

Announcement

- Mini-HW 3 released
- Due on 10/11 (Thu) 17:20
- Print out the A4 hard copy and submit before the lecture finishes
- Homework 1 released
- Due on 10/18 (Thur) 17:20 (2 weeks left)
- Writing: print out the A4 hard copy and submit to NTU COOL before the lecture finishes
- Programming: submit to Online Judge - http://ada18-judge.csie.org

Mini-HW 3

Following is the definition of the Fibonacci sequence:
$f i b(n)= \begin{cases}n, & n \leq 1 \\ \operatorname{fib}(n-2)+f i b(n-1), & n>1\end{cases}$

1. What's the time complexity of $f i b(n)$ by using divide and conquer? Prove your answer briefly. (40\%)
2. Complete the following table. What's the time complexity of $f i b(n)$ by using dynamic programming? Prove your answer briefly. (40\%)

n	0	1	2	3	4	5	6	7
fib (n)								

3. Which of the algorithm is faster? Why? (20\%)

Outline

－Recurrence（遞迴）
－Divide－and－Conquer
－D\＆C \＃1：Tower of Hanoi（河內塔）
－D\＆C \＃2：Merge Sort
－D\＆C \＃3：Bitonic Champion
－D\＆C \＃4：Maximum Subarray
－Solving Recurrences
－Substitution Method
－Recursion－Tree Method
－Master Method
－D\＆C \＃5：Matrix Multiplication
－D\＆C \＃6：Selection Problem
－D\＆C \＃7：Closest Pair of Points Problem

Divide－and－Conquer 首部曲

Divide－and－Conquer 之神乎奇技

What is Divide－and－Conquer？

－Solve a problem recursively
－Apply three steps at each level of the recursion
1．Divide the problem into a number of subproblems that are smaller instances of the same problem（比較小的同樣問題）
2．Conquer the subproblems by solving them recursively If the subproblem sizes are small enough
－then solve the subproblems
base case
－else recursively solve itself recursive case
3．Combine the solutions to the subproblems into the solution for the original problem

Solving Recurrences

Textbook Chapter 4.3 - The substitution method for solving recurrences
Textbook Chapter 4.4 - The recursion-tree method for solving recurrences
Textbook Chapter 4.5 - The master method for solving recurrences

D\&C Algorithm Time Complexity

- $T(n)$: running time for input size n
- $D(n)$: time of Divide for input size n
- $C(n)$: time of Combine for input size n
- a : number of subproblems
- n / b : size of each subproblem

$$
T(n)= \begin{cases}O(1) & \text { if } n \leq c \\ a T(n / b)+D(n)+C(n) & \text { otherwise }\end{cases}
$$

Solving Recurrences

1．Substitution Method（取代法）
－Guess a bound and then prove by induction
2．Recursion－Tree Method（遞迴樹法）
－Expand the recurrence into a tree and sum up the cost
3．Master Method（套公式大法／大師法）
－Apply Master Theorem to a specific form of recurrences
－Useful simplification tricks
－Ignore floors，ceilings，boundary conditions（proof in Ch．4．6）
－Assume base cases are constant（for small n）

Substitution Method

Textbook Chapter 4.3 - The substitution method for solving recurrences

Review

－Time Complexity for Merge Sort
－Theorem

$$
T(n)=\left\{\begin{array}{ll}
O(1) & \text { if } n=1 \\
2 T(n / 2)+O(n) & \text { if } n \geq 2
\end{array} \Rightarrow T(n)=O(n \log n)\right.
$$

－Proof
－There exists positive constant a, b s．t．$T(n) \leq \begin{cases}a & \text { if } n=1 \\ 2 T(n / 2)+b n & \text { if } n \geq 2\end{cases}$
－Use induction to prove $T(n) \leq b \cdot n \log n+a \cdot n$
－ $\mathrm{n}=1$ ，trivial
－ $\mathrm{n}>1, T(n) \leq 2 T(n / 2)+b n$

