
Java Programming 2

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Java2 306
Fall 2018



1 class Lecture7 {
2

3 // Object−Oriented Programming
4

5 }
6

7 // Key words:
8 class, new, this, static, null, extends, super, abstract, final,

interface, implements, protected

Zheng-Liang Lu Java Programming 2 1 / 91



Observation in Real World

• Look around.

• We can easily find many examples for real-world objects.
• For example, a person with a bottle of water.

• Real-world objects all have states and behaviors.
• What states can the object need?
• What behaviors can the object perform on the states?

• Identifying these states and behaviors for real-world objects is
a great way to begin thinking in object-oriented programming.

• From now, OO is a shorthand for “object-oriented.”

Zheng-Liang Lu Java Programming 2 2 / 91



Objects

• An object keeps its states in fields (or attributes) and exposes
its behaviors through methods.

• For example, describe your cellphone.
• Attributes: battery status, 4G signal strength, contact info in

your phonebook, photos in albums, musics, clips, and so on.
• Functions?

• Before creating the objects, we need to define a new class as
their prototype (or concept).

Zheng-Liang Lu Java Programming 2 3 / 91



Classes

• We often find many objects all of the same kind.
• For example, Student A and Student B are two instances of

“Student”.
• Every student needs a name and a student ID.
• Every student should do homework and pass the final exams.

• A class is the blueprint to create class instances which are
runtime objects.

• In the other word, an object is an instance of some associated
class.

• In Java, classes are the building blocks in every program.

• Once the class is defined, we can use this class to create
objects.

Zheng-Liang Lu Java Programming 2 4 / 91



Example: Points in 2D Coordinate

1 public class Point {
2 // data members: so−called fields or attributes
3 double x, y;
4 }

1 public class PointDemo {
2 public static void main(String[] args) {
3 // now create a new instance of Point
4 Point p1 = new Point();
5 p1.x = 1;
6 p1.y = 2;
7 System.out.printf("(%d, %d)\n", p1.x, p1.y);
8

9 // create another instance of Point
10 Point p2 = new Point();
11 p2.x = 3;
12 p2.y = 4;
13 System.out.printf("(%d, %d)\n", p2.x, p2.y);
14 }
15 }

Zheng-Liang Lu Java Programming 2 5 / 91



Class Definition

• First, give a class name with the first letter capitalized, by
convention.

• The class body, surrounded by balanced curly braces {},
contains data members (fields) and function members
(methods).

Zheng-Liang Lu Java Programming 2 6 / 91



Data Members

• Each field may have an access modifier, say public and
private.

• public: accessible by all classes
• private: accessible only within its own class

• We can decide if these fields are accessible!

• In OO paradigm, we hide internal states and expose methods
which perform actions on these fields.

• So all fields should be declared private.
• This is so-called encapsulation.

• However, this private modifier does not quarantine any
security.1

• What private is good for maintainability and modularity.2

1Thanks to a lively discussion on January 23, 2017.
2Read http://stackoverflow.com/questions/9201603/

are-private-members-really-more-secure-in-java.
Zheng-Liang Lu Java Programming 2 7 / 91

http://stackoverflow.com/questions/9201603/are-private-members-really-more-secure-in-java
http://stackoverflow.com/questions/9201603/are-private-members-really-more-secure-in-java


Function Members

• As said, the fields are hidden.

• So we provide getters and setters if necessary:
• getters: return some state of the object
• setter: set a value to the state of the object

• For example, getX() and getY() are getters; setX() and
setY() are setters in the class Point.

Zheng-Liang Lu Java Programming 2 8 / 91



Example: Point (Encapsulated)

1 public class Point {
2 // data members: fields or attributes
3 private double x;
4 private double y;
5

6 // function members: methods
7 public double getX() { return x; }
8 public double getY() { return y; }
9

10 public void setX(double new x) { x = new x; }
11 public void setY(double new y) { y = new y; }
12 }

Zheng-Liang Lu Java Programming 2 9 / 91



Exercise: Phonebook

1 public class Contact {
2 private String name;
3 private String phoneNumber;
4

5 public String getName() { return name; }
6 public String getPhoneNumber() { return phoneNumber; }
7

8 public void setName(String new name) { name = new name; }
9 public void setPhoneNumber(String new phnNum) {

10 phoneNumber = new phnNum;
11 }
12 }

Zheng-Liang Lu Java Programming 2 10 / 91



1 public class PhonebookDemo {
2

3 public static void main(String[] args) {
4 Contact c1 = new Contact();
5 c1.setName("Arthur");
6 c1.setPhoneNumber("09xxnnnnnn");
7

8 Contact c2 = new Contact();
9 c1.setName("Emma");

10 c1.setPhoneNumber("09xxnnnnnn");
11

12 Contact[] phonebook = {c1, c2};
13

14 for (Contact c: phonebook) {
15 System.out.printf("%s: %s\n", c.getName(),
16 c.getPhoneNumber());
17 }
18 }
19

20 }

Zheng-Liang Lu Java Programming 2 11 / 91



Unified Modeling Language3

• Unified Modeling Language (UML) is a tool for specifying,
visualizing, constructing, and documenting the artifacts of
software systems, as well as for business modeling and other
non-software systems.

