OPTIMAL BINARY
SEARGH TREE
<<DYNAMIC
PROGRAMMING>>

Announcement

= Mini-HW 4 released
= Due on 10/18 (Thu) 14:20

= Homework 1 due a week later
= A4 hardcopy submitted before the class starts
= Softcopy submitted to NTU COOL before the deadline

= Homework 2 released
= Due on 11/06 (Tue) 18:00 (3.5 weeks)
= Submitted to NTU COOL only

——

Mini-HW 4

Consider a 0/1 Knapsack Problem where you have N objects to choose from

The weight and value of each object is listed in the table below

Weight 1 3 = 5 8 10 11

Value 3 7 10 12 17 19 21

1. Construct a DP table to fill knapsack with capacity W= 15
(Your DP algorithm must run in O(N*W) time)

(80%)

2. Briefly explain whether your algorithm can adapt to objects with non-integer weight

(20%)

Homework 2

Homework #2
Due Tune: 2018/11/06 (Tues.) 18:00

Contact TAs: ada-ta@csie.ntu.edu.tw

Instructions and Announcements

e There are four programming problems and three hand-written problems, and the home-
work set including bonus are worthy of 110 points. If you get more than 100 points, your score
will still be counted as 100 points.

e Programming. The judge system is located at https://adal8-judge.csie.org. Please login
and submit your code for the programming problems (i.e., those containing “Programming” in

the problem title) by the deadline. NO LATE SUBMISSION IS ALLOWED.

e Hand-written. For other problems (also known as the “hand-written problems”), please turn
in a printed /written version of your answers to the instructor at the beginning of the class
on 2018/11/01, or put them in the box in front of R307 before the deadline. Remember to
print your name/student ID on the first page of your submitted answers. In case
that your homework is lost during the grading, you can also upload your homework to the NTU

COOL system. NO LATE SUBMISSION IS ALLOWED.

Outline Q/ VG

Dynamic Programming
DP #1: Rod Cutting

DP #2: Stamp Problem

DP #3: Knapsack Problem
= 0/1 Knapsack

= Unbounded Knapsack
= Multidimensional Knapsack
= Fractional Knapsack

DP #4: Matrix-Chain Multiplication

DP #5: Sequence Alignment Problem
= Longest Common Subsequence (LCS) / Edit Distance

= Viterbi Algorithm
= Space Efficient Algorithm

DP #6: Weighted Interval Scheduling

wmu

eNhik— & - [NIEE =R

- 5100fE5EA - FRRIITIEH - BRI —(EF &S -
- SR RIITIEAR - AR CE—TRIE (B A) B — &K - &

SEAENITRT - HE AP &ERNICEFELE - BEACLUSRECEE -
HIEFEREB(RLRTai=EA) - BERIRERIEH - BiaRIBITIEHM) -

- AELNIUOI DRI — XK EARRE W - 2B FRTAT

EAXFEENRNILREHEESRS ?

I8 AR Rl

« NJEBER—%F - BEACIUERBIEFRBANIEF - BEAZBEC
KEBANILN -
Example: S EEBAIA

- ERE—ERRREEN RFEA - SR0E waom e
- SERLETRIZAFERLHBINE - &> FEEEER7 A

Review

Algorithm Design

= Divide-and-Conquer
= partition the problem into

independent or disjoint
subproblems

= repeatedly solving the common
subsubproblems

- more work than necessary

Paradigms

= Dynamic Programming

= partition the problem into
dependent or overlapping
subproblems

= avoid recomputation
v Top-down with memoization

v Bottom-up method

Dynamic Programming Procedure

= DP procedure
1. Characterize the structure of an optimal solution

2. Recursively define the value of an optimal solution
3. Compute the value of an optimal solution, typically in a bottom-up fashion
4. Construct an optimal solution from computed information

= Two key properties of DP for optimization
= Overlapping subproblems

= Optimal substructure — an optimal solution can be constructed from optimal
solutions to subproblems

v Reduce search space (ignore non-optimal solutions)

Textbook Chapter 15.1 — Rod Cutting

Rod Cutting Problem

= Input: a rod of length n and a table of pricesp; fori =1, ...,n

IO B N A

prlce Di

= Qutput: the maximum revenue 7;, obtainable by cutting up the rod and
selling the pieces

Brute-Force Algorithm
nnllllﬂ

price p;

= A rod with the length =4

T -
T T > c+1-9
| TR 55 {10
] i J 3m EESREEL

) om] im] 1m AR
) 1m [om] 1m e SELEEE
) 1m) 1m] om B AEEENEY

| TV (T T > 11414 o

Brute-Force Algorithm
lengthi(m) | 1 | 2 | 3 | 4 | 5
5 8 9 10

price p; 1

= A rod with the length =n
0-‘)-)
= For each integer position, we can choose “cut” or “not cut”
= There are n - 1 positions for consideration

= The total number of cutting results is 2"~ 1 = @(2""1)

7,,: the maximum revenue obtainable

Recu rSlve Thlnkiﬂg for a rod of length n

= We use a recursive function to solve the subproblems

= |f we know the answer to the subproblem, can we get the answer to
the original problem?