Substitution Method（取代法）

guess a bound and then prove by induction

$$
\leq 2\left[b \cdot \frac{n}{2} \log \frac{n}{2}+a \cdot \frac{n}{2}\right]+b \cdot n
$$

$$
=b \cdot n \log n-b \cdot n+a \cdot n+b \cdot n
$$

$$
=b \cdot n \log n+a \cdot n
$$

Substitution Method（取代法）

1．Guess
－

2．Verify

3．Solve
－Guess the form of the solution
－Verify by mathematical induction（數學歸納法）
－Prove it works for $n=1$
－Prove that if it works for $n=m$ ，then it works for $n=m+1$
\rightarrow It can work for all positive integer n
－Solve constants to show that the solution works
－Prove O and Ω separately

Substitution Method Example

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ 4 T(n / 2)+O(n) & \text { if } n \geq 2\end{cases}
$$

- Proof
- $T(n)=O\left(n^{3}\right)$

There exists positive constants n_{0}, c s.t. for all $n \geq n_{0}, T(n) \leq c n^{3}$

- Use induction to find the constants n_{0}, c
- $\mathrm{n}=1$, trivial

$$
\begin{aligned}
& \mathrm{n}>1, T(n) \leq 4 T(n / 2)+b n \\
& \text { Inductive } \leq 4 c(n / 2)^{3}+b n \\
& \text { hypothesis }=c n^{3} / 2+b n \\
&=c n^{3}-\left(c n^{3} / 2-b n\right) \\
& \leq c n^{3} / 2-b n \geq 0 \\
& \text { e.g. } c \geq 2 b, n \geq 1
\end{aligned}
$$

- $T(n) \leq c n^{3}$ holds when $c=2 b, n_{0}=1$

Substitution Method Example

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ 4 T(n / 2)+O(n) & \text { if } n \geq 2\end{cases}
$$

－Proof
－$T(n)=O\left(n^{2}\right)$
There exists positive constants n_{0}, c s．t．for all $n \geq n_{0}, T(n) \leq c n^{2}$
－Use induction to find the constants n_{0}, c
－ $\mathrm{n}=1$ ，trivial
－ $\mathrm{n}>1, T(n) \leq 4 T(n / 2)+b n$

$$
\begin{aligned}
& \text { Inductive } \leq 4 c(n / 2)^{2}+b n \\
& \text { hypothesis } \\
&=c n^{2}+b n
\end{aligned} \quad \begin{aligned}
& \text { 証不出來... } \\
& \text { 猜錯了? 還是推導錯了? }
\end{aligned}
$$

Substitution Method Example

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ 4 T(n / 2)+O(n) & \text { if } n \geq 2\end{cases}
$$

Strengthen the inductive hypothesis by subtracting a low-order term

- Proof
- $T(n)=O\left(n^{2}\right)$

Guess

There exists positive constants n_{0}, c_{1}, c_{2} s.t. for all $n \geq n_{0}, T(n) \leq c_{1} n^{2}-c_{2} n$

- Use induction to find the constants n_{0}, c_{1}, c_{2}
- $\mathrm{n}=1, T(1) \leq c_{1}-c_{2}$ holds for $c_{1} \geq c_{2}+1$
- $\mathrm{n}>1, T(n) \leq 4 T(n / 2)+b n$

$$
\begin{aligned}
\begin{array}{l}
\text { Inductive } \\
\text { hypothesis }
\end{array} & \leq 4\left[c_{1}(n / 2)^{2}-c_{2}(n / 2)\right]+b n \\
& =c_{1} n^{2}-2 c_{2} n+b n \\
& =c_{1} n^{2}-c_{2} n-\left(c_{2} n-b n\right) \\
& \leq c_{1} n^{2}-c_{2} n
\end{aligned}
$$

- $T(n) \leq c_{1} n^{2}-c_{2} n$ holds when $c_{1}=b+1, c_{2}=b, n_{0}=0$

Useful Tricks

- Guess based on seen recurrences
- Use the recursion-tree method
- From loose bound to tight bound
- Strengthen the inductive hypothesis by subtracting a loworder term
- Change variables
- E.g., $T(n)=2 T(\sqrt{n})+\log n$

