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 Recurrence (遞迴)

 Divide-and-Conquer

 D&C #1: Tower of Hanoi (河內塔)

 D&C #2: Merge Sort

 D&C #3: Bitonic Champion

 D&C #4: Maximum Subarray

 Solving Recurrences
 Substitution Method

 Recursion-Tree Method

 Master Method

 D&C #5: Matrix Multiplication

 D&C #6: Selection Problem

 D&C #7: Closest Pair of Points Problem
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Divide-and-Conquer 之神乎奇技

Divide-and-Conquer 首部曲



Textbook Chapter 4.2 – Strassen’s algorithm for matrix multiplication

3



4



5

 Each entry takes 𝑛 multiplications

 There are total 𝑛2 entries

A B C
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Why?



 We can assume that 𝑛 = 2𝑘 for simplicity

 Otherwise, we can increase 𝑛 s.t. 𝑛 = 2 log2 𝑛

 𝑛 may not be twice large as the original in this modification
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A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22



Combine

Conquer

Divide
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MatrixMultiply(n, A, B)

//base case

if n == 1

__ _return AB

//recursive case

Divide A and B into n/2 by n/2 submatrices

C11 = MatrixMultiply(n/2,A11,B11) + MatrixMultiply(n/2,A12,B21)

C21 = MatrixMultiply(n/2,A11,B12) + MatrixMultiply(n/2,A12,B22)

C21 = MatrixMultiply(n/2,A21,B11) + MatrixMultiply(n/2,A22,B21)

C22 = MatrixMultiply(n/2,A21,B12) + MatrixMultiply(n/2,A22,B22)

return C

 𝑇 𝑛 = time for running MatrixMultiply(n, A, B)



 Important theoretical breakthrough by Volker Strassen in 1969

 Reduces the running time from Θ(𝑛3) to Θ(𝑛𝑙𝑜𝑔
27

) ≈ Θ(𝑛2.807)

 The key idea is to reduce the number of recursive calls
 From 8 recursive calls to 7 recursive calls

 At the cost of extra addition and subtraction operations
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4 multiplications
3 additions

1 multiplication
2 additions

Intuition:



 𝐶 = 𝐴 × 𝐵
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2 + 1×

1 + 1×

1 − 1×

1 + 1 − 1×

1 + 1 − 1×

1 − 1×

1 + 1×

12 + 6 − 7×

2 + 1 −

1 +

1 +

2 + 1 −



 Practice
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Combine

Conquer

Divide
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Strassen(n, A, B)

// base case

if n == 1

___ return AB

// recursive case

Divide A and B into n/2 by n/2 submatrices

M1 = Strassen(n/2, A11+A22, B11+B22)

M2 = Strassen(n/2, A21+A22, B11)

M3 = Strassen(n/2, A11, B12-B22)

M4 = Strassen(n/2, A22, B21-B11)

M5 = Strassen(n/2, A11+A12, B22)

M6 = Strassen(n/2, A11-A21, B11+B12)

M7 = Strassen(n/2, A12-A22, B21+B22)

C11 = M1 + M4 - M5 + M7
C12 = M3 + M5
C21 = M2 + M4
C22 = M1 – M2 + M3 + M6
return C

 𝑇 𝑛 = time for running Strassen(n,A,B)



 Disadvantages
1. Larger constant factor than it in the naïve approach

2. Less numerical stable than the naïve approach

 Larger errors accumulate in non-integer computation due to limited precision 

3. The submatrices at the levels of recursion consume space

4. Faster algorithms exist for sparse matrices

 Advantages: find the crossover point and combine two 
subproblems
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 Each algorithm gives an upper bound
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Current lowest upper bound
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Textbook Chapter 9.3 – Selection in worst-case linear time
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 If the sorting problem can be solved in 𝑂 𝑓 𝑛 , so can the selection 
problem based on the algorithm design
 Step 1: sort A into increasing order

 Step 2: output 𝐴[𝑛 − 𝑘 + 1]
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Can we make the 
upper bound better if 
we do not sort them?
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 Upper bounds in terms of #comparisons
 3n + o(n) by Schonhage, Paterson, and Pippenger (JCSS 1975).

 2.95n by Dor and Zwick (SODA 1995, SIAM Journal on Computing 1999).

 Lower bounds in terms of #comparisons
 2n+o(n) by Bent and John (STOC 1985)

 (2+2-80)n by Dor and Zwick (FOCS 1996, SIAM Journal on Discrete Math 2001).