)

I'm = max(pn, 1+ I'm—1,712 + 'm—2,""" yTn-1 + Tl)
nocut\ \ /

cut at the i-th position (from left to right)

= Optimal substructure — an optimal solution can be constructed from
optimal solutions to subproblems @
{

Recursive Algorithms

= Version 1

rn = max(pPn, ™1 + Tm_1,72 + pn—9, " ,"p_1+71)

)

\
no cut |
cut at the i-th position (from left to right)

= Version 2
= try to reduce the number of subproblems - focus on the left-most cut

) pi

'n = IMaAX1<3<n (pz + Tn—’i)
left-most value maximum value obtainable
from the remaining part

Recursive Procedure

= Focus on the left-most cut
= assume that we always cut from left to right = the first cut

optimal solution optimal solution to subproblems

| i
.

Naive Recursion Algorithm

rp = Maxi<i<n (i + rn—i)

Cut-Rod (p, n)
// base case
if n ==
return O
// recursive case
q = -0
for 1 = 1 ton
g = max (g, pl[i1] + Cut-Rod(p, n - 1))
return g

= T(n) = time for running Cut-Rod (p, n)

@(1) if n=1 _ n
T = { () + 2o T(n—1i) ifn=>2 = = ©

Naive Recursion Algorithm

= Rod cutting problem

Cut-Rod (p, n)
// base case
if n==20
return 0
// recursive case
q = -0
for 1 =1 ton
g = max(gq, pl[i] + Cut-Rod(p, n - 1))
return g

Dynamic Programming

= |dea: use space for better time efficiency

= Rod cutting problem has overlapping subproblems and optimal substructures
— can be solved by DP

= When the number of subproblems is polynomial, the time complexity is
polynomial using DP

= DP algorithm
= Top-down: solve overlapping subproblems recursively with memoization

= Bottom-up: build up solutions to larger and larger subproblems

Dynamic Programming

= Top-Down with Memoization

= Solve recursively and memo the
subsolutions (PkZE1EFR)

= Suitable that not all
subproblems should be solved

0w | || i
T 1

= Bottom-Up with Tabulation
= Fill the table from small to large

= Suitable that each small
problem should be solved

“io) |) |) | .. | fin)
I

Algorithm for Rod Cutting Problem

Top-Down with Memoization

Memoized-Cut-Rod (p, n)

// initialize memo (an array r[] to keep max revenue)

r[(0] = 0

for 1 = 1 to n ()(ﬂ)
r[i] = == // r[i] = max revenue for rod with length=i

return Memorized-Cut-Rod-Aux (p, n, r)

Memoized-Cut-Rod-Aux (p, n, r)

if r[n] >= 0 ()(1)
return r[n] // return the saved solution

q = -

for 1 = 1 to n 9
g = max (g, pl[i] + Memoized-Cut-Rod-Aux(p, n-1i, r)) ()(ﬂ,)

r(n] = q // update memo

return g

= T(n) = time for running Memoized-Cut-Rod (n) mp T(n) = O(n?)

Algorithm for Rod Cutting Problem

Bottom-Up with Tabulation

Bottom-Up-Cut-Rod (p, n)

r[(0] = 0
for j =1 ton // compute r[1l], r[2], ..
q = -
for i = 1 to J
g = max(q, pli] + r[]J - 11)
r(jl] = a

return riin]

. 1n order

O(n?)

= T(n) = time for running Bot tom-Up-Cut-Rod (p, n) mp T(n) = O(n?)

Rod Cutting Problem

= Input: a rod of length n and a table of pricesp; fori =1, ...,n

-nnnn

prlce Di

= Qutput: the maximum revenue r;, obtainable and

the list of cut pieces

Algorithm for Rod Cutting Problem

Bottom-Up with Tabulation

= Add an array to keep the cutting positions cut

Extended-Bottom-Up-Cut-Rod (p, n)
r{0] = 0
for j =1 to n //compute r[l], r[2], ... in order
q = -
for 1 =1 to J
if g < pli] + r[J - 1]
g =pli] + [- 1]
cut[j] = i // the best first cut for len j rod
r(i] = g
return r[n], cut

Print-Cut-Rod-Solution (p, n)
(r, cut) = Extended-Bottom-up-Cut-Rod(p, n)
while n > 0
print cut[n]
n =n - cut[n] // remove the first piece