• Free software:
• http://staruml.io/ (available for all platforms)

3See http://www.tutorialspoint.com/uml/ and
http://www.mitchellsoftwareengineering.com/IntroToUML.pdf.

Zheng-Liang Lu Java Programming 2 12 / 91

http://staruml.io/
http://www.tutorialspoint.com/uml/
http://www.mitchellsoftwareengineering.com/IntroToUML.pdf


Example: Class Diagram for Point

• Modifiers can be placed before both fields and methods:
• + for public
• − for private

Zheng-Liang Lu Java Programming 2 13 / 91



Constructors

• A constructor follows the new operator, acting like other
methods.

• However, its names should be identical to the name of the
class and it has no return type.

• A class may have several constructors if needed.
• Recall method overloading.

• Note that constructors belong to the class but not objects.
• In other words, constructors cannot be invoked by any object.

• If you don’t define any explicit constructor, Java assumes a
default constructor for you.

• Moreover, adding any explicit constructor disables the default
constructor.

Zheng-Liang Lu Java Programming 2 14 / 91



Parameterized Constructors

• You can initialize an object once the object is created.

• For example,

1 public class Point {
2 ...
3 // default constructor
4 public Point() {
5 // do something in common
6 }
7

8 // parameterized constructor
9 public Point(double new x, double new y) {

10 x = new x;
11 y = new y;
12 }
13 ...
14 }

Zheng-Liang Lu Java Programming 2 15 / 91



Self Reference

• You can refer to any (instance) member of the current object
within methods and constructors by using this.

• The most common reason for using the this keyword is
because a field is shadowed by method parameters.

• Recall the variable scope.

• You can also use this to call another constructor in the same
class, say this().

Zheng-Liang Lu Java Programming 2 16 / 91



Example: Point (Revisited)

1 public class Point {
2 ...
3 public Point(double x, double y) {
4 this.x = x;
5 this.y = y;
6 }
7 ...
8 }

• However, the this operator cannot be used in static methods.

Zheng-Liang Lu Java Programming 2 17 / 91



Instance Members

• Since this lecture, all members are declared w/o static,
so-called instance members.

• These instance members are available only after the object is
created.

• This implies that each object has its own states and does
some actions.

Zheng-Liang Lu Java Programming 2 18 / 91



Zheng-Liang Lu Java Programming 2 19 / 91



Static Members

• Static members belong to the class4, and are shared between
the instance objects.

• Those are ready once the class is loaded.
• For example, the main methods.

• They can be invoked directly by the class name without any
instance.

• For example, Math.random() and Math.PI.

• Particularly useful for utility methods that perform work which
is independent of instances.

• For example, factory methods in design patterns.5

4Aka class members.
5“Design pattern is a general reusable solution to a commonly occurring

problem within a given context in software design.” by Wikipedia.
Zheng-Liang Lu Java Programming 2 20 / 91



Zheng-Liang Lu Java Programming 2 21 / 91



• A static method can access other static members. (Trivial.)

• However, static methods cannot access to instance members
directly. (Why?)

• For example,

1 ...
2 public double getDistanceFrom(Point that) {
3 return Math.sqrt(Math.pow(this.x − that.x, 2)
4 + Math.pow(this.y − that.y, 2));
5 }
6

7 public static double measure(Point first, Point second) {
8 // You cannot use this.x and this.y here!
9 return Math.sqrt(Math.pow(first.x − second.x, 2)

10 + Math.pow(first.y − second.y, 2));
11 }
12 ...

Zheng-Liang Lu Java Programming 2 22 / 91



Example: Count of Points

1 public class Point {
2 ...
3 private static int numOfPoints = 0;
4

5 public Point() {
6 numOfPoints++;
7 }
8

9 public Point(int x, int y) {
10 this(); // calling Line 5
11 this.x = x;
12 this.y = y;
13 }
14 ...
15 }

• Note that invoking constructors (like Line 10) should be
placed in the first statement in one constructor.

Zheng-Liang Lu Java Programming 2 23 / 91



Exercise: Singleton

• In some situations, you may create the only instance of the
class.

1 public class Singleton {
2

3 // Do now allow to invoke the constructor by other classes.
4 private Singleton() {}
5

6 // Will be ready as soon as the class is loaded.
7 private static Singleton INSTANCE = new Singleton();
8

9 // Only way to obtain this singleton by the outside world.
10 public static Singleton getInstance() {
11 return INSTANCE;
12 }
13 }

Zheng-Liang Lu Java Programming 2 24 / 91



Garbage Collection (GC)7

• Java handles deallocation6 automatically.
• Timing: preset period or when memory stress occurs.