 Idea
 Select a pivot and divide the inputs into two subproblems

 If 𝑘 ≤ 𝑋> , we find the 𝑘-th largest

 If 𝑘 > 𝑋> , we find the 𝑘 − 𝑋> -th largest
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pivot

We want these subproblems to have similar size
 The better pivot is the medium in the input array

a
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Textbook Chapter 33.4 – Finding the closest pair of points
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 Input: 𝑛 ≥ 2 points, where 𝑝𝑖 = 𝑥𝑖 , 𝑦𝑖 for 0 ≤ 𝑖 < 𝑛

 Output: two points 𝑝𝑖 and 𝑝𝑗 that are closest
 “Closest”: smallest Euclidean distance

 Euclidean distance between 𝑝𝑖 and 𝑝𝑗:
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 Brute-force algorithm
 Check all pairs of points: 
Θ 𝐶2

𝑛 = Θ 𝑛2



 1D:
 Sort all points

 Scan the sorted points to find the closest pair in one pass

 We only need to examine the adjacent points

 2D: 
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 Divide: divide points evenly along x-coordinate

 Conquer: find closest pair in each region recursively

 Combine: find closet pair with one point in each region, and return the 
best of three solutions
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left-min = 10

right-min = 13
cross-min = 7



 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}
 Other pairs of points must have distance larger than 𝛿

28

left-min = 10

right-min = 13
cross-min = 7

𝛿 𝛿

縮小搜尋範圍!



 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block
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要是很倒霉，所有的
點都聚集在某個𝛿 ×
2𝛿區塊內怎麼辦

縮小搜尋範圍!



 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

 Obs 2: there are at most 8 points in a 𝛿 × 2𝛿 block

 Each 𝛿/2 × 𝛿/2 block contains at most 1 point, otherwise the distance returned from 
left/right region should be smaller than 𝛿
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 Algo 1: check all pairs that cross two regions  𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

 Obs 2: there are at most 8 points in a 𝛿 × 2𝛿 block
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pi+4

pi+2

pi+5

pi+3

Find-closet-pair-across-regions

1. Sort the points by y-values within 𝛿 of the 
cut (yellow region)

2. For the sorted point 𝑝𝑖, compute the 
distance with 𝑝𝑖+1, 𝑝𝑖+2, …, 𝑝𝑖+7

3. Return the smallest one

At most 7 distance calculations needed
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Closest-Pair(P)

// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it

// Divide

find a vertical line L s.t. both planes_contain half of the points

// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left)

right-pair, right-min = Closest-Pair(points in the right)

// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

sort remaining points by y-coordinate into p0, …, pk
for point pi:

____compute distances with pi+1, pi+2, …, pi+7_// Obs 2

____update delta if a closer pair is found

return the closest pair and its distance

 𝑇 𝑛 = time for running Closest-Pair(P) with |P| = n

Exercise 4.6-2



 Idea: do not sort inside the recursive case
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Closest-Pair(P)

sort P by x- and y-coordinate and store in Px and Py

// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it

// Divide

find a vertical line L s.t. both planes_contain half of the points

// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left)

right-pair, right-min = Closest-Pair(points in the right)

// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

for point pi in sorted candidates

____compute distances with pi+1, pi+2, …, pi+7_// Obs 2

____update delta if a closer pair is found

return the closest pair and its distance



 𝑂(𝑛) algorithm
 Taking advantage of randomization

 Chapter 13.7 of Algorithm Design by Kleinberg & Tardos

 Samir Khuller and Yossi Matias. 1995. A simple randomized sieve 
algorithm for the closest-pair problem. Inf. Comput. 118, 1 (April 1995), 
34-37.
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 When to use D&C
 Whether the problem with small inputs can be solved directly

 Whether subproblem solutions can be combined into the original solution

 Whether the overall complexity is better than naïve

 Note
 Try different ways of dividing

 D&C may be suboptimal due to repetitive computations

 Example.

 D&C algo for Fibonacci: 

 Bottom-up algo for Fibonacci:
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1. Divide

2. Conquer

3. Combine

Fibonacci(n)

if n < 2

____return 1

a[0]=1

a[1]=1

for i = 2 … n

____a[i]=a[i-1]+a[i-2]

return a[n]

Our next topic: Dynamic Programming
“a technique for solving problems with 

overlapping subproblems”



Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

36

Important announcement will be sent to @ntu.edu.tw mailbox 
& post to the course website

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

