DIVDE $\&$ CONDUER

Algorithm Design and Analysis Yun－Nung（Vivian）Chen

Outline

－Recurrence（遞迴）
－Divide－and－Conquer
－D\＆C \＃1：Tower of Hanoi（河內塔）
－D\＆C \＃2：Merge Sort
－D\＆C \＃3：Bitonic Champion
－D\＆C \＃4：Maximum Subarray
－Solving Recurrences
－Substitution Method
－Recursion－Tree Method
－Master Method
－D\＆C \＃5：Matrix Multiplication
－D\＆C \＃6：Selection Problem
－D\＆C \＃7：Closest Pair of Points Problem

Divide－and－Conquer 首部曲

D\&C \#5: Matrix Multiplication

Textbook Chapter 4.2 - Strassen's algorithm for matrix multiplication

Matrix Multiplication Problem

Input: two $n \times n$ matrices A and B.
Output: the product matrix $C=A \times B$

Naïve Algorithm

- Each entry takes n multiplications
- There are total n^{2} entries

$$
\Rightarrow \Theta(n) \Theta\left(n^{2}\right)=\Theta\left(n^{3}\right)
$$

Matrix Multi. Problem Complexity

Upper bound $=O\left(n^{3}\right)$

Lower bound $=\Omega\left(n^{2}\right)$
Why?

Divide-and-Conquer

$$
\begin{aligned}
& C_{11}=A_{11} B_{11}+A_{12} B_{21} \\
& C_{12}=A_{11} B_{12}+A_{12} B_{22}
\end{aligned}
$$

$$
C_{21}=A_{21} B_{11}+A_{22} B_{21}
$$

- We can assume that $n=2^{k}$ for simplicity

$$
C_{22}=A_{21} B_{12}+A_{22} B_{22}
$$

- Otherwise, we can increase n s.t. $n=2^{\left[\log _{2} n\right]}$
- n may not be twice large as the original in this modification

Algorithm Time Complexity

```
MatrixMultiply(n, A, B)
    //base case
    if n == 1
        return AB }\Theta(1
    //recursive case
    Divide A and B into n/2 by n/2 submatrices Divide \Theta(1)
    C
```


- $T(n)=$ time for running MatrixMultiply (n, A, B)

$$
T(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
8 T(n / 2)+\Theta\left(n^{2}\right) & \text { if } n \geq 2
\end{array} \Rightarrow \Theta\left(n^{\log _{2} 8}\right)=\Theta\left(n^{3}\right)\right.
$$

Strassen's Technique

- Important theoretical breakthrough by Volker Strassen in 1969
- Reduces the running time from $\Theta\left(n^{3}\right)$ to $\Theta\left(n^{\log ^{27}}\right) \approx \Theta\left(n^{2.807}\right)$
- The key idea is to reduce the number of recursive calls
- From 8 recursive calls to 7 recursive calls
- At the cost of extra addition and subtraction operations
$\Theta\left((n / 2)^{2}\right)$

Intuition:

$$
a c+a d+b c+b d=(a+b)(c+d)
$$

4 multiplications
3 additions
1 multiplication 2 additions

Strassen's Algorithm

$$
\begin{aligned}
& \text { - } C=A \times B \\
& C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \quad 2+1- \\
& C_{12}=M_{3}+M_{5} \quad 1+ \\
& A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad \begin{array}{lll}
C_{21}= & M_{2}+M_{4} & \mathbf{1 +} \\
C_{22}= & M_{1}-M_{2}+M_{3}+M_{6} & \mathbf{2 + 1 -}
\end{array} \\
& B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \quad \begin{array}{ll}
M_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) & 2+1 \times \\
M_{2}=\left(A_{21}+A_{22}\right) B_{11} & 1+1 \times
\end{array} \\
& C=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right] \quad \begin{array}{ll}
M_{3}=A_{11}\left(B_{12}-B_{22}\right) & 1-1 \times \\
M_{4}=A_{22}\left(B_{21}-B_{11}\right) & 1-1 \times
\end{array} \\
& M_{5}=\left(A_{11}+A_{12}\right) B_{22} \quad 1+1 \times \\
& M_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) 1+1-1 \times \\
& M_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right) 1+1-1 \times \\
& 18 \Theta\left((n / 2)^{2}\right)+7 T(n / 2)
\end{aligned}
$$