1. Change variable: $k=\log n, n=2^{k} \rightarrow T\left(2^{k}\right)=2 T\left(2^{k / 2}\right)+k$
2. Change variable again: $S(k)=T\left(2^{k}\right) \rightarrow S(k)=2 S(k / 2)+k$
3. Solve recurrence
$S(k)=\Theta(k \log k) \rightarrow T\left(2^{k}\right)=\Theta(k \log k) \rightarrow T(n)=\Theta(\log n \log \log n)$

Recursion-Tree Method

Textbook Chapter 4.4 - The recursion-tree method for solving recurrences

Review

－Time Complexity for Merge Sort
－Theorem

$$
T(n)=\left\{\begin{array}{ll}
O(1) & \text { if } n=1 \\
2 T(n / 2)+O(n) & \text { if } n \geq 2
\end{array} \Rightarrow T(n)=O(n \log n)\right.
$$

－Proof

$$
\begin{aligned}
& T(n) \leq 2 T\left(\frac{n}{2}\right)+c n \\
& \text { Recursion-Tree Method (遞迴樹法) } \\
& \text { Expand the recurrence into a tree and sum up the cost } \\
& \leq 2\left[2 T\left(\frac{n}{4}\right)+c \frac{n}{2}\right]+c n=4 T\left(\frac{n}{4}\right)+2 c n \quad 1^{\text {st }} \text { expansion } \\
& \leq 4\left[2 T\left(\frac{n}{8}\right)+c \frac{n}{4}\right]+2 c n=8 T\left(\frac{n}{8}\right)+3 c n \quad 2^{\text {nd }} \text { expansion } \\
& T(n) \leq n T(1)+c n \log _{2} n \\
& \leq 2^{k} T\left(\frac{n}{2^{k}}\right)+k c n \quad \mathrm{k}^{\text {th }} \text { expansion } \quad=O(n)+O(n \log n) \\
& \text { The expansion stops when } 2^{k}=n=O(n \log n)
\end{aligned}
$$

Recursion－Tree Method（遞迴樹法）

1．Expand
－

2．Sumup

E
3．Verify
－Expand a recurrence into a tree
－Sum up the cost of all nodes as a good guess
－Verify the guess as in the substitution method
－Advantages
－Promote intuition
－Generate good guesses for the substitution method

Recursion-Tree Example

$$
\begin{gathered}
T(n)=T(n / 4)+T(n / 2)+c n^{2} \\
T(n)
\end{gathered}
$$

Recursion-Tree Example

$$
\begin{aligned}
& T(n)=T(n / 4)+T(n / 2)+c n^{2} \\
& T(\overbrace{n / 4)}^{c n^{2}}
\end{aligned}
$$

Recursion-Tree Example

$$
T(n)=T(n / 4)+T(n / 2)+c n^{2}
$$

Recursion-Tree Example

Master Theorem

Textbook Chapter 4.5 - The master method for solving recurrences

Master Theorem

divide a problem of size n into a subproblems each of size $\frac{n}{b}$ is solved in time $T\left(\frac{n}{b}\right)$ recursively

The proof is in Ch. 4.6

Let $T(n)$ be a positive function satisfying the following recurrence relation

$$
T(n)=\left\{\begin{array}{ll}
O(1) & \text { if } n \leq 1 \\
a \cdot T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1,
\end{array}\right\} \begin{aligned}
& \text { Should follow } \\
& \text { this format }
\end{aligned}
$$

where $a \geq 1$ and $b>1$ are constants.

