OPTIMAL BINARY SEARCH TREE <DVYAMIC PROGRAMMING>

Announcement

- Mini-HW 4 released
- Due on 10/18 (Thu) 14:20
- Homework 1 due a week later
- A4 hardcopy submitted before the class starts
- Softcopy submitted to NTU COOL before the deadline
- Homework 2 released
- Due on 11/06 (Tue) 18:00 (3.5 weeks)
- Submitted to NTU COOL only

Mini-HW 4

Consider a 0/1 Knapsack Problem where you have \mathbf{N} objects to choose from
The weight and value of each object is listed in the table below

Weight	1	3	4	5	8	10	11
Value	3	7	10	12	17	19	21

1. Construct a DP table to fill knapsack with capacity $W=15 \quad$ (80\%) (Your DP algorithm must run in $\mathbf{O}\left(\mathrm{N}^{*} \mathrm{~W}\right)$ time)
2. Briefly explain whether your algorithm can adapt to objects with non-integer weight

Homework 2

Homework \#2
Due Time: 2018/11/06 (Tues.) 18:00
Contact TAs: ada-ta@csie.ntu.edu.tw

Instructions and Announcements

- There are four programming problems and three hand-written problems, and the homework set including bonus are worthy of 110 points. If you get more than 100 points, your score will still be counted as 100 points.
- Programming. The judge system is located at https://ada18-judge.csie.org. Please login and submit your code for the programming problems (i.e., those containing "Programming" in the problem title) by the deadline. NO LATE SUBMISSION IS ALLOWED.
- Hand-written. For other problems (also known as the "hand-written problems"), please turn in a printed/written version of your answers to the instructor at the beginning of the class on $2018 / 11 / 01$, or put them in the box in front of R307 before the deadline. Remember to print your name/student ID on the first page of your submitted answers. In case that your homework is lost during the grading, you can also upload your homework to the NTU COOL system. NO LATE SUBMISSION IS ALLOWED.

Outline

- Dynamic Programming
- DP \#1: Rod Cutting
- DP \#2: Stamp Problem
- DP \#3: Knapsack Problem
- 0/1 Knapsack
- Unbounded Knapsack
- Multidimensional Knapsack
- Fractional Knapsack
- DP \#4: Matrix-Chain Multiplication
- DP \#5: Sequence Alignment Problem
- Longest Common Subsequence (LCS) / Edit Distance
- Viterbi Algorithm
- Space Efficient Algorithm
- DP \#6: Weighted Interval Scheduling

動腦一下－囚犯問題

- 有 100 個死囚，隔天執行死刑，典獄長開恩給他們一個存活的機會。
- 當隔天執行死刑時，每人頭上戴一頂帽子（黑或白）排成一隊伍，在死刑執行前，由隊伍中最後的囚犯開始，每個人可以猜測自己頭上的帽子顏色（只允許說黑或白），猜對則免除死刑，猜錯則執行死刑。
－若這些囚犯可以前一天晚上先聚集討論方案，是否有好的方法可以使總共存活的囚犯數量期望值最高？

猜測規則

－囚犯排成一排，每個人可以看到前面所有人的帽子，但看不到自己及後面囚犯的。

- 由最後一個囚犯開始猜測，依序往前。
- 每個囚犯皆可聽到之前所有囚犯的猜測内容。色 \rightarrow 存活期望值為 75 人

Algorithm Design Paradigms

- Divide-and-Conquer
- partition the problem into independent or disjoint subproblems
- repeatedly solving the common subsubproblems
\rightarrow more work than necessary
- Dynamic Programming
- partition the problem into dependent or overlapping subproblems
- avoid recomputation
\checkmark Top-down with memoization
\checkmark Bottom-up method

Dynamic Programming Procedure

- DP procedure

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution, typically in a bottom-up fashion
4. Construct an optimal solution from computed information

- Two key properties of DP for optimization
- Overlapping subproblems
- Optimal substructure - an optimal solution can be constructed from optimal solutions to subproblems
\checkmark Reduce search space (ignore non-optimal solutions)

DP\#1: Rod Cutting

Textbook Chapter 15.1 - Rod Cutting

Rod Cutting Problem

- Input: a rod of length n and a table of prices p_{i} for $i=1, \ldots, n$

length $i(\mathrm{~m})$	1	2	3	4	5
price p_{i}	1	5	8	9	10

- Output: the maximum revenue r_{n} obtainable by cutting up the rod and selling the pieces

Brute-Force Algorithm

length $i(\mathrm{~m})$	1	2	3	4	5
price p_{i}	1	5	8	9	10

- A rod with the length $=4$

Brute-Force Algorithm

Iength $i(\mathrm{~m})$	1	2	3	4	5
price p_{i}	1	5	8	9	10

- A rod with the length = n

- For each integer position, we can choose "cut" or "not cut"
- There are $n-1$ positions for consideration
- The total number of cutting results is $2^{n-1}=\Theta\left(2^{n-1}\right)$

Recursive Thinking

r_{n} : the maximum revenue obtainable for a rod of length n

- We use a recursive function to solve the subproblems
- If we know the answer to the subproblem, can we get the answer to the original problem?

- Optimal substructure - an optimal solution can be constructed from optimal solutions to subproblems

Recursive Algorithms

- Version 1

$$
r_{n}=\max (p_{n}, \underbrace{\left.r_{1}+r_{n-1}, r_{2}+r_{n-2}, \cdots, r_{n-1}+r_{1}\right)}_{\text {no cut }}
$$

- Version 2
- try to reduce the number of subproblems \rightarrow focus on the left-most cut

Recursive Procedure

- Focus on the left-most cut
- assume that we always cut from left to right \rightarrow the first cut

Naïve Recursion Algorithm

$$
r_{n}=\max _{1 \leq i \leq n}\left(p_{i}+r_{n-i}\right)
$$

```
Cut-Rod(p, n)
    // base case
    if n == 0
        return 0
    // recursive case
    q = -\infty
    for i = 1 to n
        q = max(q, p[i] + Cut-Rod(p, n - i))
    return q
```

- $T(n)=$ time for running $\operatorname{Cut}-\operatorname{Rod}(\mathrm{p}, \mathrm{n})$

$$
T(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
\Theta(1)+\sum_{i=0}^{n} T(n-i) & \text { if } n \geq 2
\end{array} \Rightarrow T(n)=\Theta\left(2^{n}\right)\right.
$$

