THINK LIKE A PROGRAMMER

DYNAMIC PROGRAMMING

Dynamic Programming（3）

 Oct $18^{\text {th }}, 2018$
Announcement

- Homework 1 due
- Mini-HW 5 released
- Due on 10/25 (Thu) 14:20
- Homework 2 released
- Due on 11/06 (Tue) 18:00 (3.5 weeks)
- A4 hardcopy submitted to a box @R307
- Softcopy submitted to NTU COOL before the deadline

Mini-HW 5

Consider the classical Sequence Alignment problem. In this mini HW, we want to use dynamic programming to find the minimal cost for aligning two sequence. The cost of deletion, insertion and substitution are 1,1,2 respectively.
(1) Consider two strings $s 1=" A B C A D B "$ and $s 2=" C A B D A B "$. Please fill the $D P$ table below and tell me the distance between s1 and s2. For example, the 1 in the table means the edit distance of " $A B$ " and " $C A B$ " is $1(50 \%)$

S1 \backslash S2	$\#$	C	A	B	D	A	B
\#	0		2				
A							
B				1			
C							
A							
D	5						
B							

(2) Explain how you fill the DP table. (50\%)
(You can briefly explain or write down the math equation of recurrence relation)

Outline

- Dynamic Programming
- DP \#1: Rod Cutting
- DP \#2: Stamp Problem
- DP \#3: Knapsack Problem
- 0/1 Knapsack
- Unbounded Knapsack
- Multidimensional Knapsack
- Fractional Knapsack
- DP \#4: Matrix-Chain Multiplication
- DP \#5: Sequence Alignment Problem
- Longest Common Subsequence (LCS) / Edit Distance
- Viterbi Algorithm
- Space Efficient Algorithm
- DP \#6: Weighted Interval Scheduling

動腦一下－囚犯問題

- 有 100 個死囚，隔天執行死刑，典獄長開恩給他們一個存活的機會。
- 當隔天執行死刑時，每人頭上戴一頂帽子（黑或白）排成一隊伍，在死刑執行前，由隊伍中最後的囚犯開始，每個人可以猜測自己頭上的帽子顏色（只允許說黑或白），猜對則免除死刑，猜錯則執行死刑。
－若這些囚犯可以前一天晚上先聚集討論方案，是否有好的方法可以使總共存活的囚犯數量期望值最高？

猜測規則

－囚犯排成一排，每個人可以看到前面所有人的帽子，但看不到自己及後面囚犯的。

- 由最後一個囚犯開始猜測，依序往前。
- 每個囚犯皆可聽到之前所有囚犯的猜測內容。色 \rightarrow 存活期望值為 75 人

Vote for Your Answer

Rapidpoll

囷 シ ロ
囚犯問題中最高的存活人數期望值為何？

0 vote

DP\#4: Matrix-Chain Multiplication

Textbook Chapter 15.2 - Matrix-chain multiplication

Matrix-Chain Multiplication

- Input: a sequence of n matrices $\left\langle A_{1}, \ldots, A_{n}\right\rangle$
- Output: the product of $A_{1} A_{2} \ldots A_{n}$

Observation

$$
C(i, j)=\sum_{k=1}^{n} A(i, q) \cdot B(k, j)
$$

- Each entry takes q multiplications
- There are total $p r$ entries

$$
\Rightarrow \Theta(q) \Theta(p r)=\Theta(p q r)
$$

Matrix multiplication is associative: $A(B C)=(A B) C$. The time required by obtaining $A \times B \times C$ could be affected by which two matrices multiply first .

Example

- Overall time is

$$
\Theta\left(n^{2}\right)+\Theta\left(n^{3}\right)=\Theta\left(n^{3}\right)
$$

$n \times n$

Example

- Overall time is

$$
\Theta\left(n^{2}\right)+\Theta\left(n^{2}\right)=\Theta\left(n^{2}\right)
$$

Matrix-Chain Multiplication Problem

- Input: a sequence of integers $l_{0}, l_{1}, \ldots, l_{n}$
- l_{i-1} is the number of rows of matrix A_{i}
- l_{i} is the number of columns of matrix A_{i}
- Output: a order of performing $n-1$ matrix multiplications in the minimum number of operations to obtain the product of $A_{1} A_{2} \ldots A_{n}$

Do not need to compute the result but find the fast way to get the result! (computing "how to fast compute" takes less time than "computing via a bad way")