Verification of Strassen's Algorithm

$$
\begin{array}{rlrl}
C_{12} & =M_{3}+M_{5} & A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \\
& =A_{11}\left(B_{12}-B_{22}\right)+\left(A_{11}+A_{12}\right) B_{22} & & \left.\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \\
& =A_{11} B_{12}+A_{12} B_{22} & B=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right]
\end{array}
$$

- Practice

$$
\begin{aligned}
& C_{11}=M_{1}+M_{4}-M_{5}+M_{7} \\
& C_{22}=M_{1}-M_{2}+M_{3}+M_{6}
\end{aligned}
$$

Strassen's Algorithm Time Complexity

```
Strassen(n, A, B)
    // base case
    if n == 1
        return AB }\quad\Theta(1
    // recursive case
    Divide A and B into n/2 by n/2 submatrices Divide }\Theta(1
    M
    M
```



```
    M
    M M Strassen(n/2, A A11 +A Al2, B B2)
    M
    M
    C}\mp@subsup{C}{11}{}=\mp@subsup{M}{1}{}+\mp@subsup{M}{4}{}-\mp@subsup{M}{5}{}+\mp@subsup{M}{7}{
    C}\mp@subsup{C}{12}{}=\mp@subsup{M}{3}{}+\mp@subsup{M}{5}{
    C}21=\mp@subsup{M}{2}{}+\mp@subsup{M}{4}{
    C}=\mp@subsup{M}{1}{}-\mp@subsup{M}{2}{}+\mp@subsup{M}{3}{}+\mp@subsup{M}{6}{}-\Theta(n
    \Theta(\mp@subsup{n}{}{2})}\vec{|

\section*{Practicability of Strassen's Algorithm}
- Disadvantages
1. Larger constant factor than it in the naïve approach
\[
c_{1} n^{\log _{2} 7}, c_{2} n^{3} \rightarrow c_{1}>c_{2}
\]
2. Less numerical stable than the naïve approach
- Larger errors accumulate in non-integer computation due to limited precision
3. The submatrices at the levels of recursion consume space
4. Faster algorithms exist for sparse matrices
- Advantages: find the crossover point and combine two subproblems

\section*{Matrix Multiplication Upper Bounds}
- Each algorithm gives an upper bound


\section*{Matrix Multi. Problem Complexity}


\section*{D\&C \#6: Selection Problem}

Textbook Chapter 9.3 - Selection in worst-case linear time

\section*{Selection Problem}
- Input:
- An array \(A\) of \(n\) distinct integers.
- An index \(k\) with \(1 \leq k \leq n\).
- Output:

The \(k\)-th largest number in \(A\).

\section*{\(n=10, k=5\)}


\section*{Selection Problem \(\leqq\) Sorting Problem}
- If the sorting problem can be solved in \(O(f(n))\), so can the selection problem based on the algorithm design
- Step 1: sort A into increasing order
- Step 2: output \(A[n-k+1]\)

\section*{Selection Problem Complexity}


Upper bound \(=O(n \log n)\)


Can we make the upper bound better if we do not sort them?

Lower bound \(=\Omega(n)\)

\section*{Hardness of Selection Problem}
- Upper bounds in terms of \#comparisons
- \(3 n+o(n)\) by Schonhage, Paterson, and Pippenger (JCSS 1975).
- \(2.95 n\) by Dor and Zwick (SODA 1995, SIAM Journal on Computing 1999).
- Lower bounds in terms of \#comparisons
- \(2 n+o(n)\) by Bent and John (STOC 1985)
- \(\left(2+2^{-80}\right) n\) by Dor and Zwick (FOCS 1996, SIAM Journal on Discrete Math 2001).

\section*{Divide-and-Conquer}
- Idea
- Select a pivot and divide the inputs into two subproblems
- If \(k \leq\left|X_{>}\right|\), we find the \(k\)-th largest
- If \(k>\left|X_{>}\right|\), we find the \(\left(k-\left|X_{>}\right|\right)\)-th largest



We want these subproblems to have similar size
\(\rightarrow\) The better pivot is the medium in the input array

\section*{Homework Practice}

認真想一想！


\section*{D\&C \#7: Closest Pair of Points Problem}