Naïve Recursion Algorithm

- Rod cutting problem

```
Cut-Rod(p, n)
    // base case
    if n == 0
        return 0
    // recursive case
    q = -\infty
    for i = 1 to n
        q = max(q, p[i] + Cut-Rod(p, n - i))
    return q
```


Calling overlapping subproblems result in poor efficiency

Dynamic Programming

- Idea: use space for better time efficiency
- Rod cutting problem has overlapping subproblems and optimal substructures \rightarrow can be solved by DP
- When the number of subproblems is polynomial, the time complexity is polynomial using DP
- DP algorithm
- Top-down: solve overlapping subproblems recursively with memoization
- Bottom-up: build up solutions to larger and larger subproblems

Dynamic Programming

－Top－Down with Memoization
－Solve recursively and memo the subsolutions（跳著填表）
－Suitable that not all subproblems should be solved

$f(0)$	$f(1)$	$f(2)$	\ldots	$f(n)$

ϑ
－Bottom－Up with Tabulation
－Fill the table from small to large
－Suitable that each small problem should be solved

Algorithm for Rod Cutting Problem Top-Down with Memoization

```
Memoized-Cut-Rod(p, n)
    // initialize memo (an array r[] to keep max revenue)
    r[0] = 0
    for i = 1 to n
                                    \Theta(n)
        r[i] = -\infty // r[i] = max revenue for rod with length=i
    return Memorized-Cut-Rod-Aux(p, n, r)
Memoized-Cut-Rod-Aux(p, n, r)
    if r[n] >= 0
        return r[n] // return the saved solution
                            \Theta(1)
    q = -\infty
    for i = 1 to n
        q = max(q, p[i] + Memoized-Cut-Rod-Aux(p, n-i, r))
                            \Theta(n' 2
    r[n] = q // update memo
    return q
```

- $T(n)=$ time for running Memoized-Cut-Rod $(\mathrm{p}, \mathrm{n}) \Rightarrow T(n)=\Theta\left(n^{2}\right)$

Algorithm for Rod Cutting Problem

 Bottom-Up with Tabulation```
Bottom-Up-Cut-Rod(p, n)
 r[0] = 0
 for j = 1 to n // compute r[1], r[2], ... in order
 q = -\infty
 for i = 1 to j
 q = max(q, p[i] + r[j - i])
 r[j] = q
 return r[n]
```

- $T(n)=$ time for running Bottom-Up-Cut-Rod $(\mathrm{p}, \mathrm{n}) \Rightarrow T(n)=\Theta\left(n^{2}\right)$


## Rod Cutting Problem

- Input: a rod of length $n$ and a table of prices $p_{i}$ for $i=1, \ldots, n$

| length $i(\mathrm{~m})$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| price $p_{i}$ | 1 | 5 | 8 | 9 | 10 |

- Output: the maximum revenue $r_{n}$ obtainable and the list of cut pieces



## Algorithm for Rod Cutting Problem Bottom-Up with Tabulation

- Add an array to keep the cutting positions cut

```
Extended-Bottom-Up-Cut-Rod(p, n)
 r[0] = 0
 for j = 1 to n //compute r[1], r[2], ... in order
 q = -\infty
 for i = 1 to j
 if q< p[i] + r[j - i]
 q = p[i] + r[j - i]
 cut[j] = i // the best first cut for len j rod
 r[i] = q
 return r[n], cut
```