Brute-Force Naïve Algorithm

- P_{n} : how many ways for n matrices to be multiplied

$$
\begin{array}{r}
P_{n}= \begin{cases}1 & \text { if } n=1 \\
\sum_{k=1}^{n-1} P_{k} P_{n-k} & \text { if } n \geq 2\end{cases} \\
\left(A_{1} A_{2} \cdots A_{k}\right)\left(A_{k+1} A_{k+2} \cdots A_{n}\right)
\end{array}
$$

- The solution of P_{n} is Catalan numbers, $\Omega\left(\frac{4^{n}}{n^{\frac{3}{2}}}\right)$, or is also $\Omega\left(2^{n}\right) \quad$ Exercise 15.2-3

Step 1：Characterize an OPT Solution

Matrix－Chain Multiplication Problem

Input：a sequence of integers $l_{0}, l_{1}, \ldots, l_{n}$ indicating the dimensionality of A_{i}
Output：a order of matrix multiplications with the minimum number of operations
－Subproblems
－M（i，j）：the min \＃operations for obtaining the product of $A_{i} \ldots A_{j}$
－Goal：M（1，n）
－Optimal substructure：suppose we know the OPT to M（i，j），there are k cases：

$$
i \leq k<j
$$

$$
A_{i} A_{i+1} \ldots A_{k}
$$

$$
A_{k+1} A_{k+2} \ldots A_{j}
$$

－Case k ：there is a cut right after A_{k} in OPT左右所花的運算量是 $M(i, k)$ 及 $M(k+1, ~ j)$ 的最佳解

Step 2：Recursively Define the Value of an OPT Solution

Matrix－Chain Multiplication Problem

Input：a sequence of integers $l_{0}, l_{1}, \ldots, l_{n}$ indicating the dimensionality of A_{i}
Output：a order of matrix multiplications with the minimum number of operations
－Suppose we know the optimal solution to M（i，j），there are k cases：
$\begin{aligned} & \text {－Case k：there is a cut right after } \mathrm{A}_{\mathrm{k}} \text { in OPT } \\ & \text { 左右所花的運算量是 } \mathrm{m}(\mathrm{i}, \mathrm{k}) \text { 及 } \mathrm{m}(\mathrm{k}+1, j) \text { 的最佳解 }\end{aligned} M_{i, j}=M_{i, k}+M_{k+1, j}+l_{i-1} l_{k} l_{j}$

$$
\begin{aligned}
& \text { - Recursively define the value }
\end{aligned}
$$

$$
M_{i, j}= \begin{cases}0 & i \geq j \\ \min _{i \leq k<j}\left(M_{i, k}+M_{k+1, j}+l_{i-1} l_{k} l_{j}\right) & i<j\end{cases}
$$

Step 3: Compute Value of an OPT Solution

Matrix-Chain Multiplication Problem

Input: a sequence of integers $l_{0}, l_{1}, \ldots, l_{n}$ indicating the dimensionality of A_{i}
Output: a order of matrix multiplications with the minimum number of operations

- Bottom-up method: solve smaller subproblems first

$$
M_{i, j}= \begin{cases}0 & i \geq j \\ \min _{i \leq k<j}\left(M_{i, k}+M_{k+1, j}+l_{i-1} l_{k} l_{j}\right) & i<j\end{cases}
$$

- How many subproblems to solve
- \#combination of the values i and j s.t. $1 \leq i \leq j \leq n$

$$
\begin{gathered}
T(n)=C_{2}^{n}+n=\Theta\left(n^{2}\right) \\
i \neq j \quad i \xlongequal{=} j
\end{gathered}
$$

Step 3: Compute Value of an OPT Solution

```
Matrix-Chain(n, l)
    initialize two tables M[1..n][1..n] and B[1..n-1][2..n]
    for i = 1 to n
        M[i][i] = 0 // boundary case
    for p = 2 to n // p is the chain length
        for i = 1 to n - p + 1 // all i, j combinations
            j = i + p - 1
            M[i][j] = \infty
            for k = i to j - 1 // find the best k
            q = M[i][k] + M[k + 1][j] + l[i - 1] * l[k] * l[j]
            if q < M[i][j]
                    M[i][j] = q
return M
\[
T(n)=\Theta\left(n^{3}\right)
\]

\section*{Dynamic Programming Illustration}


\section*{Step 4: Construct an OPT Solution by Backtracking}
```

