
Java Programming 2

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Java2 297
Spring 2018



1 class Lecture7 {
2

3 // Object−Oriented Programming
4

5 }
6

7 // Key words:
8 class, new, this, static, null, extends, super, abstract, final,

interface, implements, protected

Zheng-Liang Lu Java Programming 2 1 / 92



Observation in Real World

• Look around.

• We can easily find many examples for real-world objects.
• For example, a person with a bottle of water.

• Real-world objects all have states and behaviors.
• What states can the object need?
• What behaviors can the object perform on the states?

• Identifying these states and behaviors for real-world objects is
a great way to begin thinking in object-oriented programming.

• From now, OO is a shorthand for “object-oriented.”

Zheng-Liang Lu Java Programming 2 2 / 92



Objects

• An object keeps its states in fields (or attributes) and exposes
its behaviors through methods.

• Plus, we hide internal states and expose methods which
perform actions on the aforesaid states.

• This is so-call encapsulation, which is one of OO features.1

• Before we create the objects, we need to define a new class as
their prototype (or concept).

1The rest of features in OO are inheritance and polymorphism, which we
will see later.

Zheng-Liang Lu Java Programming 2 3 / 92



Classes

• We often find many objects all of the same kind.
• For example, student A and student B are two instances of

“student”.
• Every student needs a name and a student ID.
• Every student should do homework and pass the final exams.

• A class is the blueprint to create class instances which are
runtime objects.

• In the other word, an object is an instance of some associated
class.

• In Java, classes are the building blocks in every program.

• Once the class is defined, we can use this class to create
objects.

Zheng-Liang Lu Java Programming 2 4 / 92



Example: Points in 2D Coordinate

1 public class Point {
2 // data members: so−called fields or attributes
3 double x, y;
4 }

1 public class PointDemo {
2 public static void main(String[] args) {
3 // now create a new instance of Point
4 Point p1 = new Point();
5 p1.x = 1;
6 p1.y = 2;
7 System.out.printf("(%d, %d)\n", p1.x, p1.y);
8

9 // create another instance of Point
10 Point p2 = new Point();
11 p2.x = 3;
12 p2.y = 4;
13 System.out.printf("(%d, %d)\n", p2.x, p2.y);
14 }
15 }

Zheng-Liang Lu Java Programming 2 5 / 92



Class Definition

• First, give a class name with the first letter capitalized, by
convention.

• The class body, surrounded by balanced curly braces {},
contains data members (fields) and function members
(methods).

Zheng-Liang Lu Java Programming 2 6 / 92



Data Members

• As mentioned earlier, these fields are the states of the object.

• Each field may have an access modifier, say public and
private.

• public: accessible by all classes
• private: accessible only within its own class

• We can decide if these fields are accessible!

• In practice, all fields should be declared private to fulfill the
concept of encapsulation.

• However, this private modifier does not quarantine any
security.2

• What private is good for maintainability and modularity.3

2Thanks to a lively discussion on January 23, 2017.
3Read http://stackoverflow.com/questions/9201603/

are-private-members-really-more-secure-in-java.
Zheng-Liang Lu Java Programming 2 7 / 92

http://stackoverflow.com/questions/9201603/are-private-members-really-more-secure-in-java
http://stackoverflow.com/questions/9201603/are-private-members-really-more-secure-in-java


Function Members

• As said, the fields are hidden.

• So we provide getters and setters if necessary:
• getters: return some state of the object
• setter: set a value to the state of the object

• For example, getX() and getY() are getters; setX() and
setY() are setters in the class Point.

Zheng-Liang Lu Java Programming 2 8 / 92



Example: Point (Encapsulated)

1 public class Point {
2 // data members: fields or attributes
3 private double x;
4 private double y;
5

6 // function members: methods
7 public double getX() { return x; }
8 public double getY() { return y; }
9

10 public void setX(double new x) { x = new x; }
11 public void setY(double new y) { y = new y; }
12 }

Zheng-Liang Lu Java Programming 2 9 / 92



Exercise: Phonebook

1 public class Contact {
2 private String name;
3 private String phoneNumber;
4

5 public double getName() { return name; }
6 public double getPhoneNumber() { return phoneNumber; }
7

8 public void setName(String new name) { name = new name; }
9 public void setPhoneNumber(String new phnNum) {

10 phoneNumber = new phnNum;
11 }
12 }

Zheng-Liang Lu Java Programming 2 10 / 92



1 public class PhonebookDemo {
2

3 public static void main(String[] args) {
4 Contact c1 = new Contact();
5 c1.setName("Arthur");
6 c1.setPhoneNumber("09xxnnnnnn");
7

8 Contact c2 = new Contact();
9 c1.setName("Emma");

10 c1.setPhoneNumber("09xxnnnnnn");
11

12 Contact[] phonebook = {c1, c2};
13

14 for (Contact c: phonebook) {
15 System.out.printf("%s: %s\n", c.getName(),
16 c.getPhoneNumber());
17 }
18 }
19

20 }

Zheng-Liang Lu Java Programming 2 11 / 92



Unified Modeling Language4

• Unified Modeling Language (UML) is a tool for specifying,
visualizing, constructing, and documenting the artifacts of
software systems, as well as for business modeling and other
non-software systems.