```
Print-Cut-Rod-Solution(p, n)
 (r, cut) = Extended-Bottom-up-Cut-Rod(p, n)
 while n > 0
 print cut[n]
 n = n - cut[n] // remove the first piece
```


## Dynamic Programming

- Top-Down with Memoization

| $\mathrm{f}(0)$ | $\mathrm{f}(1)$ | $\mathrm{f}(2)$ | $\ldots$ | $\mathrm{f}(\mathrm{n})$ |
| :--- | :--- | :--- | :--- | :--- |



- Better when some subproblems not be solved at all
- Solve only the required parts of subproblems
- Bottom-Up with Tabulation

- Better when all subproblems must be solved at least once
- Typically outperform top-down method by a constant factor
- No overhead for recursive calls
- Less overhead for maintaining the table



## Informal Running Time Analysis

- Approach 1: approximate via (\#subproblems) * (\#choices for each subproblem)
- For rod cutting
- \#subproblems = n
- \#choices for each subproblem = O(n)
- $\rightarrow T(n)$ is about $O\left(n^{2}\right)$
- Approach 2: approximate via subproblem graphs


## Subproblem Graphs

- The size of the subproblem graph allows us to estimate the time complexity of the DP algorithm
- A graph illustrates the set of subproblems involved and how subproblems depend on another $G=(V, E)$ ( E : edge, V: vertex)
- |V|: \#subproblems
- A subproblem is run only once
- $|E|$ : sum of \#subsubproblems are needed for each subproblem
- Time complexity: linear to $O(|E|+|V|)$


Graph Algorithm (taught later)

## Dynamic Programming Procedure

1. Characterize the structure of an optimal solution
$\checkmark$ Overlapping subproblems: revisit same subproblems
$\checkmark$ Optimal substructure: an optimal solution to the problem contains within it optimal solutions to subproblems
2. Recursively define the value of an optimal solution
$\checkmark$ Express the solution of the original problem in terms of optimal solutions for subproblems
3. Compute the value of an optimal solution $\checkmark$ typically in a bottom-up fashion
4. Construct an optimal solution from computed information $\checkmark$ Step 3 and 4 may be combined

## Revisit DP for Rod Cutting Problem

1. Characterize the structure of an optimal solution
2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution
4. Construct an optimal solution from computed information

## Step 1: Characterize an OPT Solution

## Rod Cutting Problem

Input: a rod of length $n$ and a table of prices $p_{i}$ for $i=1, \ldots, n$
Output: the maximum revenue $r_{n}$ obtainable

- Step 1-Q1: What can be the subproblems?
- Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can be represented by the optimal solutions to subproblems)
- Yes. $\rightarrow$ continue
- No. $\rightarrow$ go to Step 1-Q1 or there is no DP solution for this problem


## Step 1：Characterize an OPT Solution

## Rod Cutting Problem

Input：a rod of length $n$ and a table of prices $p_{i}$ for $i=1, \ldots, n$
Output：the maximum revenue $r_{n}$ obtainable
－Step 1－Q1：What can be the subproblems？
－Subproblems：Cut－Rod（0），Cut－Rod（1），．．．，Cut－Rod（n－1）
－Cut－Rod（i）：rod cutting problem with length－i rod
－Goal：Cut－Rod（n）
－Suppose we know the optimal solution to Cut－Rod（i），there are i cases：
－Case 1：the first segment in the solution has length 1從solution中拿掉一段長度為1的鐵條，剩下的部分是Cut－Rod（i－1）的最佳解
－Case 2：the first segment in the solution has length 2從solution中拿掉一段長度為2的鐵條，剩下的部分是Cut－Rod（i－2）的最佳解
－Case i：the first segment in the solution has length i從solution中拿掉一段長度為i的鐵條，剩下的部分是Cut－Rod（0）的最佳解

## Step 1: Characterize an OPT Solution

## Rod Cutting Problem

Input: a rod of length $n$ and a table of prices $p_{i}$ for $i=1, \ldots, n$
Output: the maximum revenue $r_{n}$ obtainable

- Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can be represented by the optimal solutions to subproblems)
- Yes. Prove by contradiction.


## Step 2：Recursively Define the Value of an OPT Solution

## Rod Cutting Problem

Input：a rod of length $n$ and a table of prices $p_{i}$ for $i=1, \ldots, n$
Output：the maximum revenue $r_{n}$ obtainable
－Suppose we know the optimal solution to Cut－Rod（i），there are i cases：
－Case 1：the first segment in the solution has length 1從solution中拿掉一段長度為 1 的鐵條，剩下的部分是Cut－Rod（i－1）的最佳解
－Case 2：the first segment in the solution has length 2
從solution中拿掉一段長度為 2 的鐵條，剩下的部分是 $\operatorname{Cut}-\operatorname{Rod}(\mathrm{i}-2)$ 的最佳解 $r_{i}=p_{2}+r_{i-2}$
－Case i：the first segment in the solution has length i從solution中拿掉一段長度為菂鐵條，剩下的部分是Cut－Rod（0）的最佳解

$$
r_{i}=p_{i}+r_{0}
$$

－Recursively define the value

$$
r_{i}= \begin{cases}0 & \text { if } i=0 \\ \max _{1 \leq j \leq i}\left(p_{j}+r_{i-j}\right) & \text { if } i \geq 1\end{cases}
$$

## Step 3: Compute Value of an OPT Solution

## Rod Cutting Problem

Input: a rod of length $n$ and a table of prices $p_{i}$ for $i=1, \ldots, n$
Output: the maximum revenue $r_{n}$ obtainable

- Bottom-up method: solve smaller subproblems first

$$
r_{i}= \begin{cases}0 & \text { if } i=0 \\ \max _{1 \leq j \leq i}\left(p_{j}+r_{i-j}\right) & \text { if } i \geq 1\end{cases}
$$



```
Bottom-Up-Cut-Rod(p, n)
 r[0] = 0
 for j = 1 to n // compute r[1], r[2], ... in order
 q = -\infty
 for i = 1 to j
 q = max(q, p[i] + r[j - i])
 r[j] = q
 return r[n]
```

    \(T(n)=\Theta\left(n^{2}\right)\)
    \section*{Step 4: Construct an OPT Solution by Backtracking <br> | length $i$ | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| price $p_{i}$ | 1 | 5 | 8 | 9 | 10 |}

## Rod Cutting Problem

Input: a rod of length $n$ and a table of prices $p_{i}$ for $i=1, \ldots, n$
Output: the maximum revenue $r_{n}$ obtainable

- Bottom-up method: solve smaller subproblems first

$$
r_{i}= \begin{cases}0 & \text { if } i=0 \\ \max _{1 \leq j \leq i}\left(p_{j}+r_{i-j}\right) & \text { if } i \geq 1\end{cases}
$$

| $\mathbf{i}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\ldots$ | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{r}[\mathrm{i}]$ | 0 | 1 | 5 | 8 | 10 |  |  |  |
| cut $[\mathrm{i}]$ | 0 | 1 | 2 | 3 | 2 |  |  |  |
| $\max \left(p_{1}+r_{0}\right)$ <br> $\max \left(p_{1}+r_{1}, p_{2}+r_{0}\right)$ <br>  <br> $\max \left(p_{1}+r_{2}, p_{2}+r_{1}, p_{3}+r_{0}\right)$ <br> $\max \left(p_{1}+r_{3}, p_{2}+r_{2}, p_{3}+r_{1}, p_{4}+r_{0}\right)$ |  |  |  |  |  |  |  |  |

## Step 4: Construct an OPT Solution by Backtracking

```
Cut-Rod(p, n)
 r[0] = 0
 for j = 1 to n // compute r[1], r[2], ... in order
 q = -\infty
 for i = 1 to j
 if q< p[i] + r[j - i]
```

            \(q=p[i]+r[j-i]\)
    ```
 \(q=p[i]+r[j-i]\)
 cut [j] = i // the best first cut for len j rod
 cut [j] = i // the best first cut for len j rod
 ri] = q
 ri] = q
 return \(r[n]\), cut
```

```
 return \(r[n]\), cut
```

```
\[
T(n)=\Theta\left(n^{2}\right)
\]
```

```
Print-Cut-Rod-Solution(p, n)
```

```
Print-Cut-Rod-Solution(p, n)
```

    (r, cut) = Cut-Rod(p, n)
    ```
 (r, cut) = Cut-Rod(p, n)
```

    (r, cut) = Cut-Rod(p, n)
    while n > 0
    while n > 0
    while n > 0
        print cut[n]
        print cut[n]
        print cut[n]
        n = n - cut[n] // remove the first piece
    ```
```

        n = n - cut[n] // remove the first piece
    ```
```

        n = n - cut[n] // remove the first piece
    ```
```

隹

```
```

    while n>o
    ```
```

    while n>o
    ```
```

    while n>o
    ```
 \(T(n)=\Theta(n)\)
 return \(r[n]\) cut

\section*{DP\#2: Stamp Problem}

\section*{Stamp Problem}
- Input: the postage \(n\) and the stamps with values \(v_{1}, v_{2}, \ldots, v_{k}\)