Matrix-Chain(n, l)
initialize two tables M[1..n][1..n] and B[1..n-1][2..n]
for i = 1 to n
M[i][i] = 0 // boundary case
for p = 2 to n // p is the chain length
for i = 1 to n - p + 1 // all i, j combinations
j = i + p - 1
M[i][j] = \infty
for k = i to j - 1 // find the best k
q = M[i][k] + M[k + 1][j] + l[i - 1] * l[k] * l[j]
if q < M[i][j]
M[i][j] = q
B[i][j] = k // backtracking
return M and B

```
```

Print-Optimal-Parens(B, i, j)
if i == j
print }\mp@subsup{A}{i}{
else
print "("
Print-Optimal-Parens(B, i, B[i][j])
Print-Optimal-Parens(B, B[i][j] + 1, j)
print ")"

```
\(T(n)=\Theta(n)\)

\section*{Exercise}


\section*{DP\#5: Sequence Alignment}

Textbook Chapter 15.4 - Longest common subsequence Textbook Problem 15-5 - Edit distance

\section*{Monkey Speech Recognition}
－猴子們各自講話，經過語音辨識系統後，哪一支猴子發出最接近英文字＂banana＂的語音為優勝者
－How to evaluate the similarity between two sequences？


> svkbrlvpnzanczyqza

\section*{Longest Common Subsequence (LCS)}
- Input: two sequences \(X=\left\langle x_{1}, x_{2}, \cdots, x_{m}\right\rangle\)
\[
Y=\left\langle y_{1}, y_{2}, \cdots, y_{n}\right\rangle
\]
- Output: longest common subsequence of two sequences
- The maximum-length sequence of characters that appear left-to-right (but not necessarily a continuous string) in both sequences
\[
\begin{array}{ll}
X=\text { banana } & X=\text { banana } \\
Y=\text { aeniqadikjaz } & Y=\text { svkbrlvpnzanczyqza } \\
& \\
X \rightarrow \text { ba-n--an---a- } & X \rightarrow---b a---n-a n----a \\
Y \rightarrow-a e n i q a d i k j a z & Y \rightarrow \text { svkbrlvpnzanczyqza }
\end{array}
\]


The infinite monkey theorem: a monkey hitting keys at random for an infinite amount of time will almost surely type a given text

\section*{Edit Distance}
- Input: two sequences \(X=\left\langle x_{1}, x_{2}, \cdots, x_{m}\right\rangle\)
\[
Y=\left\langle y_{1}, y_{2}, \cdots, y_{n}\right\rangle
\]
- Output: the minimum cost of transformation from \(X\) to \(Y\)
- Quantifier of the dissimilarity of two strings
\[
\begin{array}{ll}
X=\text { banana } & X=\text { banana } \\
Y=\text { aeniqadikjaz } & Y=\text { svkbrlvpnzanczyqza }
\end{array}
\]
\({ }^{9} X \rightarrow\) ba-n--an---a\(X \rightarrow---b a---n-a n\) \(Y \rightarrow\) svkbrlvpnzanczyqza

1 deletion, 7 insertions, 1 substitution 12 insertions, 1 substitution

\section*{Sequence Alignment Problem}
- Input: two sequences \(X=\left\langle x_{1}, x_{2}, \cdots, x_{m}\right\rangle\)
\[
Y=\left\langle y_{1}, y_{2}, \cdots, y_{n}\right\rangle
\]
- Output: the minimal cost \(M_{m, n}\) for aligning two sequences
- Cost \(=\#\) insertions \(\times C_{\text {INS }}+\#\) deletions \(\times C_{\text {DEL }}+\#\) substitutions \(\times C_{p, q}\)

\section*{Step 1: Characterize an OPT Solution}

\section*{Sequence Alignment Problem}

Input: two sequences \(X=\left\langle x_{1}, x_{2}, \cdots, x_{m}\right\rangle Y=\left\langle y_{1}, y_{2}, \cdots, y_{n}\right\rangle\)
Output: the minimal cost \(M_{m, n}\) for aligning two sequences
- Subproblems
- SA (i, j): sequence alignment between prefix strings \(x_{1}, \ldots, x_{i}\) and \(y_{1}, \ldots, y_{j}\)
- Goal: SA (m, n)
- Optimal substructure: suppose OPT is an optimal solution to SA (i, j) , there are 3 cases:
- Case 1: \(x_{i}\) and \(y_{j}\) are aligned in OPT (match or substitution)
- OPT \(/\left\{x_{i}, y_{j}\right\}\) is an optimal solution of SA (i-1, j-1)
- Case 2: \(x_{i}\) is aligned with a gap in OPT (deletion)
- OPT is an optimal solution of SA (i-1, j)
- Case 3: \(y_{j}\) is aligned with a gap in OPT (insertion)
- OPT is an optimal solution of SA (i, j-1)

\section*{Step 2: Recursively Define the Value of an OPT Solution}

\section*{Sequence Alignment Problem}

Input: two sequences \(X=\left\langle x_{1}, x_{2}, \cdots, x_{m}\right\rangle \quad Y=\left\langle y_{1}, y_{2}, \cdots, y_{n}\right\rangle\)
Output: the minimal cost \(M_{m, n}\) for aligning two sequences
- Suppose OPT is an optimal solution to SA (i, j), there are 3 cases:
- Case 1: \(x_{i}\) and \(y_{j}\) are aligned in OPT (match or substitution)
- OPT \(/\left\{x_{i}, y_{j}\right\}\) is an optimal solution of SA (i-1, j-1)
\[
M_{i, j}=M_{i-1, j-1}+C_{x_{i}, y_{j}}
\]
- Case 2: \(x_{i}\) is aligned with a gap in OPT (deletion)
- OPT is an optimal solution of SA ( \(i-1, j\) )
\[
M_{i, j}=M_{i-1, j}+C_{\mathrm{DEL}}
\]
- Case 3: \(y_{j}\) is aligned with a gap in OPT (insertion)
- OPT is an optimal solution of SA (i, j-1)
\[
M_{i, j}=M_{i, j-1}+C_{\mathrm{INS}}
\]
- Recursively define the value
\[
M_{i, j}= \begin{cases}j C_{\mathrm{INS}} & \text { if } i=0 \\ i C_{\mathrm{DEL}} & \text { if } j=0 \\ \min \left(M_{i-1, j-1}+C_{x_{i}, y_{j}}, M_{i-1, j}+C_{\mathrm{DEL}}, M_{i, j-1}+C_{\mathrm{INS}}\right) & \text { otherwise }\end{cases}
\]

\section*{Step 3: Compute Value of an OPT Solution}

\section*{Sequence Alignment Problem}

Input: two sequences
Output: the minimal cost \(M_{m, n}\) for aligning two sequences
- Bottom-up method: solve smaller subproblems first
\[
M_{i, j}= \begin{cases}j C_{\mathrm{INS}} & \text { if } i=0 \\ i C_{\mathrm{DEL}} & \text { if } j=0 \\ \min \left(M_{i-1, j-1}+C_{x_{i}, y_{j}}, M_{i-1, j}+C_{\mathrm{DEL}}, M_{i, j-1}+C_{\mathrm{INS}}\right) & \text { otherwise }\end{cases}
\]
\begin{tabular}{|l|l|l|l|l|l|l|l|l|}
\hline\(X \backslash Y\) & 0 & 1 & 2 & 3 & 4 & 5 & \(\ldots\) & \(n\) \\
\hline
\end{tabular}

\[
T(n)=\Theta(m n)
\]

\section*{Step 3: Compute Value of an OPT Solution}

\section*{Sequence Alignment Problem}

Input: two sequences
Output: the minimal cost \(M_{m, n}\) for aligning two sequences
- Bottom-up method: solve smaller subproblems first
\[
M_{i, j}= \begin{cases}j C_{\mathrm{INS}} & \text { if } i=0 \\ i C_{\mathrm{DEL}} & \text { if } j=0 \\ \min \left(M_{i-1, j-1}+C_{x_{i}, y_{j}}, M_{i-1, j}+C_{\mathrm{DEL}}, M_{i, j-1}+C_{\mathrm{INS}}\right) & \text { otherwise }\end{cases}
\]
\[
C_{\mathrm{DEL}}=4, C_{\mathrm{INS}}=4
\]
\[
C_{p, q}=7, \text { if } p \neq q
\]


\section*{Step 3: Compute Value of an OPT Solution}

\section*{Sequence Alignment Problem}

Input: two sequences
Output: the minimal cost \(M_{m, n}\) for aligning two sequences
- Bottom-up method: solve smaller subproblems first
\[
M_{i, j}= \begin{cases}j C_{\mathrm{INS}} & \text { if } i=0 \\ i C_{\mathrm{DEL}} & \text { if } j=0 \\ \min \left(M_{i-1, j-1}+C_{x_{i}, y_{j}}, M_{i-1, j}+C_{\mathrm{DEL}}, M_{i, j-1}+C_{\mathrm{INS}}\right) & \text { otherwise }\end{cases}
\]
```