Textbook Chapter 33.4 - Finding the closest pair of points

\section*{Closest Pair of Points Problem}
- Input: \(n \geq 2\) points, where \(p_{i}=\left(x_{i}, y_{i}\right)\) for \(0 \leq i<n\)
- Output: two points \(p_{i}\) and \(p_{j}\) that are closest
- "Closest": smallest Euclidean distance
- Euclidean distance between \(p_{i}\) and \(p_{j}: d\left(p_{i}, p_{j}\right)=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}\)

- Brute-force algorithm
- Check all pairs of points:
\[
\Theta\left(C_{2}^{n}\right)=\Theta\left(n^{2}\right)
\]

\section*{Closest Pair of Points Problem}
- 1D:
- Sort all points \(\Theta(n \log n)\)
- Scan the sorted points to find the closest pair in one pass \(\Theta(n)\)
" We only need to examine the adjacent points
\[
\Rightarrow T(n)=\Theta(n \log n)
\]
- 2D:


\section*{Divide-and-Conquer Algorithm}
- Divide: divide points evenly along x-coordinate
- Conquer: find closest pair in each region recursively
- Combine: find closet pair with one point in each region, and return the best of three solutions


\section*{Cross Two Regions}
- Algo 1: check all pairs that cross two regions \(\rightarrow n / 2 \times n / 2\) combinations
- Algo 2: only consider points within \(\delta\) of the cut, \(\delta=\min \{1-\min , \mathrm{r}-\mathrm{min}\}\)
- Other pairs of points must have distance larger than \(\delta\) \(\qquad\)


\section*{Cross Two Regions}
－Algo 1：check all pairs that cross two regions \(\rightarrow n / 2 \times n / 2\) combinations
－Algo 2：only consider points within \(\delta\) of the cut，\(\delta=\min \{1-\min , \mathrm{r}-\mathrm{min}\}\)
－Algo 3：only consider pairs within \(\delta \times 2 \delta\) blocks
－Obs 1：every pair with smaller than \(\delta\) distance must appear in a \(\delta \times 2 \delta\) block



\section*{要是很倒霉，所有的}點都聚集在某個 \(\delta \times\) 28 區塊內怎麼辦

\section*{Cross Two Regions}
- Algo 1: check all pairs that cross two regions \(\rightarrow n / 2 \times n / 2\) combinations
- Algo 2: only consider points within \(\delta\) of the cut, \(\delta=\min \{1-\min , \mathrm{r}-\mathrm{min}\}\)
- Algo 3: only consider pairs within \(\delta \times 2 \delta\) blocks
- Obs 1: every pair with smaller than \(\delta\) distance must appear in a \(\delta \times 2 \delta\) block
- Obs 2: there are at most 8 points in a \(\delta \times 2 \delta\) block
- Each \(\delta / 2 \times \delta / 2\) block contains at most 1 point, otherwise the distance returned from left/right region should be smaller than \(\delta\)


\section*{Cross Two Regions}
- Algo 1: check all pairs that cross two regions \(\rightarrow n / 2 \times n / 2\) combinations
- Algo 2: only consider points within \(\delta\) of the cut, \(\delta=\min \{1-\min , \mathrm{r}-\mathrm{min}\}\)
- Algo 3: only consider pairs within \(\delta \times 2 \delta\) blocks
- Obs 1: every pair with smaller than \(\delta\) distance must appear in a \(\delta \times 2 \delta\) block
- Obs 2: there are at most 8 points in a \(\delta \times 2 \delta\) block
\(\delta\)
\(\delta\)


Find-closet-pair-across-regions
1. Sort the points by \(y\)-values within \(\delta\) of the cut (yellow region)
2. For the sorted point \(p_{i}\), compute the distance with \(p_{i+1}, p_{i+2}, \ldots, p_{i+7}\)
3. Return the smallest one

At most 7 distance calculations needed

\section*{Algorithm Complexity}
```