- Output: the minimum number of stamps to cover the postage

\section*{A Recursive Algorithm}
- The optimal solution \(S_{n}\) can be recursively defined as \(1+\min _{i}\left(S_{n-v_{i}}\right)\)
\[
1+\min \left(S_{n-3}, S_{n-5}, S_{n-7}, S_{n-12}\right)
\]
```

Stamp (v, n)
r_min =
if n == 0 // base case
return 0
for i = 1 to k // recursive case
r[i] = Stamp(v, n - v[i])
if r[i] < r_min
r_min = r[i]
return r_min + 1

```
\[
T(n)=\Theta\left(k^{n}\right) \text { 昏 }
\]

\section*{Step 1：Characterize an OPT Solution}

\section*{Stamp Problem}

Input：the postage \(n\) and the stamps with values \(v_{1}, v_{2}, \ldots, v_{k}\)
Output：the minimum number of stamps to cover the postage
－Subproblems
－S（i）：the min \＃stamps with postage i
－Goal：S（n）
－Optimal substructure：suppose we know the optimal solution to S（i）， there are k cases：
－Case 1：there is a stamp with \(\mathrm{v}_{1}\) in OPT從solution中拿掉一張郵資為 \(v_{1}\) 的郵票，剩下的部分是 \(S(i-v[1])\) 的最佳解
－Case 2：there is a stamp with \(\mathrm{v}_{2}\) in OPT從solution中拿掉一張郵資為 \(v_{2}\) 的郵票，剩下的部分是 \(S(i-v[2])\) 的最佳解
－Case \(k\) ：there is a stamp with \(v_{k}\) in OPT從solution中拿掉一張郵資為 \(v_{k}\) 的郵票，剩下的部分是 \(S(i-v[k])\) 的最佳解

\section*{Step 2：Recursively Define the Value of an OPT Solution}

\section*{Stamp Problem}

Input：the postage \(n\) and the stamps with values \(v_{1}, v_{2}, \ldots, v_{k}\)
Output：the minimum number of stamps to cover the postage
－Suppose we know the optimal solution to \(S\)（i），there are \(k\) cases：
－Case 1：there is a stamp with \(\mathrm{v}_{1}\) in OPT從solution中拿掉一張郵資為 \(v_{1}\) 的郵票，剩下的部分是 \(S(i-v[1])\) 的最佳解
\[
S_{i}=1+S_{i-v_{1}}
\]
－Case 2：there is a stamp with \(\mathrm{v}_{2}\) in OPT從solution中拿掉一張郵資為 \(v_{2}\) 的郵票，剩下的部分是 \(S(i-v[2])\) 的最佳解
\[
S_{i}=1+S_{i-v_{2}}
\]
－Case \(k\) ：there is a stamp with \(v_{k}\) in OPT從solution中拿掉一張郵資為 \(v_{k}\) 的郵票，剩下的部分是 \(S(i-v[k])\) 的最佳解
\[
S_{i}=1+S_{i-v_{k}}
\]
－Recursively define the value
\[
S_{i}= \begin{cases}0 & \text { if } i=0 \\ \min _{1 \leq j \leq k}\left(1+S_{i-v_{j}}\right) & \text { if } i \geq 1\end{cases}
\]

\section*{Step 3: Compute Value of an OPT Solution}

\section*{Stamp Problem}

Input: the postage \(n\) and the stamps with values \(v_{1}, v_{2}, \ldots, v_{k}\)
Output: the minimum number of stamps to cover the postage
- Bottom-up method: solve smaller subproblems first
\[
S_{i}= \begin{cases}0 & \text { if } i=0 \\ \min _{1 \leq j \leq k}\left(1+S_{i-v_{j}}\right) & \text { if } i \geq 1\end{cases}
\]
```

            if S[i - v[j]] < r_min
                r_min = 1 + S[i - v[j]]
    S[i] = r_min
    return S[n]
    ```
\[
T(n)=\Theta(k n)
\]

\section*{Step 4: Construct an OPT Solution by Backtracking}
```

Stamp (v, n)
$S[0]=0$
for $i=1$ to $n$
$r$ _min $=\infty$
for $j=1$ to $k$
if S[i - v[j]] < r_min
r_min $=1+$ Si - v[j]]
$B[i]=j / /$ backtracking for stamp with $v[j]$
S[i] = r_min
return $S[n], B$

```
```