Seq-Align(X, Y, C CDEL, C CINS, C C,q
for j = 0 to n
M[0][j] = j * C CINS // |X|=0, cost=|Y|*penalty
for i = 1 to m T N N = O(mn)
M[i][0] = i * C CDEL // |Y|=0, cost=|X|*penalty
for i = 1 to m
for j = 1 to n
M[i][j] = min(M[i-1][j-1]+C Cxi,yi, M[i-1][j]+C CDEL, M[i][j-1]+C CINS)
return M[m][n]

```

\section*{Step 4: Construct an OPT Solution by Backtracking}

\section*{Sequence Alignment Problem}

Input: two sequences
Output: the minimal cost \(M_{m, n}\) for aligning two sequences
- Bottom-up method: solve smaller subproblems first
\[
M_{i, j}=\left\{\begin{array}{lc}
j C_{\mathrm{INS}} & \text { if } i=0 \\
i C_{\mathrm{DEL}} & \text { if } j=0 \\
\min \left(M_{i-1, j-1}+C_{x_{i}, y_{j}}, M_{i-1, j}+C_{\mathrm{DEL}}, M_{i, j-1}+C_{\mathrm{INS}}\right) & \text { otherwise }
\end{array}\right.
\]
\[
C_{\mathrm{DEL}}=4, C_{\mathrm{INS}}=4
\]
\[
C_{p, q}=7, \text { if } p \neq q
\]


\section*{Step 4: Construct an OPT Solution by Backtracking}

\section*{Sequence Alignment Problem}

Input: two sequences
Output: the minimal cost \(M_{m, n}\) for aligning two sequences
- Bottom-up method: solve smaller subproblems first
\[
M_{i, j}= \begin{cases}j C_{\mathrm{INS}} & \text { if } i=0 \\ i C_{\mathrm{DEL}} & \text { if } j=0 \\ \min \left(M_{i-1, j-1}+C_{x_{i}, y_{j}}, M_{i-1, j}+C_{\mathrm{DEL}}, M_{i, j-1}+C_{\mathrm{INS}}\right) & \text { otherwise }\end{cases}
\]
```

Find-Solution(M)
if m = 0 or n = 0
return {}
v = min(M[m-1][n-1] + C C mm,yn, M[m-1][n] + C CDEL, M[m][n-1] + C C INS
if v = M[m-1][n] + C CDEL // 个: deletion
return Find-Solution(m-1, n) T(n)=\Theta(m+n)
if v = M[m][n-1] + C CINS // <:insertion
return Find-Solution(m, n-1)
return {(m, n)} U Find-Solution(m-1, n-1) // \: match/substitution

```

\section*{Step 4: Construct an OPT Solution by Backtracking}
```

Seq-Align(X, Y, C CDEL, C CINS, Cp,q
for j = 0 to n
M[0][j] = j * C CINS // |X|=0, cost=|Y|*penalty
for i = 1 to m
M[i][0] = i * C CDEL // |Y|=0, cost=|X|*penalty }T(n)=\Theta(mn
for i = 1 to m
for j = 1 to n
M[i][j] = min(M[i-1][j-1]+C Cxi,yi, M[i-1][j]+C CDEL, M[i][j-1]+C CINS)
return M[m][n]

```
```