- Case 1: If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
- Case 2: If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \cdot \log n\right)$.
- Case 3: If
- $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and
$-a \cdot f\left(\frac{n}{b}\right) \leq c \cdot f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Recursion-Tree for Master Theorem

Three Cases

- $T(n)=a T\left(\frac{n}{b}\right)+f(n)$
- $a \geq 1$, the number of subproblems
- $b>1$, the factor by which the subproblem size decreases
- $f(n)=$ work to divide/combine subproblems

$$
T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+a^{3} f\left(\frac{n}{b^{3}}\right)+\cdots+n^{\log _{b} a} T(1)
$$

- Compare $f(n)$ with $n^{\log _{b} a}$

1. Case 1: $f(n)$ grows polynomially slower than $n^{\log _{b} a}$
2. Case 2: $f(n)$ and $n^{\log _{b} a}$ grow at similar rates
3. Case 3: $f(n)$ grows polynomially faster than $n^{\log _{b} a}$

Case 1:
 Total cost dominated by the leaves

$$
\begin{aligned}
f(n) & =n \\
a f\left(\frac{n}{b}\right) & =\frac{9}{3} n \\
a^{2} f\left(\frac{n}{b^{2}}\right) & =\left(\frac{9}{3}\right)^{2} n \\
a^{3} f\left(\frac{n}{b^{3}}\right) & =\left(\frac{9}{3}\right)^{3} n
\end{aligned}
$$

$$
a^{\log _{b} n} T(1)=9^{\log _{3} n}=\left(\frac{9}{3}\right)^{\log _{3} n} n
$$

$f(n)$ grows polynomially slower than $n^{\log _{b} a}$

Case 1:

Total cost dominated by the leaves

$$
\begin{aligned}
T(n) & =9 T\left(\frac{n}{3}\right)+n, T(1)=1 \\
T(n) & =\left(1+\frac{9}{3}+\left(\frac{9}{3}\right)^{2}+\cdots+\left(\frac{9}{3}\right)^{\log _{3} n}\right) n \\
& =\frac{\left(\frac{9}{3}\right)^{1+\log _{3} n}-1}{3-1} n \\
& =\frac{3 n}{2} \cdot \frac{9^{\log _{3} n}}{3^{\log _{3} n}}-\frac{1}{2} n \\
& =\frac{3 n}{2} \cdot \frac{n^{\log _{3} 9}}{n}-\frac{1}{2} n \\
& =\Theta\left(n^{\log _{3} 9}\right)=\Theta\left(n^{2}\right)
\end{aligned}
$$

- Case 1: If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

Case 2:
 Total cost evenly distributed among levels

$f(n)$ and $n^{\log _{b} a}$ grow at similar rates

Case 2:

Total cost evenly distributed among levels

$$
\begin{aligned}
T(n)= & T\left(\frac{2 n}{3}\right)+1, T(1)=1 \\
T(n) & =1+1+1+\cdots+1 \\
& =\log _{\frac{3}{2}} n+1 \\
& =\Theta(\log n)
\end{aligned}
$$

- Case 2: If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \cdot \log n\right)$.

Case 3:
 Total cost dominated by root cost

$f(n)$ grows polynomially faster than $n \log _{b} a$

Case 3:

Total cost dominated by root cost

$$
\begin{aligned}
& T(n)=3 T\left(\frac{n}{4}\right)+n^{5}, T(1)=1 \\
& T(n)=\left(1+\frac{3}{4^{5}}+\left(\frac{3}{4^{5}}\right)^{2}+\cdots+\left(\frac{3}{4^{5}}\right)^{\log _{4} n}\right) n^{5} \\
& T(n)>n^{5} \\
& T(n) \leq \frac{1}{1-\frac{3}{4^{5}}} n^{5} \\
& T(n)=\Theta\left(n^{5}\right)
\end{aligned}
$$

- Case 3: If
- $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and
$-a \cdot f\left(\frac{n}{b}\right) \leq c \cdot f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Master Theorem

divide a problem of size n into a subproblems each of size $\frac{n}{b}$ is solved in time $T\left(\frac{n}{b}\right)$ recursively

The proof is in Ch. 4.6

Let $T(n)$ be a positive function satisfying the following recurrence relation

$$
T(n)= \begin{cases}O(1) & \text { if } n \leq 1 \\ a \cdot T\left(\frac{n}{b}\right)+f(n) & \text { if } n>1,\end{cases}
$$

where $a \geq 1$ and $b>1$ are constants.