Print-Stamp-Selection(v, n)
(S, B) = Stamp(v, n)
while n > 0
print B[n]
n = n - v[B[n]]

```
\[
T(n)=\Theta(k n)
\]
\[
T(n)=\Theta(n)
\]

\section*{DP\＃3：Knapsack （背包問題）}

Textbook Exercise 16．2－2

\section*{Knapsack Problem}

－Input：\(n\) items where \(i\)－th item has value \(v_{i}\) and weighs \(w_{i}\left(v_{i}\right.\) and \(w_{i}\) are positive integers）
－Output：the maximum value for the knapsack with capacity of \(W\)
－Variants of knapsack problem
- 0－1 Knapsack Problem：每項物品只能拿一個
- Unbounded Knapsack Problem：每項物品可以拿多個
- Multidimensional Knapsack Problem：背包空間有限
- Multiple－Choice Knapsack Problem：每一類物品最多拿一個
- Fractional Knapsack Problem：物品可以只拿部分

\section*{Knapsack Problem}

－Input：\(n\) items where \(i\)－th item has value \(v_{i}\) and weighs \(w_{i}\left(v_{i}\right.\) and \(w_{i}\) are positive integers）
－Output：the maximum value for the knapsack with capacity of \(W\)
－Variants of knapsack problem
- 0－1 Knapsack Problem：每項物品只能拿一個
- Unbounded Knapsack Problem：每項物品可以拿多個
- Multidimensional Knapsack Problem：背包空間有限
- Multiple－Choice Knapsack Problem：每一類物品最多拿一個
- Fractional Knapsack Problem：物品可以只拿部分

\section*{Step 1: Characterize an OPT Solution}

\section*{0-1 Knapsack Problem}

Input: \(n\) items where \(i\)-th item has value \(v_{i}\) and weighs \(w_{i}\)
Output: the max value within \(W\) capacity, where each item is chosen at most once
- Subproblems ZO-KP(i)

consider the available capacity
- ZO-KP (i, w) : 0-1 knapsack problem within \(w\) capacity for the first \(i\) items
- Goal: ZO-KP (n, W)
- Optimal substructure: suppose OPT is an optimal solution to ZO-KP (i, w) , there are 2 cases:
- Case 1: item \(i\) in OPT
- OPT \(\backslash\{i\}\) is an optimal solution of ZO-KP (i-1, w \(-\mathrm{w}_{\mathrm{i}}\))
- Case 2: item \(i\) not in OPT
- OPT is an optimal solution of ZO-KP (i - 1, w)

\section*{Step 2: Recursively Define the Value of an OPT Solution}

\section*{0-1 Knapsack Problem}

Input: \(n\) items where \(i\)-th item has value \(v_{i}\) and weighs \(w_{i}\)
Output: the max value within \(W\) capacity, where each item is chosen at most once
- Optimal substructure: suppose OPT is an optimal solution to ZO-KP (i, w) , there are 2 cases:
- Case 1: item \(i\) in OPT
\[
M_{i, w}=v_{i}+M_{i-1, w-w_{i}}
\]
- OPT \(\backslash\{i\}\) is an optimal solution of ZO-KP (i - 1, w - \(\mathrm{w}_{\mathrm{i}}\))
- Case 2: item \(i\) not in OPT
- OPT is an optimal solution of \(\mathrm{ZO}-\mathrm{KP}(\mathrm{i}-1, \mathrm{w})\)
\[
M_{i, w}=M_{i-1, w}
\]
- Recursively define the value
\[
M_{i, w}= \begin{cases}0 & \text { if } i=0 \\ M_{i-1, w} & \text { if } w_{i}>w \\ \max \left(v_{i}+M_{i-1, w-w_{i}}, M_{i-1, w}\right) & \text { otherwise }\end{cases}
\]

\section*{Step 3: Compute Value of an OPT Solution}

\section*{0-1 Knapsack Problem}

Input: \(n\) items where \(i\)-th item has value \(v_{i}\) and weighs \(w_{i}\)
Output: the max value within \(W\) capacity, where each item is chosen at most once
- Bottom-up method: solve smaller subproblems first
\[
M_{i, w}= \begin{cases}0 & \text { if } i=0 \\ M_{i-1, w} & \text { if } w_{i}>w \\ \max \left(v_{i}+M_{i-1, w-w_{i}}, M_{i-1, w}\right) & \text { otherwise }\end{cases}
\]

\section*{Step 3: Compute Value of an OPT Solution}

\section*{0-1 Knapsack Problem}

Input: \(n\) items where \(i\)-th item has value \(v_{i}\) and weighs \(w_{i}\)
Output: the max value within \(W\) capacity, where each item is chosen at most once
- Bottom-up method: solve smaller subproblems first
\[
M_{i, w}= \begin{cases}0 & \text { if } i=0 \\ M_{i-1, w} & \text { if } w_{i}>w \\ \max \left(v_{i}+M_{i-1, w-w_{i}}, M_{i-1, w}\right) & \text { otherwise }\end{cases}
\]
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\mathbf{i} \mathbf{w}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) \\
\hline \(\mathbf{0}\) & \(\mathbf{0}\) & 0 & 0 & 0 & 0 & 0 \\
\hline \(\mathbf{1}\) & 0 & 4 & 4 & 4 & 4 & 4 \\
\hline \(\mathbf{2}\) & 0 & 4 & 9 & 13 & 13 & 13 \\
\hline \(\mathbf{3}\) & 0 & 4 & 9 & 13 & 20 & 24 \\
\hline
\end{tabular}
\begin{tabular}{|ccc|}
\hline \(\mathbf{i}\) & \(\mathbf{w}_{\mathbf{i}}\) & \(\mathbf{v}_{\mathbf{i}}\) \\
\hline 1 & 1 & 4 \\
\hline 2 & 2 & 9 \\
\hline 3 & 4 & 20 \\
\multicolumn{2}{c}{\(W=5\)}
\end{tabular}

\section*{Step 3: Compute Value of an OPT Solution}

\section*{0-1 Knapsack Problem}

Input: \(n\) items where \(i\)-th item has value \(v_{i}\) and weighs \(w_{i}\)
Output: the max value within \(W\) capacity, where each item is chosen at most once
- Bottom-up method: solve smaller subproblems first
\[
M_{i, w}= \begin{cases}0 & \text { if } i=0 \\ M_{i-1, w} & \text { if } w_{i}>w \\ \max \left(v_{i}+M_{i-1, w-w_{i}}, M_{i-1, w}\right) & \text { otherwise }\end{cases}
\]
```

ZO-KP(n, v, W)
for w = 0 to W
M[0, w] = 0
for i = 1 to n
for w = 0 to W
if( }\mp@subsup{\textrm{w}}{\textrm{i}}{}>\textrm{w}
M[i, w] = M[i-1, w]
else
M[i, w] = max(vi + M[i-1, w-wi], M[i-1, w])
return M[n, W]

```
\[
T(n)=\Theta(n W)
\]

\section*{Step 4: Construct an OPT Solution by Backtracking}
```