Find-Solution (M)
if $m=0$ or $n=0$
return \{\}
$\mathrm{v}=\min \left(\mathrm{M}[\mathrm{m}-1][\mathrm{n}-1]+\mathrm{C}_{\mathrm{xm}, \mathrm{yn}}, \mathrm{M}[\mathrm{m}-1][\mathrm{n}]+\mathrm{C}_{\mathrm{DEL},} \mathrm{M}[\mathrm{M}][\mathrm{n}-1]+\mathrm{C}_{\text {INS}}\right)$
if $v=M[m-1][n]+C_{\text {DEL }} / / \uparrow:$ deletion
return Find-Solution (m-1, n)
if $v=M[m][n-1]+C_{\text {INS }} / / \leftarrow$ insertion
return Find-Solution (m, $n-1$)
return \{(m, n) \} U Find-Solution (m-1, n-1) // ₹: match/substitution

```

\section*{Space Complexity}
- Space complexity
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline\(X I Y\) & 0 & 1 & 2 & 3 & 4 & 5 & \(\ldots\) & \(n\) \\
\hline 0 & & & & & & & & \\
\hline 1 & & & & & & & & & \\
\hline \(\mathbf{m}\) & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
- If only keeping the most recent two rows: Space-Seq-Align (X, Y)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline X\Y & 0 & 1 & 2 & 3 & ... & j & .. & n \\
\hline i-1 & & & & & & 1 & & \\
\hline i & & & & & & & & \\
\hline
\end{tabular}
\(\Rightarrow \Theta(n)\)

The optimal value can be computed, but the solution cannot be reconstructed

\section*{Space-Efficient Solution}
- Problem: find the min-cost alignment \(\rightarrow\) find the shortest path


\section*{Shortest Path in Graph}
- Each edge has a length/cost
- \(F(i, j)\) : length of the shortest path from \((0,0)\) to \((i, j)\) (START \(\rightarrow(i, j))\)
- \(B(i, j)\) : length of the shortest path from \((i, j)\) to \((m, n)((i, j) \rightarrow\) END \()\)
- \(F(m, n)=B(0,0)\)
\(F(2,3)=\) distance of the shortest path \(B(2,3)=\) distance of the shortest path


\section*{Recursive Equation}
- Each edge has a length/cost

- \(F(i, j)\) : length of the shortest path from \((0,0)\) to \((i, j)\) (START \(\rightarrow(i, j))\)
- \(B(i, j)\) : length of the shortest path from \((i, j)\) to \((m, n)((i, j) \rightarrow\) END \()\)
- Forward formulation
\[
F_{i, j}= \begin{cases}j C_{\mathrm{INS}} & \text { if } i=0 \\ i C_{\mathrm{DEL}} & \text { if } j=0 \\ \min \left(F_{i-1, j-1}+C_{x_{i}, y_{j}}, F_{i-1, j}+C_{\mathrm{DEL}}, F_{i, j-1}+C_{\mathrm{INS}}\right) & \text { otherwise }\end{cases}
\]
- Backward formulation
\[
B_{i, j}= \begin{cases}(n-j) C_{\mathrm{INS}} & \text { if } i=0 \\ (m-i) C_{\mathrm{DEL}} & \text { if } j=0 \\ \min \left(B_{i+1, j+1}+C_{x_{i}, y_{j}}, B_{i+1, j}+C_{\mathrm{DEL}}, B_{i, j+1}+C_{\mathrm{INS}}\right) & \text { otherwise }\end{cases}
\]

\section*{Shortest Path Problem}
```

F(i,j): length of the shortest path from (0,0) to (i,j)
B(i,j): length of the shortest path from (i,j) to (m,n)

```
- Observation 1: the length of the shortest path from \((0,0)\) to \((m, n)\) that passes through \((i, j)\) is \(F(i, j)+B(i, j)\)
\(\rightarrow\) optimal substructure


\section*{Shortest Path Problem}
```

