
Slides credited from Hsueh-I Lu, Hsu-Chun Hsiao, & Michael Tsai

 Recurrence (遞迴)

 Divide-and-Conquer

 D&C #1: Tower of Hanoi (河內塔)

 D&C #2: Merge Sort

 D&C #3: Bitonic Champion

 D&C #4: Maximum Subarray

 Solving Recurrences
 Substitution Method

 Recursion-Tree Method

 Master Method

 D&C #5: Matrix Multiplication

 D&C #6: Selection Problem

 D&C #7: Closest Pair of Points Problem
2

Divide-and-Conquer 之神乎奇技

Divide-and-Conquer 首部曲

Textbook Chapter 4.2 – Strassen’s algorithm for matrix multiplication

3

4

5

 Each entry takes 𝑛 multiplications

 There are total 𝑛2 entries

A B C

6

Why?

 We can assume that 𝑛 = 2𝑘 for simplicity

 Otherwise, we can increase 𝑛 s.t. 𝑛 = 2 log2 𝑛

 𝑛 may not be twice large as the original in this modification

7

A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22

Combine

Conquer

Divide

8

MatrixMultiply(n, A, B)

//base case

if n == 1

__ _return AB

//recursive case

Divide A and B into n/2 by n/2 submatrices

C11 = MatrixMultiply(n/2,A11,B11) + MatrixMultiply(n/2,A12,B21)

C21 = MatrixMultiply(n/2,A11,B12) + MatrixMultiply(n/2,A12,B22)

C21 = MatrixMultiply(n/2,A21,B11) + MatrixMultiply(n/2,A22,B21)

C22 = MatrixMultiply(n/2,A21,B12) + MatrixMultiply(n/2,A22,B22)

return C

 𝑇 𝑛 = time for running MatrixMultiply(n, A, B)

 Important theoretical breakthrough by Volker Strassen in 1969

 Reduces the running time from Θ(𝑛3) to Θ(𝑛𝑙𝑜𝑔
27

) ≈ Θ(𝑛2.807)

 The key idea is to reduce the number of recursive calls
 From 8 recursive calls to 7 recursive calls

 At the cost of extra addition and subtraction operations

9

4 multiplications
3 additions

1 multiplication
2 additions

Intuition:

 𝐶 = 𝐴 × 𝐵

10

2 + 1×

1 + 1×

1 − 1×

1 + 1 − 1×

1 + 1 − 1×

1 − 1×

1 + 1×

12 + 6 − 7×

2 + 1 −

1 +

1 +

2 + 1 −

 Practice

11

Combine

Conquer

Divide

12

Strassen(n, A, B)

// base case

if n == 1

___ return AB

// recursive case

Divide A and B into n/2 by n/2 submatrices

M1 = Strassen(n/2, A11+A22, B11+B22)

M2 = Strassen(n/2, A21+A22, B11)

M3 = Strassen(n/2, A11, B12-B22)

M4 = Strassen(n/2, A22, B21-B11)

M5 = Strassen(n/2, A11+A12, B22)

M6 = Strassen(n/2, A11-A21, B11+B12)

M7 = Strassen(n/2, A12-A22, B21+B22)

C11 = M1 + M4 - M5 + M7
C12 = M3 + M5
C21 = M2 + M4
C22 = M1 – M2 + M3 + M6
return C

 𝑇 𝑛 = time for running Strassen(n,A,B)

 Disadvantages
1. Larger constant factor than it in the naïve approach

2. Less numerical stable than the naïve approach

 Larger errors accumulate in non-integer computation due to limited precision

3. The submatrices at the levels of recursion consume space

4. Faster algorithms exist for sparse matrices

 Advantages: find the crossover point and combine two
subproblems

13

 Each algorithm gives an upper bound

14

Current lowest upper bound

15

Textbook Chapter 9.3 – Selection in worst-case linear time

16

17

18

3 7 9 17 5 2 21 18 33 4

 If the sorting problem can be solved in 𝑂 𝑓 𝑛 , so can the selection
problem based on the algorithm design
 Step 1: sort A into increasing order

 Step 2: output 𝐴[𝑛 − 𝑘 + 1]

19

20

Can we make the
upper bound better if
we do not sort them?

21

 Upper bounds in terms of #comparisons
 3n + o(n) by Schonhage, Paterson, and Pippenger (JCSS 1975).

 2.95n by Dor and Zwick (SODA 1995, SIAM Journal on Computing 1999).

 Lower bounds in terms of #comparisons
 2n+o(n) by Bent and John (STOC 1985)

 (2+2-80)n by Dor and Zwick (FOCS 1996, SIAM Journal on Discrete Math 2001).