ZO-KP (n, v, W)
for $w=0$ to $W$
$\mathrm{M}[0, \mathrm{w}]=0$
for $i=1$ to $n$
for $w=0$ to $W$
if $\left(w_{i}>w\right)$
Mi, w] = M[i-1, w]
else
$M[i, w]=\max \left(v_{i}+M\left[i-1, w-w_{i}\right], M[i-1, w]\right)$
return $M[n, W]$

```
```

```
Find-Solution (M, \(\mathrm{n}, \mathrm{W}\))
```

```
Find-Solution (M, \(\mathrm{n}, \mathrm{W}\))
 \(S=\{ \}\)
 \(S=\{ \}\)
 \(\mathrm{W}=\mathrm{W}\)
 \(\mathrm{W}=\mathrm{W}\)
 for \(i=n\) to 1
 for \(i=n\) to 1
 if Mri, w] > Mri - 1, w] // case 1
 if Mri, w] > Mri - 1, w] // case 1
 \(\mathrm{w}=\mathrm{w}-\mathrm{w}_{\mathrm{i}}\)
 \(\mathrm{w}=\mathrm{w}-\mathrm{w}_{\mathrm{i}}\)
 \(S=S U\{i\}\)
 \(S=S U\{i\}\)
 return \(S\)
```

```
 return \(S\)
```

```
 \(T(n)=\Theta(n)\)
\[
T(n)=\Theta(n W)
\]

\section*{Pseudo-Polynomial Time}
- Polynomial: polynomial in the length of the input (\#bits for the input)
- Pseudo-polynomial: polynomial in the numeric value
- The time complexity of 0-1 knapsack problem is \(\Theta(n W)\)
- \(n\) : number of objects
- W: knapsack's capacity (non-negative integer)
- polynomial in the numeric value
= pseudo-polynomial in input size
= exponential in the length of the input
- Note: the size of the representation of \(W\) is \(\log _{2} W\)
\[
=2^{m} \quad=m
\]

\section*{Knapsack Problem}

－Input：\(n\) items where \(i\)－th item has value \(v_{i}\) and weighs \(w_{i}\left(v_{i}\right.\) and \(w_{i}\) are positive integers）
－Output：the maximum value for the knapsack with capacity of \(W\)
－Variants of knapsack problem
- 0－1 Knapsack Problem：每項物品只能拿一個
- Unbounded Knapsack Problem：每項物品可以拿多個
- Multidimensional Knapsack Problem：背包空間有限
- Multiple－Choice Knapsack Problem：每一類物品最多拿一個
- Fractional Knapsack Problem：物品可以只拿部分

\section*{Step 1: Characterize an OPT Solution}

\section*{Unbounded Knapsack Problem}

Input: \(n\) items where \(i\)-th item has value \(v_{i}\) and weighs \(w_{i}\), each has unlimited supplies
Output: the max value within \(W\) capacity
- Subproblems
- U-KP (i, w) : unbounded knapsack problem with \(w\) capacity for the first \(i\) items
- Goal: U-KP (n, W)

\section*{0-1 Knapsack Problem \\ Unbounded Knapsack Problem}
each item can be chosen at most once
a sequence of binary choices: whether to choose item \(i\)

Time complexity \(=\Theta(n W)\)
each item can be chosen multiple times
a sequence of \(i\) choices: which one (from 1 to \(i\)) to choose
Time complexity \(=\Theta\left(n^{2} W\right)\)
Can we do better?

\section*{Step 1: Characterize an OPT Solution}

\section*{Unbounded Knapsack Problem}

Input: \(n\) items where \(i\)-th item has value \(v_{i}\) and weighs \(w_{i}\), each has unlimited supplies
Output: the max value within \(W\) capacity
- Subproblems
- U-KP (w) : unbounded knapsack problem with \(w\) capacity
- Goal: U-KP (W)
- Optimal substructure: suppose OPT is an optimal solution to \(\mathrm{U}-\mathrm{KP}(\mathrm{w})\), there are \(n\) cases:
- Case 1: item 1 in OPT
- Removing an item 1 from OPT is an optimal solution of \(U-K P\left(w-w_{1}\right)\)
- Case 2: item 2 in OPT
- Removing an item 2 from OPT is an optimal solution of \(U-K P\left(w-w_{2}\right)\) :
- Case \(n\) : item \(n\) in OPT
- Removing an item \(n\) from OPT is an optimal solution of \(U-K P\left(w-w_{n}\right)\)

\section*{Step 2：Recursively Define the Value of an OPT Solution}

\section*{Unbounded Knapsack Problem}

Input：\(n\) items where \(i\)－th item has value \(v_{i}\) and weighs \(w_{i}\) ，each has unlimited supplies Output：the max value within \(W\) capacity
－Optimal substructure：suppose OPT is an optimal solution to \(U-K P(w)\) ，there are \(n\) cases：
－Case \(i\) ：item \(i\) in OPT
\[
M_{w}=v_{i}+M_{w-w_{i}}
\]
－Removing an item i from OPT is an optimal solution of \(\mathrm{U}-\mathrm{KP}\left(\mathrm{w}-\mathrm{w}_{1}\right)\)
－Recursively define the value
\[
M_{w}= \begin{cases}0 & \text { if } w=0 \text { or } w_{i}>w \text { for all } i \\ \max _{1 \leq i \leq n} w_{i} \leq w \\ \text { 只考慮背包還裝的下的情形 }\end{cases}
\]

\section*{Step 3: Compute Value of an OPT Solution}

\section*{Unbounded Knapsack Problem}

Input: \(n\) items where \(i\)-th item has value \(v_{i}\) and weighs \(w_{i}\), each has unlimited supplies Output: the max value within \(W\) capacity
- Bottom-up method: solve smaller subproblems first
\[
\begin{aligned}
& W=5
\end{aligned}
\]

\section*{Step 3: Compute Value of an OPT Solution}

\section*{Unbounded Knapsack Problem}

Input: \(n\) items where \(i\)-th item has value \(v_{i}\) and weighs \(w_{i}\), each has unlimited supplies Output: the max value within \(W\) capacity
- Bottom-up method: solve smaller subproblems first
\[
\begin{aligned}
& \max (4+0) \\
& \max (4+4,9+0) \\
& \max (4+9,9+4) \\
& \max (4+13,9+9,17+0) \\
& \max (4+18,9+13,17+4)
\end{aligned}
\]

\section*{Step 3: Compute Value of an OPT Solution}

\section*{Unbounded Knapsack Problem}

Input: \(n\) items where \(i\)-th item has value \(v_{i}\) and weighs \(w_{i}\), each has unlimited supplies Output: the max value within \(W\) capacity
- Bottom-up method: solve smaller subproblems first
\[
M_{w}= \begin{cases}0 & \text { if } w=0 \text { or } w_{i}>w \text { for all } i \\ \max _{1 \leq i \leq n, w_{i} \leq w}\left(v_{i}+M_{w-w_{i}}\right) & \text { otherwise }\end{cases}
\]
```

