

Outline

Qwu'

= Recurrence ({E3E)

= Divide-and-Conquer

= D&C #1: Tower of Hanoi (i A &)
= D&C #2: Merge Sort

= D&C #3: Bitonic Champion

= D&C #4: Maximum Subarray

Divide-and-Conquer & 2

= Solving Recurrences
= Substitution Method

= Recursion-Tree Method
= Master Method

= D&C #5: Matrix Multiplication
- D&C #6: Selection Problem Divide-and-Conquer Z {8 &%
= D&C #7: Closest Pair of Points Problem @

D&C #5: Matrix
Multiplication

Textbook Chapter 4.2 — Strassen’s algorithm for matrix multiplication

Matrix Multiplication Problem

Input: two n X n matrices A and B.

Output: the product matrix C = Ax B

Naive Algorithm

7)

C(i,) = 2og=1 Ai, k) - Bk, j)

= Each entry takes n multiplications

= There are total n? entries

Matrix Multi. Problem Complexity

Upper bound = O(n3)

DD

Lower bound = Q(rn?) """""""" Why?

. e Ci1
Divide-and-Conquer
Ca1

= We can assume that n = 2% for simplicity C22

= Otherwise, we can increasens.t.n = 2l1ogz 1]

= A1 Bi1 + A12By
= A11Bi2 + A12B2
= A1 B11 + Az Bo
= A1 Bi12 + A2 B

= . may not be twice large as the original in this modification

@)
N
=

@)
N
N

Algorithm Time Complexity

MatrixMultiply(n, A, B)
//base case
if n ==
return AB @(1)
//recursive case
Divide A and B into n/2 by n/2 submatrices Divide ©(1)
C,; = MatrixMultiply(n/2,A,;,B;;) + MatrixMultiply(n/2,2,,,B,;
C,; = MatrixMultiply(n/2,2,;,B;,) + MatrixMultiply(n/2,2,,B,,
C,;, = MatrixMultiply(n/2,A,,,B;;) + MatrixMultiply(n/2,A,,,B,;
C,, = MatrixMultiply(n/2,A,;,B;,) + MatrixMultiply(n/2,A,,,B,,

return C Combine 4@((71/2)2) — (_)(nQ)

)
)
)
)

~ o~ o~~~
~— ~— ~— ~—

Conquer

8T (n/2)

= T(n) =time for running MatrixMultiply (n, A, B) &

O(1) ifn=1 oz, 8 _ 3
Tin) = { ST(n/2) + O(n?) ifn>2 ™ Q%) =0(n")

Strassen’s Technigque

= Important theoretical breakthrough by Volker Strassen in 1969

= Reduces the running time from @(n3) to @(nlogﬂ) ~ @(n2-807)

= The key idea is to reduce the number of recursive calls
= From 8 recursive calls to 7 recursive calls T(n/Q)

= At the cost of extra addition and subtraction operations ©((n/2)?)

:.;.F] Intuition:
é%&ep % ac+ ad + bc+ bd = (a + b)(c+ d)
» > v I> o T
IO sz =t
VH B
Ly 2)

Strassen’s Algorithm

«C=AXB 011
C’12

A — - A A] (91
Agr Ago Clo

B_ [B11 Bio] M
| B2a1 Bao M,

O — [C11 Cho] M3
| Co1 Cao My

Ms

Me

My

180((n/2)%) + 7T (n/2)

My + My — Ms + M, 2+1-
Ms + Ms 1+
Mo + My 1+
My — My + Ms+ Mg 2+1-

(A11 + A22)(B11 + B22) 2+1x

(A1 + Ag2)B11 1+1x
Ay1(B12 — Bao) 1-1x
Ago(B21 — Br1) 1-1x
(A11 4+ A12)Bao 1+1X

(A21 — A11)(B11 + Bi2) 1+1-1x
(A12 — A22)(B21 + Ba2) 1+1-1x

12+6-7X%

Verification of Strassen’s Algorithm

= Practice
Ci1 =
Coo =

Mz + M
A11(Bia — Bag) + (A1 + A12)Boo
A11B1o + A12Bos

Mo + My
(A2 + Ag9)B11 + A2 (B21 — B11)
Ao1B11 + A2 Boy

My + My — Mg + M-
My — My + M3 + Mg

A:

B =

C:

@

Strassen’s Algorithm Time Complexity

Strassen(n, A, B)
// base case
if n ==
return AB ()(1)
// recursive case

Divide A and B into n/2 by n/2 submatrices Divide @(1)

M, = Strassen(n/2, A;;+A,,, B;;+B,,)
M, = Strassen(n/2, A,;tA,,, Bj;)

M, = Strassen(n/2, A;;, B;,-B,,)

