i][j] = min(M[i-1][j-1]+Cxi,yi, M[i-1][j]+CDEL, M[i][j-1]+CINS)

return M[m][n]

 Space complexity

 If only keeping the most recent two rows: Space-Seq-Align(X, Y)

35

X\Y 0 1 2 3 … j … n

i - 1

i

The optimal value can be computed, but the solution cannot be reconstructed

X\Y 0 1 2 3 4 5 … n

0

1

:

m

 Problem: find the min-cost alignment find the shortest path

36

Divide-and-Conquer
+

Dynamic Programming

a

e

p

p

l

p ea

X\Y 0 1 2 3

0 0 4 8 12

1 4 7 11 15

2 8 4 8 12

3 12 8 12 8

4 16 12 15 12

5 20 16 19 15

a p e

p

p

l

e

a

→ distance = CINS
↓ distance = CDEL
↘ distance = Cu,v for edge (u, v)

START

END

𝐹 2,3 = distance of the
shortest path

 Each edge has a length/cost

 𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗 (START 𝑖, 𝑗)

 𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛 (𝑖, 𝑗 END)

 𝐹 𝑚, 𝑛 = 𝐵 0,0

37

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

𝐵 2,3 = distance of the
shortest path

 Each edge has a length/cost

 𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗 (START 𝑖, 𝑗)

 𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛 (𝑖, 𝑗 END)

 Forward formulation

 Backward formulation

38

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

 Observation 1: the length of the shortest path from 0,0 to 𝑚, 𝑛 that
passes through 𝑖, 𝑗 is 𝐹 𝑖, 𝑗 + 𝐵 𝑖, 𝑗

39

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

𝐹 𝑖, 𝑗

𝐵 𝑖, 𝑗

 optimal substructure

 Observation 2: for any 𝑣 in {0, … , 𝑛}, there exists a 𝑢 s.t. the shortest
path between (0,0) and 𝑚, 𝑛 goes through (𝑢, 𝑣)

40

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

 the shortest path must go across a vertical cut

 Observation 1+2:

41

𝐹 𝑖, 𝑗 : length of the shortest path from 0,0 to 𝑖, 𝑗
𝐵 𝑖, 𝑗 : length of the shortest path from 𝑖, 𝑗 to 𝑚, 𝑛

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

i = 0

4

1

2

3

j = 0 51 2 3 4 6 7

5

 Goal: finds optimal solution

42

How to find the value of 𝑢∗?

 Idea: utilize sequence alignment algo.
 Call Space-Seq-Align(X,Y[1:v]) to find
𝐹 0, 𝑣 , 𝐹 1, 𝑣 , … , 𝐹 𝑚, 𝑣

 Call Back-Space-Seq-Align(X,Y[v+1:n])
to find 𝐵 0, 𝑣 , 𝐵 1, 𝑣 , … , 𝐵 𝑚, 𝑣

 Let 𝑢 be the index minimizing 𝐹 𝑢, 𝑣 + 𝐵 𝑢, 𝑣

 Goal: finds optimal solution – DC-Align(X, Y)

43

1. Divide

2. Conquer

3. Combine

 Divide the sequence of size n into 2
subsequences
 Find 𝑢 to minimize 𝐹 𝑢, 𝑣 + 𝐵 𝑢, 𝑣

 Recursive case (𝑛 > 1)
 prefix

= DC-Align(X[1:u], Y[1:v])

 suffix

= DC-Align(X[u+1:m], Y[v+1:n])

 Base case (𝑛 = 1)
 Return Seq-Align(X, Y)

 Return prefix + suffix

 𝑇 𝑚, 𝑛 = time for running DC-Align(X, Y) with 𝑋 = 𝑚, 𝑌 = 𝑛

Space Complexity:

 Theorem

 Proof
 There exists positive constants 𝑎, 𝑏 s.t. all

 Use induction to prove

44

Inductive
hypothesis

when

Practice to check the initial condition

 Given a graph 𝐺 = 𝑉, 𝐸 , each edge 𝑢, 𝑣 ∈ 𝐸 has an associated non-
negative probability 𝑝 𝑢, 𝑣 of traversing the edge 𝑢, 𝑣 and producing
the corresponding character. Find the most probable path with the
label 𝑠 = 𝜎1, 𝜎2, … , 𝜎𝑛 .