• GC is the process of looking at the heap, identifying if the
objects are in use, and deleting those unreferenced objects.

• An object is unreferenced if the object is no longer referenced
by any part of your program. (How?)

• Simply assign null to the reference to make the object
unreferenced.

• Note that you may invoke System.gc() to execute the
deallocation procedure.

• However, frequent invocation of GC is time-consuming.

6Release the memory occupied by the unused objects.
7http://www.oracle.com/webfolder/technetwork/tutorials/obe/

java/gc01/index.html

Zheng-Liang Lu Java Programming 2 25 / 91

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html


finalize()

• The method finalize() conducts a specific task that will be
executed right before the object is reclaimed by GC.

• For example, closing files and terminating network connections.

• The finalize() method can be only invoked prior to GC.

• In practice, it must not rely on the finalize() method for
normal operations. (Why?)

Zheng-Liang Lu Java Programming 2 26 / 91



Example

1 public class Garbage {
2 private static int numOfObjKilled = 0;
3

4 public void finalize() {
5 numOfObjKilled++;
6 }
7

8 public static void main(String[] args) {
9 double n = 1e7;

10 for (int i = 1; i <= n; i++)
11 new Garbage(); // lots of unreferenced objects
12 System.out.println(numOfObjKilled);
13 }
14 }

• You may try different number for instance creation.

• The number of the objects reclaimed by GC is uncertain.

Zheng-Liang Lu Java Programming 2 27 / 91



HAS-A Relationship

• Association is a weak relationship where all objects have their
own lifetime and there is no ownership.

• For example, teacher ↔ student; doctor ↔ patient.

• If A uses B, then it is an aggregation, stating that B exists
independently from A.

• For example, knight ↔ sword; company ↔ employee.

• If A owns B, then it is a composition, meaning that B has no
meaning or purpose in the system without A.

• For example, house ↔ room.

Zheng-Liang Lu Java Programming 2 28 / 91



Example: Lines

• +2: two Point objects used in one Line object.

Zheng-Liang Lu Java Programming 2 29 / 91



1 public class Line {
2 private Point head, tail;
3

4 public Line(Point p1, Point p2) {
5 head = p1;
6 tail = p2;
7 }
8

9 /∗ ignore some methods ∗/
10

11 public double getLength() {
12 return head.getDistanceFrom(tail);
13 }
14

15 public static double measure(Line line) {
16 return line.getLength();
17 }
18 }

Zheng-Liang Lu Java Programming 2 30 / 91



More Examples

• Circle, Triangle, and Polygon.

• Book with Authors.

• Lecturer and Students in the classroom.

• Zoo with many creatures, say Dog, Cat, and Bird.

• Channels played on TV.

• More.

Zheng-Liang Lu Java Programming 2 31 / 91



More About Objects

• Inheritance: passing down states and behaviors from the
parents to their children.

• Interfaces: requiring objects for the demanding methods
which are exposed to the outside world.

• Polymorphism

• Packages: grouping related types, and providing access
controls and name space management.

• Immutability

• Enumeration types

• Inner classes

Zheng-Liang Lu Java Programming 2 32 / 91



First IS-A Relationship: Inheritance

• The relationships among Java classes form class hierarchy.

• We can define new classes by inheriting commonly used states
and behaviors from predefined classes.

• A class is a subclass of some class, which is so-called the
superclass, by using the extends keyword.

• For example, B extends A.

• In semantics, B is a special case of A, or we could say B
specializes A.

• For example, human and dog are two specific types of animals.

• When both B and C are subclasses of A, we say that A
generalizes B and C. (Déjà vu.)

• Note that Java allows single inheritance only.

Zheng-Liang Lu Java Programming 2 33 / 91



Example

1 class Animal {
2 int weight;
3 void eat() { weight++; }
4 void exercise() { weight−−; }
5 }
6

7 class Human extends Animal {
8 void writeCode() {}
9 }

10

11 class Dog extends Animal {
12 void watchDoor() {}
13 }

• How could Human and Dog possess those members of
Animal?

• In this way, it is convenient to define, say Cat, by extending
Animal.

Zheng-Liang Lu Java Programming 2 34 / 91



Constructor Chaining

• Once the constructor is invoked, JVM will invoke the
constructor of its superclass (recursively).

• You might think that there will be a whole chain of
constructors called, all the way back to the constructor of the
class Object, the topmost class in Java.

• In this sense, we could say that every class is an immediate or
a distant subclass of Object.