F(i,j): length of the shortest path from (0,0) to (i,j)
B(i,j): length of the shortest path from (i,j) to (m,n)

```
- Observation 2: for any \(v\) in \(\{0, \ldots, n\}\), there exists a \(u\) s.t. the shortest path between \((0,0)\) and \((m, n)\) goes through \((u, v)\)
\(\rightarrow\) the shortest path must go across a vertical cut


\section*{Shortest Path Problem}

\section*{\(F(i, j)\) : length of the shortest path from \((0,0)\) to \((i, j)\) \(B(i, j)\) : length of the shortest path from \((i, j)\) to ( \(m, n\) )}
- Observation 1+2:
\[
\begin{aligned}
& F(m, n)=\min (F(0, v)+B(0, v), F(1, v)+B(1, v), \cdots, F(m, v)+B(m, v)) \\
& F(m, n)=\min _{0 \leq u \leq m} F(u, v)+B(u, v) \forall v
\end{aligned}
\]


\section*{Divide-and-Conquer Algorithm}
- Goal: finds optimal solution

- Idea: utilize sequence alignment algo.
- Call Space-Seq-Align (X,Y[1:v]) to find
\[
F(0, v), F(1, v), \ldots, F(m, v) \quad \Theta\left(m \times \frac{n}{2}\right)
\]
- Call Back-Space-Seq-Align (X,Y[v+1:n]) to find \(B(0, v), B(1, v), \ldots, B(m, v)\)
\[
\Theta\left(m \times \frac{n}{2}\right)
\]
- Let \(u\) be the index minimizing \(F(u, v)+B(u, v)\)
\(\Theta(m)\)

\section*{Divide-and-Conquer Algorithm}
- Goal: finds optimal solution - DC-Align (X, Y) Space Complexity: \(O(m+n)\)
\[
v=n / 2
\]

- Divide the sequence of size \(n\) into 2 subsequences
- Find \(u\) to minimize \(F(u, v)+B(u, v)\)
- Recursive case \((n>1) \quad \Theta(m n)\)
" prefix \(T\left(u, \frac{n}{2}\right)\)
\(=\) DC-Align(X[1:u], Y[1:v])
- suffix \(T\left(m-u, \frac{n}{2}\right)\)
\(=\) DC-Align (X[u+1:m], Y[v+1:n])
- Base case \((n=1)\)
- Return Seq-Align(X, y) \(\Theta(m)\)
- Return prefix + suffix \(\Theta(1)\)
- \(T(m, n)=\) time for running DC-Align (X, Y) with \(|X|=m,|Y|=n\)
\[
T(m, n)=\left\{\begin{array}{ll}
O(m) & \text { if } n=1  \tag{43}\\
T(u, n / 2)+T(m-u, n / 2)+O(m n) & \text { if } n \geq 2
\end{array} \Rightarrow T(m, n)=O(m n)\right.
\]

\section*{Time Complexity Analysis}
\[
T(m, n)=\left\{\begin{array}{ll}
O(m) & \text { if } n=1 \\
T(u, n / 2)+T(m-u, n / 2)+O(m n) & \text { if } n \geq 2
\end{array} \Rightarrow T(m, n)=O(m n)\right.
\]
- Proof
- There exists positive constants \(a, b\) s.t. all
\[
T(m, n) \leq \begin{cases}a \cdot m & \text { if } n=1 \\ T(u, n / 2)+T(m-u, n / 2)+b \cdot m n & \text { if } n \geq 2\end{cases}
\]
- Use induction to prove \(T(m, n) \leq k m n\)

Practice to check the initial condition
\[
T(m, n) \leq T\left(u, \frac{n}{2}\right)+T\left(m-u, \frac{n}{2}\right)+b \cdot m n
\]

Inductive
hypothesis
\[
\begin{aligned}
& \leq k u \frac{n}{2}+k(m-u) \frac{n}{2}+b \cdot m n \\
& \leq\left(\frac{k}{2}+b\right) m n \\
& \leq k m n \quad \text { when } k \geq 2 b
\end{aligned}
\]

\section*{Extension：注音文 Recognition}
－Given a graph \(G=(V, E)\) ，each edge \((u, v) \in E\) has an associated non－ negative probability \(p(u, v)\) of traversing the edge（ \(u, v\) ）and producing the corresponding character．Find the most probable path with the label \(s=\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right\rangle\) ．


\section*{Viterbi Algorithm}


\title{
DP\#6: Weighted Interval Scheduling
}

\section*{Interval Scheduling}
- Input: \(n\) job requests with start times \(s_{i}\), finish times \(f_{i}\)
- Output: the maximum number of compatible jobs
- The interval scheduling problem can be solved using an "early-finish-timefirst" greedy algorithm in \(O(n)\) time
"Greedy Algorithm" Next topic!


\section*{Weighted Interval Scheduling}
- Input: \(n\) job requests with start times \(s_{i}\), finish times \(f_{i}\), and values \(v_{i}\)
- Output: the maximum total value obtainable from compatible jobs

Assume that the requests are sorted in non-decreasing order \(\left(f_{i} \leq f_{j}\right.\) when \(\left.i<j\right)\) \(p(j)=\) largest index \(i<j\) s.t. jobs \(i\) and \(j\) are compatible
e.g. \(p(1)=0, p(2)=0, p(3)=1, p(4)=1, p(5)=4, p(6)=3\)
job index


\section*{Step 1: Characterize an OPT Solution}

\section*{Weighted Interval Scheduling Problem}

Input: \(n\) jobs with \(\left\langle s_{i}, f_{i}, v_{i}\right\rangle, p(j)=\) largest index \(i<j\) s.t. jobs \(i\) and \(j\) are compatible Output: the maximum total value obtainable from compatible
- Subproblems
- WIS (i) : weighted interval scheduling for the first \(i\) jobs
- Goal: WIS (n)
- Optimal substructure: suppose OPT is an optimal solution to WIS (i), there are 2 cases:
- Case 1: job \(i\) in OPT
- OPT \\{i\} is an optimal solution of WIS (p (i)) }
- Case 2: job \(i\) not in OPT
- OPT is an optimal solution of WIS (i-1)


\section*{Step 2: Recursively Define the Value of an OPT Solution}

\section*{Weighted Interval Scheduling Problem}

Input: \(n\) jobs with \(\left\langle s_{i}, f_{i}, v_{i}\right\rangle, p(j)=\) largest index \(i<j\) s.t. jobs \(i\) and \(j\) are compatible Output: the maximum total value obtainable from compatible
- Optimal substructure: suppose OPT is an optimal solution to WIS (i) , there are 2 cases:
- Case 1: job \(i\) in OPT
- OPT\\{i\} is an optimal solution of WIS (p (i)) }
- Case 2: job \(i\) not in OPT
- OPT is an optimal solution of WIS (i-1)
\[
M_{i}=v_{i}+M_{p(i)}
\]
\[
M_{i}=M_{i-1}
\]
- Recursively define the value
\[
M_{i}= \begin{cases}0 & \text { if } i=0 \\ \max \left(v_{i}+M_{p(i)}, M_{i-1}\right) & \text { otherwise }\end{cases}
\]

\section*{Step 3: Compute Value of an OPT Solution}

\section*{Weighted Interval Scheduling Problem}

Input: \(n\) jobs with \(\left\langle s_{i}, f_{i}, v_{i}\right\rangle, p(j)=\) largest index \(i<j\) s.t. jobs \(i\) and \(j\) are compatible Output: the maximum total value obtainable from compatible
- Bottom-up method: solve smaller subproblems first
\[
M_{i}= \begin{cases}0 & \text { if } i=0 \\ \max \left(v_{i}+M_{p(i)}, M_{i-1}\right) & \text { otherwise }\end{cases}
\]