Dynamic Programming

= Top-Down with Memoization = Bottom-Up with Tabulation

£(0) | f(2) | f(2) | .. | fn) | (0) | f(1) | f2) | .. | f(n)
4+ 4+ @ >

= Better when all subproblems
must be solved at least once

= Better when some subproblems
not be solved at all
v

®
®
®

= Typically outperform top-down
method by a constant factor

= No overhead for recursive calls

= Solve only the required parts of
subproblems

= Less overhead for maintaining

the table o
\GFH

Informal Running Time Analysis

= Approach 1: approximate via (#subproblems) * (#choices
for each subproblem)
= For rod cutting
= #subproblems =n

= #choices for each subproblem = O(n)
= = T(n) is about O(n?)

= Approach 2: approximate via subproblem graphs

Subproblem Graphs

= The size of the subproblem graph allows us to estimate the time
complexity of the DP algorithm

= A graph illustrates the set of subproblems involved and how
subproblems depend on another G = (V, E) (E: edge, V: vertex)

= |V|: #subproblems

= A subproblem is run only once
= |E|: sum of #subsubproblems are needed for each subproblem
= Time complexity: linear to O(|E| + [V |)

| Bottom-up: Reverse Topological Sort | .. Graph Algorithm
"""""""""""""""""""""""""""""""""""""" @)‘6’@ (taught later)

Dynamic Programming Procedure

1. Characterize the structure of an optimal solution
v Qverlapping subproblems: revisit same subproblems

v" Optimal substructure: an optimal solution to the problem contains
within it optimal solutions to subproblems

2. Recursively define the value of an optimal solution

v Express the solution of the original problem in terms of optimal
solutions for subproblems

3. Compute the value of an optimal solution
v typically in a bottom-up fashion

4. Construct an optimal solution from computed information
v Step 3 and 4 may be combined

Revisit DP for Rod Cutting Problem

W N

Characterize the structure of an optimal solution
Recursively define the value of an optimal solution
Compute the value of an optimal solution

Construct an optimal solution from computed information

Step 1: Characterize an OPT Solution

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n
Output: the maximum revenue 1;, obtainable

= Step 1-Q1: What can be the subproblems?

= Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can
be represented by the optimal solutions to subproblems)

= Yes. = continue
= No. = go to Step 1-Q1 or there is no DP solution for this problem

Step 1: Characterize an OPT Solution

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n
Output: the maximum revenue 1;, obtainable

= Step 1-Q1: What can be the subproblems?

= Subproblems: Cut-Rod (0), Cut-Rod (1), .., Cut-Rod (n-1)
= Cut-Rod (1) : rod cutting problem with length-i rod
= Goal: Cut-Rod (n)

= Suppose we know the optimal solution to Cut-Rod (1), there are i cases:

= Case 1: the first segment in the solution has length 1
fitsolutiondP EiIr —ERRE M 1AVEE, FI MRS D ECut-Rod (1i-1) FEER

= Case 2: the first segment in the solution has length 2
fitsolution P EiE—ERRE RS20 R, F N2 ZCut-Rod (i-2) HEIEHE

il
EiY

il

= Case i: the first segment in the solution has length i
solutiont P EiE —ERRERIREIR, T FAIEL D ZCcut-Rod (0) F&ER

Step 1: Characterize an OPT Solution

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n
Output: the maximum revenue 1;, obtainable

= Step 1-Q2: Does it exhibit optimal structure? (an optimal solution can
be represented by the optimal solutions to subproblems)

= Yes. Prove by contradiction.

Step 2: Recursively Define the Value
of an OPT Solution

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n
Output: the maximum revenue 1;, obtainable

= Suppose we know the optimal solution to Cut-Rod (i), there are i cases:

= Case 1: the first segment in the solution has length 1

) o ‘ \ , _ Ty =P1+ Ti—1
fitsolutionP ER—EREAINE R, F FaUBES ECcut-Rod (i-1) HxERE

= Case 2: the first segment in the solution has length 2
solutionF Eig —EREH209EE, R THED RCut-Rod (i-2) WRER 1} = P2 + Ti—2

= Case i: the first segment in the solution has length i
fiEsolution P 28— R REBIRVENR, R FRUEI D ECut-Rod (0) WERER 1, = p; + 1o

= Recursively define the value { 0 if 7 =
r; =

maXlngZ' (pj + Ti—j) if ¢ 2 1 @

Step 3: Compute Value of an OPT
Solution

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n
Output: the maximum revenue 1;, obtainable

= Bottom-up method: solve smaller subproblems first

L _Jo if i =0
v maxlgjgi (pj + Ti—j) if ¢ 2 1

i | o | 1] 2|3]4a]5
r[i] I

Bottom-Up-Cut-Rod (p, n)
r[0] =0
for 3 =1 ton // compute r[1l], r[2], ... in order