Zheng-Liang Lu Java Programming 2 35 / 91



Illustration for Class Hierarchy8

8See Fig. 3-1 in p. 113 of Evans and Flanagan.
Zheng-Liang Lu Java Programming 2 36 / 91



Example: An Evidence

1 class A {
2 A() { System.out.println("A is creating..."); }
3 }
4

5 class B extends A {
6 B() {
7 super(); // you don’t need to do this unless necessary.
8 System.out.println("B is creating...");
9 }

10 }
11

12 public class ConstructorChainingDemo {
13 public static void main(String[] args) {
14 B b = new B();
15 }
16 }

Zheng-Liang Lu Java Programming 2 37 / 91



super

• Recall that this is used to refer to the object itself.

• You can use super to refer to (non-private) members of the
superclass.

• Note that super() can be used to invoke the constructor of its
superclass, just similar to this().

Zheng-Liang Lu Java Programming 2 38 / 91



Method Overriding (1/2)

• A subclass is supposed to re-implement the methods inherited
from its superclass.

• Can you smell it?

• For example, toString() is inherited from Object.
• This method will be invoked by println().
• It returns the hashcode9 of the object by default.
• It could be overridden so it returns a string of desirable

information.

• Another example we have encountered is finalize().

9See https://en.wikipedia.org/wiki/Java_hashCode().
Zheng-Liang Lu Java Programming 2 39 / 91

https://en.wikipedia.org/wiki/Java_hashCode()


Example

Zheng-Liang Lu Java Programming 2 40 / 91



Method Overriding (2/2)

• The requirement of method overriding is as follows:
• Method signature identical to the one of its superclass;
• Same return type;
• Non-reduced visibility relative to the one of its superclass.

• Note that you cannot override the static methods.

• You could invoke the overridden method by using super.

• You should use the annotation10 @Override to help you.

1 class Cat extends Animal {
2 @Override
3 void eat() { weight += 2; }
4

5 }

10See https://docs.oracle.com/javase/tutorial/java/annotations/.
Zheng-Liang Lu Java Programming 2 41 / 91

https://docs.oracle.com/javase/tutorial/java/annotations/


Polymorphism12

• The word polymorphism literally means “many forms.”

• Java allows 4 types of polymorphism:
• coercion (casting)
• ad hoc polymorphism (overloading)
• subtype polymorphism
• parametric polymorphism (generics)11

• Subtype polymorphism allows you to create a single interface
to different types (implementations).

• How to make a “single” interface for different types?
• Use the superclass of those types as the placeholder.
• Program to abstraction, not to implementation.

11We will introduce Java generics in Java Programming 2. Stay tuned.
12Also read http://www.javaworld.com/article/3033445/learn-java/

java-101-polymorphism-in-java.html.
Zheng-Liang Lu Java Programming 2 42 / 91

http://www.javaworld.com/article/3033445/learn-java/java-101-polymorphism-in-java.html
http://www.javaworld.com/article/3033445/learn-java/java-101-polymorphism-in-java.html


Example: Dependency Reduction (Decoupling)

1 class Student {
2 void doMyJob() { /∗ Do not know the detail yet. ∗/}
3 }
4

5 class HighSchoolStudent extends Student {
6 void doHomework() {}
7 @Override
8 void doMyJob() { doHomework(); }
9 }

10

11 class CollegeStudent extends Student {
12 void writeFinalReports() {}
13 @Override
14 void doMyJob() { writeFinalReports(); }
15 }

Zheng-Liang Lu Java Programming 2 43 / 91



1 public class PolymorphismDemo {
2

3 public static void main(String[] args) {
4 HighSchoolStudent h = new HighSchoolStudent();
5 goStudy(h);
6 CollegeStudent c = new CollegeStudent();
7 goStudy(c);
8 }
9

10 public static void goStudy(Student s) {
11 s.doMyJob();
12 }
13

14 /∗ no need to write these methods
15 public static void goStudy(HighSchoolStudent s) {
16 s.doHomework();
17 }
18

19 public static void goStudy(CollegeStudent s) {
20 s.writeFinalReports();
21 }
22 ∗/
23 }

Zheng-Liang Lu Java Programming 2 44 / 91



Why OOP?

• First, you may know that there are many programming
paradigms.13

• OOP is the solid foundation of modern software design.

• In particular, encapsulation, inheritance, and polymorphism
provide a great reuse mechanism and a great abstraction.

• Encapsulation isolates the internals (private members) from
the externals, fulfilling the abstraction and providing the
sufficient accessibility (public methods).

• Inheritance provides method overriding w/o changing the
method signature.14

• Polymorphism exploits the superclass as a placeholder to
manipulate the implementations (sub-type objects).

13See https://en.wikipedia.org/wiki/Programming_paradigm.
14This leads to the need of “single interface” as mentioned before.

Zheng-Liang Lu Java Programming 2 45 / 91

https://en.wikipedia.org/wiki/Programming_paradigm


• This leads to the production of frameworks15, which actually
do most of the job, leaving the (application) programmer only
with the job of customizing with business logic rules and
providing hooks into it.