U-KP(v, W)
for w = 0 to W
M[w] = 0
for w = 0 to W
for i = 1 to n
if( }\mp@subsup{\textrm{w}}{\textrm{i}}{<<= w)
tmp = vi + M[w - wi]
M[w] = max(M[w], tmp)
return M[W]

$$
T(n)=\Theta(n W)
$$

## Step 4: Construct an OPT Solution by Backtracking

```
U-KP(v, W)
 for w = 0 to W
 M[w] = 0
 for w = 0 to W
 for i = 1 to n
 if(wi <= w)
 tmp = vi
 M[w] = max(M[w], tmp)
 return M[W]
```

```
Find-Solution (M, n , W)
 for \(i=1\) to \(n\)
 C[i] = 0 // C[i] = \# of item i in solution
 \(\mathrm{w}=\mathrm{W}\)
 for i \(=\) i to n
 while w > 0
 if \(\left(w_{i}<=w \& \& M[w]==\left(v_{i}+M\left[w-w_{i}\right]\right)\right)\)
 \(\mathrm{w}=\mathrm{w}-\mathrm{W}_{\mathrm{i}}\)
 C[i] \(+=1\)
 C
```

$$
T(n)=\Theta(n+W)
$$

$T(n)=\Theta(n+W)$

$$
T(n)=\Theta(n W)
$$

## Knapsack Problem


－Input：$n$ items where $i$－th item has value $v_{i}$ and weighs $w_{i}\left(v_{i}\right.$ and $w_{i}$ are positive integers）
－Output：the maximum value for the knapsack with capacity of $W$
－Variants of knapsack problem

- 0－1 Knapsack Problem：每項物品只能拿一個
- Unbounded Knapsack Problem：每項物品可以拿多個
- Multidimensional Knapsack Problem：背包空間有限
- Multiple－Choice Knapsack Problem：每一類物品最多拿一個
- Fractional Knapsack Problem：物品可以只拿部分


## Step 1: Characterize an OPT Solution

## Multidimensional Knapsack Problem

Input: $n$ items where $i$-th item has value $v_{i}$, weighs $w_{i}$, and size $d_{i}$
Output: the max value within $W$ capacity and with the size of $\boldsymbol{D}$, where each item is chosen at most once

- Subproblems
- M-KP (i, w, d) : multidimensional knapsack problem with $w$ capacity and $d$ size for the first $i$ items
- Goal: M-KP (n, W, D)
- Optimal substructure: suppose OPT is an optimal solution to $M-K P(i, w$, d), there are 2 cases:
- Case 1: item $i$ in OPT
- OPT $\backslash\{i\}$ is an optimal solution of $M-K P\left(i-1, w-w_{i}, d-d_{i}\right)$
- Case 2: item $i$ not in OPT
- OPT is an optimal solution of M-KP (i - 1, w, d)


## Step 2: Recursively Define the Value of an OPT Solution

## Multidimensional Knapsack Problem

Input: $n$ items where $i$-th item has value $v_{i}$, weighs $w_{i}$, and size $d_{i}$
Output: the max value within $W$ capacity and with the size of $\boldsymbol{D}$, where each item is chosen at most once

- Optimal substructure: suppose OPT is an optimal solution to M-KP (i, w, d) , there are 2 cases:
- Case 1: item $i$ in OPT

$$
M_{i, w, d}=v_{i}+M_{i-1, w-w_{i}, d-d_{i}}
$$

- OPT $\backslash\{i\}$ is an optimal solution of $\mathrm{M}-\mathrm{KP}\left(\mathrm{i}-1\right.$, $\mathrm{w}-\mathrm{w}_{\mathrm{i}}, \mathrm{d}-\mathrm{d}_{\mathrm{i}}$ )
- Case 2: item $i$ not in OPT

$$
M_{i, w, d}=M_{i-1, w, d}
$$

- OPT is an optimal solution of M-KP (i - 1, w, d)
- Recursively define the value

$$
M_{i, w, d}= \begin{cases}0 & \text { if } i=0 \\ M_{i-1, w, d} & \text { if } w_{i}>w \text { or } d_{i}>d \\ \max \left(v_{i}+M_{i-1, w-w_{i}, d-d_{i}}, M_{i-1, w, d}\right) & \text { otherwise }\end{cases}
$$

## Exercise

## Multidimensional Knapsack Problem

Input: $n$ items where $i$-th item has value $v_{i}$, weighs $w_{i}$, and size $d_{i}$
Output: the max value within $W$ capacity and with the size of $\boldsymbol{D}$, where each item is chosen at most once

- Step 3: Compute Value of an OPT Solution
- Step 4: Construct an OPT Solution by Backtracking
- What is the time complexity?


## Knapsack Problem


－Input：$n$ items where $i$－th item has value $v_{i}$ and weighs $w_{i}\left(v_{i}\right.$ and $w_{i}$ are positive integers）
－Output：the maximum value for the knapsack with capacity of $W$
－Variants of knapsack problem

- 0－1 Knapsack Problem：每項物品只能拿一個
- Unbounded Knapsack Problem：每項物品可以拿多個
- Multidimensional Knapsack Problem：背包空間有限
- Multiple－Choice Knapsack Problem：每一類物品最多拿一個
- Fractional Knapsack Problem：物品可以只拿部分


## Multiple-Choice Knapsack Problem

- Input: $n$ items
- $v_{i, j}$ : value of $j$-th item in the group $i$
- $w_{i, j}$ : weight of $j$-th item in the group $i$
- $n_{i}$ : number of items in group $i$
- $n$ : total number of items $\left(\sum n_{i}\right)$
- $G$ : total number of groups
- Output: the maximum value for the knapsack with capacity of $W$, where the item from each group can be selected at most once



## Step 1: Characterize an OPT Solution

## Multiple-Choice Knapsack Problem

Input: $n$ items with value $v_{i, j}$ and weighs $w_{i, j}$ ( $n_{i}$ : \#items in group $i, G$ : \#groups) Output: the max value within $W$ capacity, where each group is chosen at most once

- Subproblems
- MC-KP (w) : w capacity
- MC-KP (i, w) : $w$ capacity for the first $i$ groups the constraint is for groups
- MC-KP (i, j, w) : $w$ capacity for the first $j$ items from first $i$ groups



## Step 1: Characterize an OPT Solution

## Multiple-Choice Knapsack Problem

Input: $n$ items with value $v_{i, j}$ and weighs $w_{i, j}$ ( $n_{i}$ : \#items in group $i, G$ : \#groups)
Output: the max value within $W$ capacity, where each group is chosen at most once