- — 2
gq o
for 1 =1 to jJ jp(Tl) ()(Tl)
g = max(q, pli] + r[j - 1])
r(j] =g

return r[n]

Step 4: Construct an OPT Solution by
Backtracking NN

price p; 1

Rod Cutting Problem
Input: a rod of length n and a table of prices p; fori =1, ...,n

Output: the maximum revenue 1, obtainable

= Bottom-up method: solve smaller subproblems first

o fo if i = 0
Y| maxicj<i(py+rimy) ifi>1

_n-ﬂﬂﬂﬂ-“
r[i] 0 3

cut([i] 0 1 2 3 2

max(p1 + 7’0)
max(p1 + 71, p2 + 7o)

max(py + 72,p2 + r1,p3 + 7o)
max(py + 73, p2 + r2, p3 + r1,ps + 7o)

Step 4: Construct an OPT Solution by

Backtracking

Cut-Rod (p, n)

r[(0] = 0
for 3 =1 ton // compute r[1l], r[2], ... in order
q = -
for 1 = 1 to 73
if g < pli] + r[J - 1]

qg =pli] + r[J - 1]
cut[j] = i // the best first cut for len J rod
r[i] = g
return r[n], cut

Print-Cut-Rod-Solution (p, n)
(r, cut) = Cut-Rod(p, n)
while n > O
print cut[n]
n =n - cut[n] // remove the first piece

DP#2: Stamp Problem

Stamp Problem

= Input: the postage n and the stamps with values v4, v,, ..., Uy

) BtmEssnsR :
nRLT

« - «
“« | O q
« 2] —— L}
“« = L
“ s L]
« ey e e
« & ! «
». | (']

e

C

! ook
1.
« 5 PIER BB RepUBLIC OF CHINA [TAWAN
»

1 »

P b 'lz PR B
[REPUBLIC OF CHINA -
Co» [TAIWAN | ‘

N RERRHSRERLS

= Qutput: the minimum number of stamps to cover the postage

.
V| Bimcasme 3
nRLT
» «
» «
» .
» | | .
» .
» e «
H -

» «
» «
» 5 PERBEBFI rerusLIC OF CHINA [TAWAN «
»

A Recursive Algorithm

= The optimal solution S, can be recursively defined as 1 + min;(S,,_,)
1+ min(Sn—?)) S’n—57 an,—'?a S’n—lQ)

Stamp (v, n)
r min = o
if n == 0 // base case
return 0

for i = 1 to k // recursive case gg"
r[{i] = Stamp(v, n - v[i]) T(n) = O(k")
if r[i] < r min
r min = r[i]
return r min + 1

Step 1: Characterize an OPT Solution

Stamp Problem
Input: the postage n and the stamps with values v, v,, ..., U
Output: the minimum number of stamps to cover the postage

= Subproblems
= S (1) :the min #stamps with postage i
= Goal: S (n)

= Optimal substructure: suppose we know the optimal solutionto S (i),

there are k cases:

i Case 1: there is a stamp with v, in OPT
fitsolutiond P E8 — R HE v, FHE, T FOBIDES (1-vI1]) Y

= Case 2: there is a stamp with v, in OPT

il
FHF
=
iy

Esolution P E18—RELE Hv,AEE, R FRUEI D Zs (1-v[2]) WERER
- Case k' there is a stamp with v, in OPT
#EsolutiontP Ei8 —REE Hv NEE, F D ES (1-v k]) WRIERE

Step 2: Recursively Define the Value
of an OPT Solution

Stamp Problem
Input: the postage n and the stamps with values v, v,, ..., U
Output: the minimum number of stamps to cover the postage

= Suppose we know the optimal solution to S (i), there are k cases:
= Case 1: there is a stamp with v, in OPT S, =14 5;_,,

fiEsolution P EI8 —REE By, AUELR, 7 FRIMDZES (1-v[1]) HRER
= Case 2: there is a stamp with v, in OPT

#solution P EI —RIME R,HBME, WTHBHRs (i-vi2) WEER S5 = 1+ Si—y,
= Case k: there is a stamp with v, in OPT

#solutionh E2ie —REE RV IR, W THEDZs (i-vik)) WEER S; =1+ 5y,

= Recursively define the value
o

0 ifi=0
minlgjgk (1 + Si—vj) if ¢ 2 1 @

Step 3: Compute Value of an OPT
Solution

Stamp Problem

Input: the postage n and the stamps with values v, v,, ..., U
Output: the minimum number of stamps to cover the postage