• This greatly reduces programming time and makes feasible the
creation of larger and larger systems.

• In analog, we often manipulate objects in an abstract level; we
don’t need to know the details when we use them.

• For example, computers, cellphones, driving.

15See https://spring.io/.
Zheng-Liang Lu Java Programming 2 46 / 91

https://spring.io/


Another Example
1 class Animal {
2 /∗ ignore the previous part ∗/
3 void speak() {}
4 }
5

6 class Dog extends Animal {
7 /∗ ignore the previous part ∗/
8 @Override
9 void speak() { System.out.println("woof"); }

10 }
11

12 class Cat extends Animal {
13 /∗ ignore the previous part ∗/
14 @Override
15 void speak() { System.out.println("meow"); }
16 }
17

18 class Bird extends Animal {
19 /∗ ignore the previous part ∗/
20 @Override
21 void speak() { System.out.println("tweet"); }
22 }

Zheng-Liang Lu Java Programming 2 47 / 91



1 public class PolymorphismDemo {
2

3 public static void main(String[] args) {
4

5 Animal[] animals = {new Dog(), new Cat(), new Bird()};
6 for (Animal each: animals)
7 each.speak();
8

9 }
10

11 }

Zheng-Liang Lu Java Programming 2 48 / 91



Subtype Polymorphism

• For convenience, let U be a subtype of T.

• Liskov Substitution Principle states that T-type objects may
be replaced with U-type objects without altering any of the
desirable properties of T (correctness, task performed,
etc.).16,17

• In other words, the references are clients asking the objects
(right-hand side) for services!

16See
https://en.wikipedia.org/wiki/Liskov_substitution_principle.

17Also see
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design).

Zheng-Liang Lu Java Programming 2 49 / 91

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)


Casting

• Upcasting (widening conversion) is to cast the U
object/variable to the T variable.

1 U u1 = new U(); // trivial
2 T t1 = u1; // ok
3 T t2 = new U(); // ok

• Downcasting (narrow conversion) is to cast the T variable to
a U variable.

1 U u2 = (U) t2; // ok, but dangerous. why?
2 U u3 = new T(); // error! why?

Zheng-Liang Lu Java Programming 2 50 / 91



Solution: instanceof

• Upcasting is always allowed, but downcasting is not always
true even when you use the cast operator.

• In fact, type checking at compile time is unsound just because
the cast operator violets the functionality of type checking.

• Moreover, T-type reference can also point to the siblings of
U-type.

• Recall that T-type is used as the placeholder.

• We can use instanceof to check if the referenced object is of
the target type at runtime.

Zheng-Liang Lu Java Programming 2 51 / 91



Example
1 class T {}
2 class U extends T {}
3 class W extends T {}
4

5 public class InstanceofDemo {
6

7 public static void main(String[] args) {
8

9 T t = new U();
10

11 System.out.println(t instanceof T); // output true
12 System.out.println(t instanceof U); // output true
13 System.out.println(t instanceof W); // output false
14

15 W w = new W();
16

17 System.out.println(w instanceof T); // output true
18 System.out.println(w instanceof U); // output false
19 System.out.println(w instanceof W); // output true
20

21 }
22 }

Zheng-Liang Lu Java Programming 2 52 / 91



final

• A final variable is a variable which can be initialized once and
cannot be changed later.

• The compiler makes sure that you can do it only once.
• A final variable is often declared with static keyword and

treated as a constant, for example, Math.PI.

• A final method is a method which cannot be overridden by
subclasses.

• You might wish to make a method final if it has an
implementation that should not be changed and it is critical to
the consistent state of the object.

• A class that is declared final cannot be inherited.
• For example, again, Math.

Zheng-Liang Lu Java Programming 2 53 / 91



Abstract Classes

• An abstract class is a class declared abstract.

• The classes that sit at the top of an object hierarchy are
typically abstract classes.18

• These abstract class may or may not have abstract methods,
which are methods declared without implementation.

• More explicitly, the methods are declared without braces, and
followed by a semicolon.

• If a class has one or more abstract methods, then the class
itself must be declared abstract.

• All abstract classes cannot be instantiated.

• Moreover, abstract classes act as placeholders for the subclass
objects.

18The classes that sit near the bottom of the hierarchy are called concrete
classes.

Zheng-Liang Lu Java Programming 2 54 / 91



Example

• Abstract methods and classes are in italic.

• In this example, the abstract method draw() and resize()
should be implemented depending on the real shape.

Zheng-Liang Lu Java Programming 2 55 / 91



Another IS-A Relationship

• In some situations, objects are supposed to work together
without a vertical relationship.

• Consider the class Bird inherited from Animal and Airplane
inherited from Transportation.