Closest-Pair(P)
// termination condition (base case)
if |P| <= 3 brute-force finding closest pair and return it
// Divide
find a vertical line L s.t. both planes contain half of the points
// Conquer (by recursion)
left-pair, left-min = Closest-Pair(points in the left)
right-pair, right-min = Closest-Pair(points in the right)
2T(n/2)
// Combine
delta = min{left-min, right-min}
remove points that are delta or more away from L // Obs 1
sort remaining points by y-coordinate into po, ..., p p
\Theta(n log n)
for point pi:
compute distances with p pi+1, p pi+2, ..., p pi+7 // Obs 2
\Theta (n)
update delta if a closer pair is found
return the closest pair and its distance

```
- \(T(n)=\) time for running Closest-Pair (P) with \(|\mathrm{P}|=\mathrm{n}\)
\[
T(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n \leq 3 \\
2 T\left(\frac{n}{2}\right)+\Theta(n \log n) & \text { if } n>3
\end{array} \Rightarrow T(n)=\Theta\left(n \log ^{2} n\right)\right.
\]

\section*{Preprocessing}
- Idea: do not sort inside the recursive case
```

Closest-Pair(P)
sort P by x- and y-coordinate and store in Px and Py
// termination condition (base case)
if |P| <= 3 brute-force finding closest pair and return it
\Theta(1)
// Divide
find a vertical line L s.t. both planes contain half of the points }\Theta(n
// Conquer (by recursion)
left-pair, left-min = Closest-Pair(points in the left)
right-pair, right-min = Closest-Pair(points in the right)
// Combine
delta = min{left-min, right-min}
remove points that are delta or more away from L // Obs 1
for point }\mp@subsup{p}{i}{}\mathrm{ in sorted candidates
\Theta(n)
compute distances with p pi+1, p pi+2, ..., p pi+7 // Obs 2
update delta if a closer pair is found
return the closest pair and its distance

```
\[
T^{\prime}(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n \leq 3 \\
2 T^{\prime}\left(\frac{n}{2}\right)+\Theta(n) & \text { if } n>3
\end{array} \Rightarrow \begin{array}{l}
T^{\prime}(n)=\Theta(n \log n) \\
T(n)=\Theta(n \log n)
\end{array}\right.
\]

\section*{Closest Pair of Points Problem}
- \(O(n)\) algorithm
- Taking advantage of randomization
- Chapter 13.7 of Algorithm Design by Kleinberg \& Tardos
- Samir Khuller and Yossi Matias. 1995. A simple randomized sieve algorithm for the closest-pair problem. Inf. Comput. 118, 1 (April 1995), 34-37.

\section*{Concluding Remarks}
- When to use D\&C
- Whether the problem with small inputs can be solved directly
- Whether subproblem solutions can be combined into the original solution
- Whether the overall complexity is better than naïve
- Note
- Try different ways of dividing
- D\&C may be suboptimal due to repetitive computations
- Example.
- D\&C algo for Fibonacci: \(\Omega\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}\right)\)
- Bottom-up algo for Fibonacci: \(\Theta(n)\)

Our next topic: Dynamic Programming "a technique for solving problems with
```

Fibonacci(n)
if n < 2
return 1
a[0]=1
a[1]=1
for i = 2 ... n
a[i]=a[i-1]+a[i-2]
return a[n]

```

\section*{Question?}

Important announcement will be sent to @ntu.edu.tw mailbox \& post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw```