= Bottom-up method: solve smaller subproblems first

o _ [0 if i =0
L minlgjgk (1 + S@'_vj) if ¢ Z 1

i o 1]/ 2 /3 4]5 . |n_
Sli] I :|

Stamp (v, n)
S[0] =0
for 1 =1 ton // compute r[1l], r[2], ... in order
r min = o
for 3 = 1 to k T(n) — @(kn)
if S[1i - v[J]] < r min
r min =1 + S[i - vI[]]]
S[i] = r min
return S[n]

Step 4: Construct an OPT Solution by

Backtracking

S[1i] B
return S[n], B

Print-Stamp-Selection (v, n)

(S, B) = Stamp (v, n)
while n > O

print B[n]
n=n- v[B[n]]

5 DP#3: Knapsack

Textbook Exercise 16.2-2

& 0
1@ 2’

Knapsack Problem y

&

= Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

= Qutput: the maximum value for the knapsack with capacity of W

= Variants of knapsack problem
= 0-1 Knapsack Problem: BIEY)m REEE—{&
Unbounded Knapsack Problem: 2IE¥) ol LA Z= %@
Multidimensional Knapsack Problem: 5 812 BB R
S

Multiple-Choice Knapsack Problem: E— ¥ m&mZE—{&
Fractional Knapsack Problem: ¥ @ o] IR Z &[5

A< % ‘.
(o)

2 s P
Q\ =

Knapsack Problem

S

= Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

= Qutput: the maximum value for the knapsack with capacity of W

= Variants of knapsack problem
= 0-1 Knapsack Problem: BIE#m R = —1{@
Unbounded Knapsack Problem: 2IE¥) ol LA Z= %@
Multidimensional Knapsack Problem: 5 812 BB R
S

Multiple-Choice Knapsack Problem: E— ¥ m&mZE—{&
Fractional Knapsack Problem: ¥ @ o] IR Z &[5

Step 1: Characterize an OPT Solution

0-1 Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where each item is chosen at most once

D

= Subproblems ZO-KP (1) @a Z0-KP (1, (W)

consider the available capacity
= ZO-KP (i, w):0-1knapsack problem within w capacity for the first i items
= Goal: ZO-KP (n, W)

= Optimal substructure: suppose OPT is an optimal solution to ZO-KP (1,
there are 2 cases:

= Case 1:itemiin OPT

= OPT\{i} is an optimal solution of ZO-KP (1 - 1, w - w;)
= Case 2: item i not in OPT

= OPT is an optimal solution of ZO-KP (i - 1, w)

Step 2: Recursively Define the Value
of an OPT Solution

0-1 Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where each item is chosen at most once

= Optimal substructure: suppose OPT is an optimal solution to ZO-KP (i, w),
there are 2 cases:

= Case 1:item i in OPT Mi,w = v; + Mi—1,w—w¢
= OPT\{i} is an optimal solution of ZO-KP (1 - 1, w - w;)
= Case 2:item i notin OPT

M; .. = M,;_
= OPT is an optimal solution of ZO-KP (i - 1, w) 5w o=l
= Recursively define the value
0 if7=20
Mz’,w = M'i—l,w if w; > w

max(v; + M;—1,.w—w;, Mi—1.,) otherwise @

Step 3: Compute Value of an OPT
Solution

0-1 Knapsack Problem
Input: n items where i-th item has value v; and weighs w;
Output: the max value within W capacity, where each item is chosen at most once

= Bottom-up method: solve smaller subproblems first

0 ife=0
Mz’,'w = M’i—l,w if w; > w
max(v; + M;—1 w—w,, Mi—1.4) otherwise

w0123 | . wl. . | W

Mz’—l,w—wi M'—l,w

Step 3: Compute Value of an OPT
Solution

0-1 Knapsack Problem
Input: n items where i-th item has value v; and weighs w;

Output: the max value within W capacity, where each item is chosen at most once

= Bottom-up method: solve smaller subproblems first m

0 ifi=20 1 1 4
Mi,w = M'i—l,w if w; > w 2 2 9
max(v; + M;—1 w—w,, Mi—1.4) otherwise 3 4 20
w0] 1] 23|45 v

0 0 0 0 0 0

0 4 4 4 4 4

0 4 9 13 13 13

0 4 9 13 20 24

Step 3: Compute Value of an OPT

Solution

0-1 Knapsack Problem
Input: n items where i-th item has value v; and weighs w;

Output: the max value within W capacity, where each item is chosen at most once

= Bottom-up method: solve smaller subproblems first

0 itt=20

A4£w== A4}%Lw if w; > w
rnax(vi%—]Mg_lﬂu_uu,ﬂdg_lﬂu) otherwise

ZO-KP (n, v, W)
for w =0 to W
M[O, w] = O
for 1 =1 ton
for w = 0 to W
1f(w, > w)