- Case 1: If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
- Case 2: If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \cdot \log n\right)$.
- Case 3: If
- $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and
- $a \cdot f\left(\frac{n}{b}\right) \leq c \cdot f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

Examples

- Case 1: If $T(n)=9 \cdot T(n / 3)+n$, then $T(n)=\Theta\left(n^{2}\right)$.

Observe that $n=O\left(n^{2}\right)=O\left(n^{\log _{3} 9}\right)$.

- Case 2: If $T(n)=T(2 n / 3)+1$, then $T(n)=\Theta(\log n)$.

Observe that $1=\Theta\left(n^{0}\right)=\Theta\left(n^{\log _{3 / 2} 1}\right)$.

- Case 3: If $T(n)=3 \cdot T(n / 4)+n^{5}$, then $T(n)=\Theta\left(n^{5}\right)$.
$-n^{5}=\Omega\left(n^{\log _{4} 3+\epsilon}\right)$ with $\epsilon=0.00001$.
$-3\left(\frac{n}{4}\right)^{5} \leq c n^{5}$ with $c=0.99999$.

Floors and Ceilings

- Master theorem can be extended to recurrences with floors and ceilings
- The proof is in the Ch. 4.6

$$
\begin{aligned}
& T(n)=a T\left(\left\lceil\frac{n}{b}\right\rceil\right)+f(n) \\
& T(n)=a T\left(\left\lfloor\frac{n}{b}\right\rfloor\right)+f(n)
\end{aligned}
$$

- Case 1: If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
- Case 2: If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \cdot \log n\right)$.

Theorem 1

- Case 3: If
- $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and
- $a \cdot f\left(\frac{n}{b}\right) \leq c \cdot f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

$$
T(n)=\left\{\begin{array}{ll}
O(1) & \text { if } n=1 \\
2 T(n / 2)+O(n) & \text { if } n \geq 2
\end{array} \Rightarrow T(n)=O(n \log n)\right.
$$

- Case 2

$$
\begin{aligned}
& f(n)=\Theta(n)=\Theta\left(n^{1}\right)=\Theta\left(n^{\log _{2} 2}\right)=\Theta\left(n^{\log _{b} a}\right) \\
& T(n)=\Theta(f(n) \log n)=O(n \log n)
\end{aligned}
$$

- Case 1: If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
- Case 2: If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \cdot \log n\right)$.

Theorem 2

- Case 3: If
$-f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and
- $a \cdot f\left(\frac{n}{b}\right) \leq c \cdot f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

$$
T(n)=\left\{\begin{array}{ll}
O(1) & \text { if } n=1 \\
2 T(n / 2)+O(1) & \text { if } n \geq 2
\end{array} \Rightarrow T(n)=O(n)\right.
$$

- Case 1

$$
\begin{aligned}
& f(n)=O(1)=O(n)=O\left(n^{\log _{2} 2}\right)=O\left(n^{\log _{b} a}\right) \\
& T(n)=\Theta\left(n^{\log _{2} 2}\right)=\Theta(n)
\end{aligned}
$$

- Case 1: If $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$.
- Case 2: If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \cdot \log n\right)$.

Theorem 3

- Case 3: If
- $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$, and
- $a \cdot f\left(\frac{n}{b}\right) \leq c \cdot f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$.

$$
T(n)=\left\{\begin{array}{ll}
O(1) & \text { if } n=1 \\
T(n / 2)+O(1) & \text { if } n \geq 2
\end{array} \quad \Rightarrow T(n)=O(\log n)\right.
$$

- Case 2

$$
\begin{aligned}
& f(n)=\Theta(1)=\Theta\left(n^{0}\right)=\Theta\left(n^{\log _{2} 1}\right)=\Theta\left(n^{\log _{b} a}\right) \\
& T(n)=\Theta(f(n) \log n)=O(\log n)
\end{aligned}
$$

(3) To Be Continued...

Question?

Important announcement will be sent to @ntu.edu.tw mailbox \& post to the course website

Course Website: http://ada.miulab.tw
Email: ada-ta@csie.ntu.edu.tw