• Both Bird and Airplane are able to fly in the sky.
• Let’s call the method fly(), for example.

• By semantics, the method fly() could not be defined in their
superclasses. (Why?)

• Similar to the case study of Student, we wish those flyable
objects go flying but in a single interface.

• Using Object as the placeholder?

• Clearly, we need a horizontal relationship.

Zheng-Liang Lu Java Programming 2 56 / 91



Example
1 interface Flyable {
2 void fly(); // implicitly public and abstract
3 }
4

5 class Animal {}
6

7 class Bird extends Animal implements Flyable {
8 void flyByFlappingWings() {
9 System.out.println("flapping wings");

10 }
11 @Override
12 public void fly() { flyByFlappingWings(); }
13 }
14

15 class Transportation {}
16

17 class Airplane extends Transportation implements Flyable {
18 void flyByMagic() {
19 System.out.println("flying with magicsssss");
20 }
21 @Override
22 public void fly() { flyByMagic(); }
23 }

• Again, uniform interface with multiple implementations!
Zheng-Liang Lu Java Programming 2 57 / 91



Zheng-Liang Lu Java Programming 2 58 / 91



1 public class InterfaceDemo {
2 public static void main(String[] args) {
3 Bird b = new Bird();
4 goFly(b);
5

6 Airplane a = new Airplane();
7 goFly(a);
8 }
9

10 public static void goFly(Flyable f) {
11 f.fly();
12 }
13 }

Zheng-Liang Lu Java Programming 2 59 / 91



Interfaces (1/2)

• An interface forms a contract between the object and the
outside world.

• For example, the buttons on remote controls for some machine.

• As you can see, an interface is a reference type, just like
classes

• Unlike classes, interfaces are used to define methods w/o
implementation so that they cannot be instantiated (directly).

• A class could implements one or multiple interfaces by
providing method bodies for each predefined signature.

• This requires an object providing a different set of services.
• For example, combatants in RPG can also buy and sell stuffs

in the market.

Zheng-Liang Lu Java Programming 2 60 / 91



Example

Zheng-Liang Lu Java Programming 2 61 / 91



Interfaces (2/2)

• An interface can extend another interfaces.
• Like a collection of contracts, in some sense.

• For example, Runnable19 and Serializable20 are two of Java
interfaces.

• In JDK8, we have new features as follows:
• we can declare static fields21 and methods in the interfaces;
• we can also define default methods in the interfaces;
• Java provides so-called functional interfaces for lambdas which

are widely used in the stream framework. (Stay tuned in Java
2!)

19See Java Multithread.
20Used for an object which can be represented as a sequence of bytes. This

is called object serialization.
21But they should be final.

Zheng-Liang Lu Java Programming 2 62 / 91



Timing for Interfaces and Abstract Classes

• Consider using abstract classes if you want to:
• share code among several closely related classes
• declare non-static or non-final fields

• Consider using interfaces for any of situations as follows:
• unrelated classes would implement your interface
• specify the behavior of a particular data type, but not

concerned about who implements its behavior
• take advantage of multiple inheritance

Zheng-Liang Lu Java Programming 2 63 / 91



Special Issue: Wrapper Classes

• To treat values as objects, Java supplies standard wrapper
classes for each primitive type.

• For example, you can construct a wrapper object from a
primitive value or from a string representation of the value.

1 ...
2 Double pi = new Double("3.14");
3 ...

Zheng-Liang Lu Java Programming 2 64 / 91



Zheng-Liang Lu Java Programming 2 65 / 91



Autoboxing and Unboxing of Primitives

• The Java compiler automatically wraps the primitives in their
wrapper types, and unwraps them where appropriate.

1 ...
2 Integer i = 1; // autoboxing
3 Integer j = 2;
4 Integer k = i + 1; // autounboxing and then autoboxing
5

6 System.out.println(k); // output 2
7 System.out.println(k == j); // output true
8

9 Integer m = new Integer(i);
10 System.out.println(m == i); // output false?
11 System.out.println(m.equals(i)); // output true!?
12 ...

Zheng-Liang Lu Java Programming 2 66 / 91



Immutable Objects

• An object is considered immutable if its state cannot change
after it is constructed.

• Often used for value objects.

• Imagine that there is a pool for immutable objects.

• After the value object is first created, this value object is
reused if needed.

• This implies that another object is created when we operate
on the immutable object.

• Another example is String objects.

• Good practice when it comes to concurrent programming.22

22See http://www.javapractices.com/topic/TopicAction.do?Id=29.
Zheng-Liang Lu Java Programming 2 67 / 91

http://www.javapractices.com/topic/TopicAction.do?Id=29


Zheng-Liang Lu Java Programming 2 68 / 91



1 ...
2 String str1 = "NTU";
3 String str2 = "ntu";
4

5 System.out.println("str1 = " + str1.toLowerCase());
6 System.out.println("str1 = " + str1);
7 str1 = str1.toLowerCase();
8 System.out.println("str1 = " + str1);
9 System.out.println(str1 == str2); // output false?!