M, = Strassen(n/2, A,,, B,;-B;;)

M = Strassen(n/2, A;;tA;,, B,,)

M, = Strassen(n/2, A;;-A,;, B;;+Bj,)
M, = Strassen(n/2, A;,-A,,, B,;+B,,)
C,, =M + M, - M. + M,

C, = My + M. Combine
C,, = M, + M, @(n2)
C,, =M - M, + My + M,

return C

Conquer

7T (n/2) +0((n/2)?%)

= T(n) =time for running Strassen (n, A, B)
1 ifn=1
T(n) :{ O(1) if n

TT(n/2) +O©(n?) ifn>2
mp O(nlog27) ~ O(n287) *:ﬁ---ss:..j

Practicability of Strassen’s Algorithm

= Disadvantages

1. Larger constant factor than it in the naive approach

7,627’2/3 — C1 > C3

Cln10g2
2. Less numerical stable than the naive approach
= Larger errors accumulate in non-integer computation due to limited precision
3. The submatrices at the levels of recursion consume space

4. Faster algorithms exist for sparse matrices

= Advantages: find the crossover point and combine two
subproblems

o

Matrix Multiplication Upper Bounds

= Each algorithm gives an upper bound

3.0¢%
o
2.8 L
2.7
"
2.5 L

24

1950

naive

O(nlog2 7)

Strassen Pan

Bini et al.

Schénhage Romani

Coppersmith, Winograd Strassen

Coppersmith, Winograd

Current lowest upper bound

Stothers

1960 1970 1980 1990

Williams

. O(n2‘3728639)

Year

©

Matrix Multi. Problem Complexity

Upper bound = O(n?-3728639)

A)eD

Lower bound = Q(n?)

D&C #6: Selection
Problem

Textbook Chapter 9.3 — Selection in worst-case linear time

Selection Problem

e Input:

— An array A of n distinct integers.

— An index k with 1 < k < n.
e Qutput:

The k-th largest number in A.

©

n=10 k=5

0000000000

Selection Problem = Sorting Problem

= |f the sorting problem can be solved in O(f(n)), so can the selection
problem based on the algorithm design

= Step 1: sort A into increasing order
= Step 2: output A[n — k + 1]

©

Selection Problem Complexity

Upper bound = O(nlogn)