M[i, w] = M[i-1, w]
else
M[i, w] = max(v; + M[1-1, w-w;], M[i-1, w])

return M[n, W]

Step 4: Construct an OPT Solution by

Backtracking

ZO-KP (n, v, W)
for w =0 to W

M[O, w] = O
for 1 = 1 ton
for w =0 to W
1f(wy; > w)
M[1i, w] = M[1-1, w]
else
M[i, w] =

max (v, + M[1-1, w-w;], M[1-1, w])
return M[n, W]

Find-Solution (M, n, W)
S = {}

w =W
for i = n to 1 CT(HJZZ
if M[i, w] > M[i - 1, w] // case 1
W= W — W,
S =35 U {i}

return S

Pseudo-Polynomial Time

= Polynomial: polynomial in the length of the input (#bits for the input)

= Pseudo-polynomial: polynomial in the numeric value

= The time complexity of 0-1 knapsack problem is @(nW/)
= n: number of objects
= W': knapsack’s capacity (non-negative integer)
= polynomial in the numeric value
= pseudo-polynomial in input size
= exponential in the length of the input

= Note: the size of the representation of W is log, W

= 2m = m

)

e

(e

Knapsack Problem

&

= Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

= Qutput: the maximum value for the knapsack with capacity of W

= Variants of knapsack problem

= 0-1 Knapsack Problem: BIEY)m REEE—{&
Unbounded Knapsack Problem: BI8¥)mt] U ZEZ (&
Multidimensional Knapsack Problem: 5 812 BB R
Multiple-Choice Knapsack Problem: B— 8z %E=—{E

Fractional Knapsack Problem: ¥ @ o] IR Z &[5

Step 1: Characterize an OPT Solution

Unbounded Knapsack Problem
Input: n items where i-th item has value v; and weighs w;, each has unlimited supplies
Output: the max value within W capacity

= Subproblems
= U-KP (1, w):unbounded knapsack problem with w capacity for the first i items

= Goal: U-KP(n, W)

0-1 Knapsack Problem Unbounded Knapsack Problem

each item can be chosen at most once each item can be chosen multiple times

a sequence of binary choices: whether a sequence of i choices: which one
to choose item i (from 1 to i) to choose

Time complexity = @(nW) Time complexity = @(n?W)

Step 1: Characterize an OPT Solution

Unbounded Knapsack Problem
Input: n items where i-th item has value v; and weighs w;, each has unlimited supplies
Output: the max value within W capacity

= Subproblems
= U-KP (w) : unbounded knapsack problem with w capacity

= Goal: U-KP (W)

= Optimal substructure: suppose OPT is an optimal solution to U-KP (w), there are
N cases:

= Case l:item 1in OPT

= Removing an item 1 from OPT is an optimal solution of U-KP (w — w,)
= Case 2:item 2in OPT

= Removing an item 2 from OPT is an optimal solution of U-KP (w - w,)

= Casen:itemnin OPT
= Removing an item n from OPT is an optimal solution of U-KP (w - w,)

©

Step 2: Recursively Define the Value
of an OPT Solution

Unbounded Knapsack Problem
Input: n items where i-th item has value v; and weighs w;, each has unlimited supplies
Output: the max value within W capacity

= Optimal substructure: suppose OPT is an optimal solution to U-KP (w), there
are n cases:

= Casei:itemiin OPT

My = v; + My_o,
= Removing an item i from OPT is an optimal solution of U-KP (w — wy)

= Recursively define the value

[V 0 if w =0 or w; > w for all ¢
Y| maxi<i<nfw,<w|Vi + My_w,) otherwise

RERBHEREEN MIIBH

©

Step 3: Compute Value of an OPT
Solution

Unbounded Knapsack Problem
Input: n items where i-th item has value v; and weighs w;, each has unlimited supplies
Output: the max value within W capacity

= Bottom-up method: solve smaller subproblems first

{0 if w =0 or w; > w for all ¢

M, = .
Max]<i<n,w;<w(Vi + My_qy,) otherwise

w0123 4 5

2 2 9
M[w] I 3 4 2
W =5

Step 3: Compute Value of an OPT
Solution

Unbounded Knapsack Problem
Input: n items where i-th item has value v; and weighs w;, each has unlimited supplies
Output: the max value within W capacity

= Bottom-up method: solve smaller subproblems first

Mw:{o if w=0 or w; >w for all ¢

Max| <i<n.w,<w(Vi + Muy_w,) otherwise ow v
2 2 9

M[w] O 3 4 17

max(4 + 0) W =5
max(4 + 4,9+ 0)
max(4+ 9,9+ 4)

max(4 + 13,94 9,17+ 0) |
max(4 + 18,9 + 13,17+ 4) @

Step 3: Compute Value of an OPT

Solution

Unbounded Knapsack Problem

Input: n items where i-th item has value v; and weighs w;, each has unlimited supplies