```

WIS(n, s, f, v, p)
M[0] = 0
for i = 1 to n }\quadT(n)=\Theta(n
M[i] = max(v[i] + M[p[i]], M[i - 1])
return M[n]

```

\section*{Step 4: Construct an OPT Solution by Backtracking}

\section*{Weighted Interval Scheduling Problem}

Input: \(n\) jobs with \(\left\langle s_{i}, f_{i}, v_{i}\right\rangle, p(j)=\) largest index \(i<j\) s.t. jobs \(i\) and \(j\) are compatible Output: the maximum total value obtainable from compatible
- Bottom-up method: solve smaller subproblems first
\[
M_{i}= \begin{cases}0 & \text { if } i=0 \\ \max \left(v_{i}+M_{p(i)}, M_{i-1}\right) & \text { otherwise }\end{cases}
\]


\section*{Step 4: Construct an OPT Solution by Backtracking}

\section*{Weighted Interval Scheduling Problem}

Input: \(n\) jobs with \(\left\langle s_{i}, f_{i}, v_{i}\right\rangle, p(j)=\) largest index \(i<j\) s.t. jobs \(i\) and \(j\) are compatible Output: the maximum total value obtainable from compatible
```

WIS(n, s, f, v, p)
M[0] = 0
for i = 1 to n
M[i] = max(v[i] + M[p[i]], M[i - 1])
return M[n]

```
```

Find-Solution(M, n)
if n = 0
return {}
if v[n] + M[p[n]] > M[n-1] // case 1
return {n} U Find-Solution(p[n])
return Find-Solution(n-1) // case 2

```
\[
T(n)=\Theta(n)
\]
\[
T(n)=\Theta(n)
\]

\section*{Concluding Remarks}
- "Dynamic Programming": solve many subproblems in polynomial time for which a naïve approach would take exponential time
- When to use DP
- Whether subproblem solutions can combine into the original solution
- When subproblems are overlapping
- Whether the problem has optimal substructure
- Common for optimization problem
- Two ways to avoid recomputation
- Top-down with memoization
- Bottom-up method
- Complexity analysis
- Space for tabular filling
- Size of the subproblem graph

\section*{Question?}

Important announcement will be sent to @ntu.edu.tw mailbox \& post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw```