——————

~~~~

Can we make the

_____
____________

~ --

Lower bound = Q(n)

upper bound better if __



Hardness of Selection Problem

= Upper bounds in terms of #comparisons
= 3n + o(n) by Schonhage, Paterson, and Pippenger (JCSS 1975).

= 2.95n by Dor and Zwick (SODA 1995, SIAM Journal on Computing 1999).

= Lower bounds in terms of #comparisons
= 2n+o(n) by Bent and John (STOC 1985)

= (2+28%n by Dor and Zwick (FOCS 1996, SIAM Journal on Discrete Math 2001).

o



Divide-and-Conquer

= |dea
= Select a pivot and divide the inputs into two subproblems
= If k < |X5|, we find the k-th largest
= If k > | X5 |, we find the (k — [ X5 |)-th largest

pivot

X< l X

We want these subproblems to have similar size
- The better pivot is the medium in the input array




Homework Practice




= D&C #7: Closest Pair
= of Points Problem

Textbook Chapter 33.4 — Finding the closest pair of points



Closest Pair of Points Problem

= Input: n = 2 points, where p; = (x;,y;) for0 <i<n

= Output: two points p; and p; that are closest
= “Closest”: smallest Euclidean distance

= Euclidean distance between p; and Dj: d(pz-,pj) = \/(J/‘z — 333‘)2 + (yz — yj)2

= Brute-force algorithm

= Check all pairs of points:
0(C3) = 0(n?)

€



Closest Pair of Points Problem

= 1D:
= Sort all points ©O(nlogn)
= Scan the sorted points to find the closest pair in one pass O(n)

= We only need to examine the adjacent points

mp 7(n) = 0O(nlogn)
o0 o0 o0 o o

= 2D: -
#3838~

()



Divide-and-Conquer Algorithm

= Divide: divide points evenly along x-coordinate
= Conquer: find closest pair in each region recursively

= Combine: find closet pair with one point in each region, and return the
best of three solutions

o °
e © © ; o
left-min = 10 ,_i___
7 _E RN .
O cross;min =7 5 , .
@ | . @ I @ right-min =13
\ @ / ~
\\\ X ,/ .
®
®
®




Cross Two Regions

= Algo 1: check all pairs that cross two regions 2 n/2 X n/2 combinations
= Algo 2: only consider points within 6 of the cut, § = min{l—min, r—min}

= Other pairs of points must have distance larger than § — =
[,\m/J ==$B@l] é

5§ 6 T
U

o ®
o o ¢ i o
left-min = 10 ®
O cross-min = 7
o ./E/. . right-min = 13
i o
o ®

i o
i ° ©



Cross Two Regions

= Algo 1: check all pairs that cross two regions 2 n/2 X n/2 combinations
= Algo 2: only consider points within 6 of the cut, § = min{l—min, r—min}

= Algo 3: only consider pairs within & X 24 blocks
= Obs 1: every pair with smaller than é distance must appearina é X 26 block

56
g © RS @ “
O r

0 /.
T i< Z2REB - AN

- BhEI B A (S X

2618 B2 P /S it




Cross Two Regions

= Algo 1: check all pairs that cross two regions 2 n/2 X n/2 combinations
= Algo 2: only consider points within 6 of the cut, § = min{l—min, r—min}

= Algo 3: only consider pairs within & X 24 blocks
= Obs 1: every pair with smaller than é distance must appearina é X 26 block
= Obs 2: there are at most 8 pointsina d X 26 block

= Each §/2 X §/2 block contains at most 1 point, otherwise the distance returned from
left/right region should be smaller than §

o o Y [ PP .
1
1
1
1
1
1
1
1
1
1
1
T
1
1
1
1
1
1
1
1
1
1



Cross Two Regions

= Algo 1: check all pairs that cross two regions 2 n/2 X n/2 combinations
= Algo 2: only consider points within 6 of the cut, § = min{l—min, r—min}

= Algo 3: only consider pairs within & X 24 blocks
= Obs 1: every pair with smaller than é distance must appearina é X 26 block

= Obs 2: there are at most 8 pointsina d X 26 block

0 0
Find-closet-pair—-across—-regions
1. Sort the points by y-values within § of the
cut (yellow region)
For the sorted point p;, compute the

distance with p; 11, Di12, -y Dit7
3. Return the smallest one

LE

B

___________________________________________________________________

At most 7 distance calculations needed

.
e @



Algorithm Complexity

Closest—-Pair (P)

// termination condition (base case) ()(1)
if |P| <= 3 brute-force finding closest pair and return it
// Divide @(n log n)

find a vertical line L s.t. both planes contain half of the points
// Conquer (by recursion)
left-pair, left-min = Closest-Pair(points in the left)
right-pair, right-min = Closest-Pair (points in the right) QQF(T%/Q)
// Combine
delta = min{left-min, right-min}
remove points that are delta or more away from L // Obs 1
sort remaining points by y-coordinate into p,, .., Py ()(Tlh3g71)
for point p;: ()(WJ
compute distances with pi.,;, Piiss s Pisq // Obs 2
update delta if a closer pair is found
return the closest pair and its distance

= T(n) =time for running Closest-Pair (P) with |P| =n
@(1) ifn <3 2
= B T = |
Tn) 2T (%) + ©(nlogn) ifn >3 = 7(n) = O(nlog"n) @)

Exercise 4.6-2



Preprocessing

= |dea: do not sort inside the recursive case

Closest—-Pair (P)

sort P by x- and y-coordinate and store in Px and Py ()(Tzh)g71)
// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it ()(1)

// Divide

find a vertical line L s.t. both planes contain half of the points()(n)
// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left) QQF(TQ/Q)
right-pair, right-min = Closest-Pair (points in the right)
// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

for point p; in sorted candidates ()(HJ
compute distances with pi,;, Piiss s Pisq // Obs 2
update delta if a closer pair is found

return the closest pair and its distance

oy ) 1) ifn<3 , T'(n) =0(nlogn) !
T'n) = 2T’(%)+@(n) 1fn>3» T(n) = O(nlogn) @




Closest Pair of Points Problem

= 0(n) algorithm
= Taking advantage of randomization
= Chapter 13.7 of Algorithm Design by Kleinberg & Tardos

= Samir Khuller and Yossi Matias. 1995. A simple randomized sieve
algorithm for the closest-pair problem. Inf. Comput. 118, 1 (April 1995),
34-37.

()



Concluding Remarks

= When to use D&C

= Whether the problem with small inputs can be solved directly

= Whether subproblem solutions can be combined into the original solution
= Whether the overall complexity is better than naive

" Note
= Try different ways of dividing

= D&C may be suboptimal due to repetitive computations

= Example.
= D&C algo for Fibonacci: Q((l_z—‘/g)n)
= Bottom-up algo for Fibonacci: @(n)

—————————————————————————————————————————————————————————————————————

Our next topic: Dynamic Programming
“a technique for solving problems with
overlapping subproblems”

Fibonacci (n)
if n < 2
return 1

2. Conquer

=
9
©




Question?

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw



http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