Output: the max value within W capacity

= Bottom-up method: solve smaller subproblems first

Vo 0 if w =0 or w; > w for all ¢
Y| maxi<i<nw,<w (Vi + My—w,) otherwise
U-KP (v, W)
for w = 0 to W
M[{w] = 0
for w =0 to W
for 1 =1 ton T(n) @(TLW)

1f(w; <= w)
tmp = v; + M[w - w;]
M[w] = max(M[w], tmp)
return M[W]

Step 4: Construct an OPT Solution by

Backtracking

U-KP (v, W)
for w = 0 to W
M[w] = 0
for w =0 to W
for i = 1 ton
1f(w; <= w)
tmp = v; + M[w - w,]
M[w] = max(M[w], tmp)
return M[W]

Find-Solution (M, n, W)
for 1 = 1 to n
C[i] = 0 // C[1] = # of item i in solution
w =W
for 1 = 1 ton
while w > O
1f(w;, <= w && M[w] == (v; + M[w - w;]))
W =W - W
Cli] +=1
return C

T(n)

T(n)

O(nW)

O(n+ W)

)

e

(e

Knapsack Problem

&

= Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

= Qutput: the maximum value for the knapsack with capacity of W

= Variants of knapsack problem

= 0-1 Knapsack Problem: BIEY)m REEE—{&
Unbounded Knapsack Problem: 2IE¥) ol LA Z= %@
Multidimensional Knapsack Problem: & &1 ZZE A R
Multiple-Choice Knapsack Problem: B— 8z %E=—{E

Fractional Knapsack Problem: ¥ @ o] IR Z &[5

Step 1: Characterize an OPT Solution

Multidimensional Knapsack Problem

Input: n items where i-th item has value v;, weighs w;, and size d,

Output: the max value within W capacity and with the size of D, where each item is
chosen at most once

= Subproblems

= M-KP (1, w, d):multidimensional knapsack problem with w capacity and d size
for the first i items

= Goal: M-KP(n, W, D)

= Optimal substructure: suppose OPT is an optimal solution to M-KP (i, w,
d), there are 2 cases:

= Case 1:itemiin OPT
= OPT\{i} is an optimal solutionof M-KP (1 - 1, w - w,, d - d,)
= Case 2:item i not in OPT
= OPTis an optimal solutionof M-KP (1 - 1, w, d) @

Step 2: Recursively Define the Value
of an OPT Solution

Multidimensional Knapsack Problem

Input: n items where i-th item has value v;, weighs w;, and size d,

Output: the max value within W capacity and with the size of D, where each item is
chosen at most once

= Optimal substructure: suppose OPT is an optimal solution to M-KP (i, w,

d), there are 2 cases:
- Case 1: item i in OPT M; w,a = Vi + Mi—1,w—w;,d—d;

= OPT\{i} is an optimal solutionof M-KP (1 - 1, w - w,, d - d,)
= Case 2:item i not in OPT WYy 1 = W51
= OPTis an optimal solution of M-KP (1 - 1, w, d)

= Recursively define the value

0 ifz=20
M;wa=9 Mi-1,w,d if w; > w or d; > d@
max(v; + Mi—1.w—w;.d—d;, Mi—1w.a4) otherwise

Exercise

Multidimensional Knapsack Problem
Input: n items where i-th item has value v;, weighs w;, and size d,

Output: the max value within W capacity and with the size of D, where each item is

chosen at most once

= Step 3: Compute Value of an OPT Solution
= Step 4: Construct an OPT Solution by Backtracking

= What is the time complexity?

o

)

e

(e

Knapsack Problem

&

= Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

= Qutput: the maximum value for the knapsack with capacity of W

= Variants of knapsack problem

= 0-1 Knapsack Problem: BIEY)m REEE—{&
Unbounded Knapsack Problem: 2IE¥) ol LA Z= %@
Multidimensional Knapsack Problem: 5 812 BB R
Multiple-Choice Knapsack Problem: BE—Y)m&ExZ E—{E

Fractional Knapsack Problem: ¥ @ o] IR Z &[5

Multiple-Choice Knapsack Problem

= Input: n items
= v; j: value of j-th item in the group i
= w; j: weight of j-th item in the group i
= n;: number of items in group i
= n: total number of items (}; n;)
= (7: total number of groups

= Qutput: the maximum value for the knapsack with capacity of W,
where the item from each group can be selected at most once

group 1 group 2 group 3

Step 1: Characterize an OPT Solution

Multiple-Choice Knapsack Problem
Input: n items with value v; ; and weighs w; ; (n;: #items in group i, G: #groups)