 Idea
 Select a pivot and divide the inputs into two subproblems

 If 𝑘 ≤ 𝑋> , we find the 𝑘-th largest

 If 𝑘 > 𝑋> , we find the 𝑘 − 𝑋> -th largest

22

pivot

We want these subproblems to have similar size
 The better pivot is the medium in the input array

a

23

Textbook Chapter 33.4 – Finding the closest pair of points

24

 Input: 𝑛 ≥ 2 points, where 𝑝𝑖 = 𝑥𝑖 , 𝑦𝑖 for 0 ≤ 𝑖 < 𝑛

 Output: two points 𝑝𝑖 and 𝑝𝑗 that are closest
 “Closest”: smallest Euclidean distance

 Euclidean distance between 𝑝𝑖 and 𝑝𝑗:

25

 Brute-force algorithm
 Check all pairs of points:
Θ 𝐶2

𝑛 = Θ 𝑛2

 1D:
 Sort all points

 Scan the sorted points to find the closest pair in one pass

 We only need to examine the adjacent points

 2D:

26

 Divide: divide points evenly along x-coordinate

 Conquer: find closest pair in each region recursively

 Combine: find closet pair with one point in each region, and return the
best of three solutions

27

left-min = 10

right-min = 13
cross-min = 7

 Algo 1: check all pairs that cross two regions 𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}
 Other pairs of points must have distance larger than 𝛿

28

left-min = 10

right-min = 13
cross-min = 7

𝛿 𝛿

縮小搜尋範圍!

 Algo 1: check all pairs that cross two regions 𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

29

要是很倒霉，所有的
點都聚集在某個𝛿 ×
2𝛿區塊內怎麼辦

縮小搜尋範圍!

 Algo 1: check all pairs that cross two regions 𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

 Obs 2: there are at most 8 points in a 𝛿 × 2𝛿 block

 Each 𝛿/2 × 𝛿/2 block contains at most 1 point, otherwise the distance returned from
left/right region should be smaller than 𝛿

30

 Algo 1: check all pairs that cross two regions 𝑛/2 × 𝑛/2 combinations

 Algo 2: only consider points within 𝛿 of the cut, 𝛿 = min{l−min, r−min}

 Algo 3: only consider pairs within 𝛿 × 2𝛿 blocks
 Obs 1: every pair with smaller than 𝛿 distance must appear in a 𝛿 × 2𝛿 block

 Obs 2: there are at most 8 points in a 𝛿 × 2𝛿 block

31pi

pi+4

pi+2

pi+5

pi+3

Find-closet-pair-across-regions

1. Sort the points by y-values within 𝛿 of the
cut (yellow region)

2. For the sorted point 𝑝𝑖, compute the
distance with 𝑝𝑖+1, 𝑝𝑖+2, …, 𝑝𝑖+7

3. Return the smallest one

At most 7 distance calculations needed

32

Closest-Pair(P)

// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it

// Divide

find a vertical line L s.t. both planes_contain half of the points

// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left)

right-pair, right-min = Closest-Pair(points in the right)

// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

sort remaining points by y-coordinate into p0, …, pk
for point pi:

____compute distances with pi+1, pi+2, …, pi+7_// Obs 2

____update delta if a closer pair is found

return the closest pair and its distance

 𝑇 𝑛 = time for running Closest-Pair(P) with |P| = n

Exercise 4.6-2

 Idea: do not sort inside the recursive case

33

Closest-Pair(P)

sort P by x- and y-coordinate and store in Px and Py

// termination condition (base case)

if |P| <= 3 brute-force finding closest pair and return it

// Divide

find a vertical line L s.t. both planes_contain half of the points

// Conquer (by recursion)

left-pair, left-min = Closest-Pair(points in the left)

right-pair, right-min = Closest-Pair(points in the right)

// Combine

delta = min{left-min, right-min}

remove points that are delta or more away from L // Obs 1

for point pi in sorted candidates

____compute distances with pi+1, pi+2, …, pi+7_// Obs 2

____update delta if a closer pair is found

return the closest pair and its distance

 𝑂(𝑛) algorithm
 Taking advantage of randomization

 Chapter 13.7 of Algorithm Design by Kleinberg & Tardos

 Samir Khuller and Yossi Matias. 1995. A simple randomized sieve
algorithm for the closest-pair problem. Inf. Comput. 118, 1 (April 1995),
34-37.

34

 When to use D&C
 Whether the problem with small inputs can be solved directly

 Whether subproblem solutions can be combined into the original solution

 Whether the overall complexity is better than naïve

 Note
 Try different ways of dividing

 D&C may be suboptimal due to repetitive computations

 Example.

 D&C algo for Fibonacci:

 Bottom-up algo for Fibonacci:

35

1. Divide

2. Conquer

3. Combine

Fibonacci(n)

if n < 2

____return 1

a[0]=1

a[1]=1

for i = 2 … n

____a[i]=a[i-1]+a[i-2]

return a[n]

Our next topic: Dynamic Programming
“a technique for solving problems with

overlapping subproblems”

Course Website: http://ada.miulab.tw

Email: ada-ta@csie.ntu.edu.tw

36

Important announcement will be sent to @ntu.edu.tw mailbox
& post to the course website

http://ada.miulab.tw/
mailto:ada-ta@csie.ntu.edu.tw