45

ㄨ ㄅ ㄒ ㄎ ㄕ

START

我

烏

為

問

END

爸

不

想

續

小

考

看

卡

書

試

上

白
鄉

Find the path from
START to END with

highest prob

46

𝜎1 𝜎2 … … 𝜎𝑛

START END

produce 𝜎1

produce 𝜎𝑗

V: vocabulary size

Viterbi has been applied to many AI applications, e.g. speech recognition

47

 Input: 𝑛 job requests with start times 𝑠𝑖, finish times 𝑓𝑖

 Output: the maximum number of compatible jobs

 The interval scheduling problem can be solved using an “early-finish-time-
first” greedy algorithm in 𝑂(𝑛) time

48

“Greedy Algorithm”
Next topic!

time

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

 Input: 𝑛 job requests with start times 𝑠𝑖, finish times 𝑓𝑖, and values 𝑣𝑖

 Output: the maximum total value obtainable from compatible jobs

49time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

Assume that the requests are sorted in non-decreasing order (𝑓𝑖 ≤ 𝑓𝑗 when 𝑖 < 𝑗)

𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
e.g. 𝑝 1 = 0, 𝑝 2 = 0, 𝑝 3 = 1, 𝑝 4 = 1, 𝑝 5 = 4, 𝑝 6 = 3

 Subproblems
 WIS(i): weighted interval scheduling for the first 𝑖 jobs

 Goal: WIS(n)

 Optimal substructure: suppose OPT is an optimal solution to WIS(i),
there are 2 cases:
 Case 1: job 𝑖 in OPT

 OPT\{𝑖} is an optimal solution of WIS(p(i))

 Case 2: job 𝑖 not in OPT

 OPT is an optimal solution of WIS(i-1)

50

Weighted Interval Scheduling Problem
Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
Output: the maximum total value obtainable from compatible

time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

4

1

 Optimal substructure: suppose OPT is an optimal solution to WIS(i),
there are 2 cases:
 Case 1: job 𝑖 in OPT

 OPT\{𝑖} is an optimal solution of WIS(p(i))

 Case 2: job 𝑖 not in OPT

 OPT is an optimal solution of WIS(i-1)

 Recursively define the value

51

Weighted Interval Scheduling Problem
Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
Output: the maximum total value obtainable from compatible

 Bottom-up method: solve smaller subproblems first

52

i 0 1 2 3 4 5 … n

M[i]

WIS(n, s, f, v, p)

M[0] = 0

for i = 1 to n

M[i] = max(v[i] + M[p[i]], M[i - 1])

return M[n]

Weighted Interval Scheduling Problem
Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
Output: the maximum total value obtainable from compatible

53

 Bottom-up method: solve smaller subproblems first

Weighted Interval Scheduling Problem
Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
Output: the maximum total value obtainable from compatible

i 0 1 2 3 4 5 6

M[i] 0 1 3 4 5 6 7

time

1

3

3

4

3

1

1

2

3

4

5

6

job index

21 3 4 5 6 7 8 9

54

WIS(n, s, f, v, p)

M[0] = 0

for i = 1 to n

M[i] = max(v[i] + M[p[i]], M[i - 1])

return M[n]

Weighted Interval Scheduling Problem
Input: 𝑛 jobs with 𝑠𝑖 , 𝑓𝑖 , 𝑣𝑖 , 𝑝(𝑗) = largest index 𝑖 < 𝑗 s.t. jobs 𝑖 and 𝑗 are compatible
Output: the maximum total value obtainable from compatible

Find-Solution(M, n)

if n = 0

return {}

if v[n] + M[p[n]] > M[n-1] // case 1

return {n} ∪ Find-Solution(p[n])

return Find-Solution(n-1) // case 2

 “Dynamic Programming”: solve many subproblems in polynomial time
for which a naïve approach would take exponential time

 When to use DP
 Whether subproblem solutions can combine into the original solution

 When subproblems are overlapping

 Whether the problem has optimal substructure

 Common for optimization problem

 Two ways to avoid recomputation
 Top-down with memoization

 Bottom-up method

 Complexity analysis
 Space for tabular filling

 Size of the subproblem graph 55

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

56

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