10 System.out.println(str1.intern() == str2); // output
true

11 ...

Zheng-Liang Lu Java Programming 2 69 / 91



Special Issue: enum Types23

• An enum type is an reference type limited to an explicit set of
values.

• An order among these values is defined by their order of
declaration.

• There exists a correspondence with string names identical to
the name declared.

23The keyword enum is a shorthand for enumeration.
Zheng-Liang Lu Java Programming 2 70 / 91



Example: Colors

1 enum Color {
2 RED, GREEN, BLUE; // three options
3

4 static Color random() {
5 Color[] colors = values();
6 return colors[(int) (Math.random() ∗ colors.length)];
7 }
8 }

• Note that Color is indeed a subclass of enum type with 3
static and final references to 3 Color objects corresponding to
the enumerated values.

• This mechanism enhances type safety and makes the source
code more readable!

Zheng-Liang Lu Java Programming 2 71 / 91



1 Class Pen {
2 Color color;
3 Pen(Color color) { this.color = color; }
4 }
5

6 Class Clothes {
7 Color color;
8 T Shirt(Color color) { this.color = color; }
9 void setColor(Color new color) { this.color = new color; }

10 }
11

12 public class EnumDemo {
13 public static void main(String[] args) {
14 Pen crayon = new Pen(Color.RED);
15 Clothes T shirt = new Clothes(Color.random());
16 System.out.println(crayon.color == T shirt.color);
17 }
18 }

Zheng-Liang Lu Java Programming 2 72 / 91



Exercise: Directions

1 enum Direction {UP, DOWN, LEFT, RIGHT}
2

3 /∗ equivalence
4 class Direction {
5 final static Direction UP = new Direction("UP");
6 final static Direction DOWN = new Direction("DOWN");
7 final static Direction LEFT = new Direction("LEFT");
8 final static Direction RIGHT = new Direction("RIGHT");
9

10 private final String name;
11

12 static Direction[] values() {
13 return new Direction[] {UP, DOWN, LEFT, RIGHT};
14 }
15

16 private Direction(String str) {
17 this.name = str;
18 }
19 }
20 ∗/

Zheng-Liang Lu Java Programming 2 73 / 91



Special Issue: Packages

• We organize related types into packages for the following
purposes:

• To make types easier to find and use
• To avoid naming conflicts
• To control access

• For example, fundamental classes are in java.lang and classes
for I/O are in java.io.

Zheng-Liang Lu Java Programming 2 74 / 91



Access Control

Scope \ Modifier private (package) protected public

Within the class X X X X
Within the package x X X X
Inherited classes x x X X
Out of package x x x X

Zheng-Liang Lu Java Programming 2 75 / 91



Special Issue: Nested Classes

• A nested class is a member of its enclosing class.

• Non-static nested classes have access to other members of the
enclosing class, even if they are declared private.

• Instead, static nested classes do not have access to other
instance members of the enclosing class.

• We use nested classes when it needs to
• logically group classes that are only used in one place
• increase encapsulation
• lead to more readable and maintainable code

Zheng-Liang Lu Java Programming 2 76 / 91



Family of Nested Classes

Zheng-Liang Lu Java Programming 2 77 / 91



Non-Static Nested Classes

• Unlike a normal class, an inner class can be declared private.

• Note that the creation of inner-type objects is available after
the outer-type object is created.

• In other words, you cannot invoke the constructor of the inner
type without having the outer type object.

• In the inner classes, you can declare final static variables but
no static methods.

Zheng-Liang Lu Java Programming 2 78 / 91



Example: Inner Class

1 class OuterClass {
2

3 private int x = 1;
4 private InnerClass innerObject = new InnerClass();
5

6 class InnerClass {
7 public void print() {
8 System.out.println(x); // ok!
9 }

10 }
11

12 void doSomeAction() { innerObject.print(); }
13 }
14

15 public class InnerClassDemo {
16 public static void main(String[] args) {
17 new OuterClass().doSomeAction(); // output 1
18

19 new InnerClass(); // you cannot do this
20 }
21 }

Zheng-Liang Lu Java Programming 2 79 / 91



Example: Method-Local Inner Class

1 class OuterClass {
2

3 void doSomething() {
4 class LocalClass { // should be in the beginning
5 private int x = 2;
6 void print() { System.out.println(x); }
7 }
8

9 new LocalClass().print(); // output 1 and 2
10 }
11 }

Zheng-Liang Lu Java Programming 2 80 / 91



Anonymous Class

• Anonymous (inner) classes are an extension of the syntax of
the new operation, enabling you to declare and instantiate a
class at the same time.

• Use them when you need to use these types only once.