Output: the max value within W capacity, where each group is chosen at most once

= Subproblems
= MC-KP (w) : w capacity
g « MC-KP (i, w):w capacity for the first i groups the constraint is for groups
= MC-KP (i, Jj, w):w capacity forthe firstj items from first i groups

@D

Step 1: Characterize an OPT Solution

Multiple-Choice Knapsack Problem
Input: n items with value v; ; and weighs w; ; (n;: #items in group i, G: #groups)
Output: the max value within W capacity, where each group is chosen at most once

= Subproblems

= MC-KP (i, w): multi-choice knapsack problem with w capacity for the first i
groups

= Goal: MC-KP (G, W)

= Optimal substructure: suppose OPT is an optimal solution to MC-KP (i, w),
for the group i, there are n; + 1 cases:

= Case 1: no item from i-th group in OPT
= OPT is an optimal solution of MC-KP (i - 1, w)

= Case j + 1: j-th item from i-th group (item;) in OPT
. OPT\itemi,j is an optimal solution of MC-KP (i - 1, w — w, ;) @

Step 2: Recursively Define the Value
of an OPT Solution

Multiple-Choice Knapsack Problem
Input: n items with value v; ; and weighs w; ; (n;: #items in group i, G: #groups)
Output: the max value within W capacity, where each group is chosen at most once

= Optimal substructure: suppose OPT is an optimal solution to MC-KP (i, w),
for the group i, there are n; + 1 cases:

= Case 1: no item from i-th group in OPT Wil = Wils 3 g
= OPT is an optimal solution of MC-KP (i - 1, w)
= Case j + 1: j-th item from i-th group (item;;) in OPT M w = v45 + Mz’—l,w—wi,j
. OPT\itemi,j is an optimal solution of MC-KP (i - 1, w - W 5)
= Recursively define the value
0 if2=20
Mi,w = Mi—l,w if Wi > W for all]
\maxlgjgm (vi,j + Mi—l,w—'w,;,j , Mi—l,uf) otherwise @
n; II— 1

Step 3: Compute Value of an OPT
Solution

Multiple-Choice Knapsack Problem
Input: n items with value v; ; and weighs w; ; (n;: #items in group i, G: #groups)

Output: the max value within W capacity, where each group is chosen at most once

= Bottom-up method: solve smaller subproblems first
0 if i =0
Mz’,w = Mfi—l,w if Wi > W for all 7
maxij<j<n; (Uz',j + Mi—l,w—w@-,j , Mi—l,w) otherwise

Step 3: Compute Value of an OPT
Solution

Multiple-Choice Knapsack Problem
Input: n items with value v; ; and weighs w; ; (n;: #items in group i, G: #groups)
Output: the max value within W capacity, where each group is chosen at most once

= Bottom-up method: solve smaller subproblems first

MC-KP (n, v, W)
for w =0 to W

G // consider groups 1 to i
to W // consider capacity = w

] = M[i - 1, w] T(n) =06(nW)
= 1 to n; // check j-th item in group i
5 ML -1, w-ow 5] > M1, wl)
+ M[1 -1, w - w

'_h
O
=
l_l
Il
[
O |
O

13]

G W nz ?J

7776—6??71—62%—6?1“/ @

=1 w=0 j3=1 w=0 =1 3=1

Step 4: Construct an OPT Solution by

Backtracking

MC-KP (n, v, W)

for w =0 to W
M[O, w] = O
for 1 = 1 to G // consider groups 1 to i
for w = 0 to W // consider capacity = w
M[i, w] = M[1 - 1, w]
for j = 1 to n; // check items in group 1
if(vi,j + M[1 - 1, w - W 5] > M[1, w])
M[1i, w] = Vi,5 t M[1i -1, w - wld]
Bl[i, w] = j
return M[G, W], B[G, W]

)

e

(e

Knapsack Problem

&

= Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

= Qutput: the maximum value for the knapsack with capacity of W

= Variants of knapsack problem

= 0-1 Knapsack Problem: BIEY)m REEE—{&
Unbounded Knapsack Problem: 2IE¥) ol LA Z= %@
Multidimensional Knapsack Problem: 5 812 BB R
Multiple-Choice Knapsack Problem: B— 8z %E=—{E

Fractional Knapsack Problem: g o] LI R ZE 5

Fractional Knapsack Problem

= Input: n items where i-th item has value v; and weighs w; (v; and w;
are positive integers)

= Qutput: the maximum value for the knapsack with capacity of W,
where we can take any fraction of items

= Dynamic programming algorithm should work

= Choose maximal —(£B1LICP1E) first “Greedy Algorithm”
Next topic!

Be Continued...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