- Subproblems
- MC-KP (i, w) : multi-choice knapsack problem with $w$ capacity for the first $i$ groups
- Goal: MC-KP (G, W)
- Optimal substructure: suppose OPT is an optimal solution to MC-KP (i, w), for the group $i$, there are $n_{i}+1$ cases:
- Case 1: no item from $i$-th group in OPT
- OPT is an optimal solution of MC-KP (i - 1, w)
- Case $j+1$ : $j$-th item from $i$-th group (item $\mathrm{m}_{\mathrm{i}, j}$ ) in OPT
- OPT $\backslash$ item $_{i, j}$ is an optimal solution of $\operatorname{MC-KP(i-1,w-w_{i,j})~}$


## Step 2: Recursively Define the Value of an OPT Solution

## Multiple-Choice Knapsack Problem

Input: $n$ items with value $v_{i, j}$ and weighs $w_{i, j}$ ( $n_{i}$ : \#items in group $i, G$ : \#groups) Output: the max value within $W$ capacity, where each group is chosen at most once

- Optimal substructure: suppose OPT is an optimal solution to MC-KP (i, w) , for the group $i$, there are $n_{i}+1$ cases:
- Case 1: no item from $i$-th group in OPT

$$
M_{i, w}=M_{i-1, w}
$$

- OPT is an optimal solution of MC-KP (i - 1, w)
- Case $j+1$ : $j$-th item from $i$-th group ( item $_{\mathrm{i}, \mathrm{j}}$ ) in OPT $M_{i, w}=v_{i, j}+M_{i-1, w-w_{i, j}}$ - OPT- \({ }_{\mathrm{i}, \mathrm{j}}\) is an optimal solution of \(\mathrm{MC}-\mathrm{KP}\left(\mathrm{i}-1, \mathrm{w}-\mathrm{w}_{\mathrm{i}, \mathrm{j}}\right)\)

- Recursively define the value

$$
M_{i, w}= \begin{cases}0 & \text { if } i=0 \\ M_{i-1, w} & \text { if } w_{i, j}>w \text { for all } j \\ \underbrace{\max _{1 \leq j \leq n_{i}}\left(v_{i, j}+M_{i-1, w-w_{i, j}}, M_{i-1, w}\right)}_{n_{i}+1} & \text { otherwise }\end{cases}
$$

## Step 3: Compute Value of an OPT Solution

## Multiple-Choice Knapsack Problem

Input: $n$ items with value $v_{i, j}$ and weighs $w_{i, j}$ ( $n_{i}$ : \#items in group $i, G$ : \#groups) Output: the max value within $W$ capacity, where each group is chosen at most once

- Bottom-up method: solve smaller subproblems first

$$
M_{i, w}= \begin{cases}0 & \text { if } i=0 \\ M_{i-1, w} & \text { if } w_{i, j}>w \text { for all } j \\ \max _{1 \leq j \leq n_{i}}\left(v_{i, j}+M_{i-1, w-w_{i, j}}, M_{i-1, w}\right) & \text { otherwise }\end{cases}
$$

ilw	0	1	2	3	...	w	...	W
0								
1								
2			$M_{i-1, w-w_{i, j}}$			$M_{i-1, w}$		
i						$M_{i}$		
n								

## Step 3: Compute Value of an OPT Solution

## Multiple-Choice Knapsack Problem

Input: $n$ items with value $v_{i, j}$ and weighs $w_{i, j}\left(n_{i}\right.$ : \#items in group $i, G$ : \#groups) Output: the max value within $W$ capacity, where each group is chosen at most once

- Bottom-up method: solve smaller subproblems first

```
MC-KP(n, v, W)
 for w = 0 to W
 M[0, w] = 0
 for i = 1 to G // consider groups 1 to i
 for w = 0 to W // consider capacity = w
 M[i, w] = M[i - 1, w]
 for j = 1 to ni // check j-th item in group i
 if((vi,j + M[i - 1, w - wi,j] > M[i, w])
 M[i,w] = vi,j + M[i - 1,w - wi,j]
 return M[G, W]
```

$$
\sum_{i=1}^{G} \sum_{w=0}^{W} \sum_{j=1}^{n_{i}} c=c \sum_{w=0}^{W} \sum_{i=1}^{G} \sum_{j=1}^{n_{i}} 1=c \sum_{w=0}^{W} n=c n W
$$

## Step 4: Construct an OPT Solution by Backtracking

```
MC-KP(n, v, W)
 for w = 0 to W
 M[0, w] = 0
for i = 1 to G // consider groups 1 to i
 for w = 0 to W // consider capacity = W
 M[i, w] = M[i - 1, w]
 for j = 1 to ni // check items in group i
 if(vi,j + M[i - 1, w - wi,j] > M[i, w])
 M[i,w] = vi,j + M[i - 1, w - wi,j]
 B[i, w] = j
 return M[G, W], B[G,W]
```

Practice to write the pseudo code for Find-Solution ()

$$
T(n)=\Theta(G+W)
$$

## Knapsack Problem


－Input：$n$ items where $i$－th item has value $v_{i}$ and weighs $w_{i}\left(v_{i}\right.$ and $w_{i}$ are positive integers）
－Output：the maximum value for the knapsack with capacity of $W$
－Variants of knapsack problem

- 0－1 Knapsack Problem：每項物品只能拿一個
- Unbounded Knapsack Problem：每項物品可以拿多個
- Multidimensional Knapsack Problem：背包空間有限
- Multiple－Choice Knapsack Problem：每一類物品最多拿一個
- Fractional Knapsack Problem：物品可以只拿部分


## Fractional Knapsack Problem

－Input：$n$ items where $i$－th item has value $v_{i}$ and weighs $w_{i}\left(v_{i}\right.$ and $w_{i}$ are positive integers）
－Output：the maximum value for the knapsack with capacity of $W$ ， where we can take any fraction of items
－Dynamic programming algorithm should work

## Can we do better？

－Choose maximal $\frac{v_{i}}{w_{i}}$（類似CP值）first

(7) To Be Continued...

## Question?

Important announcement will be sent to @ntu.edu.tw mailbox \& post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