Zheng-Liang Lu Java Programming 2 81 / 91



Example: Button

1 abstract class Button {
2 abstract void onClicked();
3 }
4

5 public class AnonymousClassDemoOne {
6

7 public static void main(String[] args) {
8

9 Button ok button = new Button() {
10 @Override
11 public void onClicked() {
12 System.out.println("OK");
13 }
14 };
15

16 ok button.onClicked();
17 }
18 }

Zheng-Liang Lu Java Programming 2 82 / 91



Exercise: Let’s Fly Again

1 interface Flyable {
2 void fly();
3 }
4

5 public class AnonymousClassDemoTwo {
6

7 public static void main(String[] args) {
8

9 Flyable butterfly = new Flyable() {
10 @Override
11 public void fly() { /∗ ... ∗/ }
12 };
13

14 butterfly.fly();
15 }
16 }

• An interface can be used to instantiate an object indirectly by
anonymous classes with implementing the abstract methods.

Zheng-Liang Lu Java Programming 2 83 / 91



Another Example: Iterators

• An important use of inner classes is to define an adapter class
as a helper object.

• Using adapter classes, we can write classes more naturally,
without having to anticipate every conceivable user’s needs in
advance.

• Instead, you provide adapter classes that marry your class to a
particular interface.

• For example, an iterator is a simple and standard interface to
enumerate elements in data structures.

• The class which implements the interface Iterable has the
responsibility to provide an iterator.

• An iterator is defined in the interface Iterator with two
uninplemented methods: hasNext() and next().

Zheng-Liang Lu Java Programming 2 84 / 91



Example

1 import java.util.Iterator;
2

3 class Box implements Iterable<Integer> { // <...>: generics
4

5 int[] items = {10, 20, 30};
6

7 public Iterator<Integer> iterator() {
8 return new Iterator<Integer>() {
9 private int ptr = 0;

10

11 public boolean hasNext() {
12 return ptr < items.length;
13 }
14

15 public Integer next() {
16 return items[ptr++];
17 }
18 };
19 }
20 }

Zheng-Liang Lu Java Programming 2 85 / 91



1 public class IteratorDemo {
2 public static void main(String[] args) {
3 Box myBox = new Box();
4

5 // for−each loop
6 for (Integer item: myBox) {
7 System.out.println(item);
8 }
9

10 // equivalence
11 Iterator iterOfMyBox = myBox.iterator();
12 while (iterOfMyBox.hasNext())
13 System.out.println(iterOfMyBox.next());
14 }
15 }

Zheng-Liang Lu Java Programming 2 86 / 91



Static Nested Class

• A static inner class is a nested class declared static.
• Similar to the static members, they can access to other static

members without instantiating the outer class.
• Also, a static nested class does not have access to the instance

members of the outer class.

• In particular, the static nested class can be instantiated
directly, without instantiating the outer class object first.

• Static nested classes act something like a minipackage.

Zheng-Liang Lu Java Programming 2 87 / 91



Example

1 class OuterClass {
2 static int x = 1;
3 private int y = 2;
4

5 static class StaticClass {
6 private int z = 3;
7 void doSomething() {
8 System.out.println(x);
9 System.out.println(y); // you cannot do this

10 System.out.println(z);
11 }
12 }
13 }
14

15 public class StaticNestedClassDemo {
16 public static void main(String[] args) {
17 new OuterClass.StaticClass().doSomething();
18 }
19 }

Zheng-Liang Lu Java Programming 2 88 / 91



Classpath24

• The variable classpath is an environment variable for the
Java compiler to specify the location of user-defined classes
and packages.

• By default, only the packages of the JDK standard API and
extension packages are accessible without needing to set where
to find them.

• The path for all user-defined packages and libraries must be
set in the command-line (or in the Manifest associated with
the JAR file containing the classes).

24https://en.wikipedia.org/wiki/Classpath_(Java)

Zheng-Liang Lu Java Programming 2 89 / 91

https://en.wikipedia.org/wiki/Classpath_(Java)


Usage of Classpath

• You may use the following command in any terminal:

java -cp [the absolute path of the classes or packages] [the full
name of the application to run]

• For Windows users, try

java -cp c:\workspace\project train.java.HelloWorld

• On Linux/Unix/Mac OS users, try

java -cp /workspace/project train.java.HelloWorld

Zheng-Liang Lu Java Programming 2 90 / 91



Java Archive (jar)26

• Jar is a packed format typically used to aggregate many Java
class files, associated metadata25 and resources (text, images,
etc.) into one file to distribute the application software or
libraries running on the Java platform.

• Try an executable jar!

25Metadata refers data of data.
26See https://docs.oracle.com/javase/tutorial/deployment/jar/.

Zheng-Liang Lu Java Programming 2 91 / 91

https://docs.oracle.com/javase/tutorial/deployment/jar/