• Free software:
• http://staruml.io/ (available for all platforms)

4See http://www.tutorialspoint.com/uml/ and
http://www.mitchellsoftwareengineering.com/IntroToUML.pdf.

Zheng-Liang Lu Java Programming 2 12 / 92

http://staruml.io/
http://www.tutorialspoint.com/uml/
http://www.mitchellsoftwareengineering.com/IntroToUML.pdf


Example: Class Diagram for Point

• Modifiers can be placed before both fields and methods:
• + for public
• − for private

Zheng-Liang Lu Java Programming 2 13 / 92



Constructors

• A constructor follows the new operator.

• A constructor acts like other methods.

• However, its names should be identical to the name of the
class and it has no return type.

• A class may have several constructors if needed.
• Recall method overloading.

• Constructors are used only during the objection creation.
• Constructors cannot be invoked by any object.

• If you don’t define any explicit constructor, Java assumes a
default constructor for you.

• Moreover, adding any explicit constructor disables the default
constructor.

Zheng-Liang Lu Java Programming 2 14 / 92



Parameterized Constructors

• You can provide specific information to objects by using
parameterized constructors.

• For example,

1 public class Point {
2 ...
3 // default constructor
4 public Point() {
5 // do something in common
6 }
7

8 // parameterized constructor
9 public Point(double new x, double new y) {

10 x = new x;
11 y = new y;
12 }
13 ...
14 }

Zheng-Liang Lu Java Programming 2 15 / 92



Self Reference

• You can refer to any (instance) member of the current object
within methods and constructors by using this.

• The most common reason for using the this keyword is
because a field is shadowed by method parameters.

• You can also use this to call another constructor in the same
class by invoking this().

Zheng-Liang Lu Java Programming 2 16 / 92



Example: Point (Revisited)

1 public class Point {
2 ...
3 public Point(double x, double y) {
4 this.x = x;
5 this.y = y;
6 }
7 ...
8 }

• However, the this operator cannot be used in static methods.

Zheng-Liang Lu Java Programming 2 17 / 92



Instance Members

• You may notice that, until now, all members are declared w/o
static.

• These members are called instance members.

• These instance members are available only after the object is
created.

• This implies that each object has its own states and does
some actions.

Zheng-Liang Lu Java Programming 2 18 / 92



Zheng-Liang Lu Java Programming 2 19 / 92



Static Members

• The static members belong to the class5, and are shared
between the instance objects.

• These members are ready once the class is loaded.
• For example, the main method.

• They can be invoked directly by the class name without using
any instance.

• For example, Math.random() and Math.PI.

• They are particularly useful for utility methods that perform
work that is independent of instances.

• For example, factory methods in design patterns.6

5As known as class members.
6“Design pattern is a general reusable solution to a commonly occurring

problem within a given context in software design.” by Wikipedia.
Zheng-Liang Lu Java Programming 2 20 / 92



Zheng-Liang Lu Java Programming 2 21 / 92



• A static method can access other static members. (Trivial.)

• However, static methods cannot access to instance members
directly. (Why?)

• For example,

1 ...
2 public double getDistanceFrom(Point that) {
3 return Math.sqrt(Math.pow(this.x − that.x, 2)
4 + Math.pow(this.y − that.y, 2));
5 }
6

7 public static double measure(Point first, Point second) {
8 // You cannot use this.x and this.y here!
9 return Math.sqrt(Math.pow(first.x − second.x, 2)

10 + Math.pow(first.y − second.y, 2));
11 }
12 ...

Zheng-Liang Lu Java Programming 2 22 / 92



Example: Count of Points

1 public class Point {
2 ...
3 private static int numOfPoints = 0;
4

5 public Point() {
6 numOfPoints++;
7 }
8

9 public Point(int x, int y) {
10 this(); // calling the constructor with no argument
11 // should be placed in the first line
12 this.x = x;
13 this.y = y;
14 }
15 ...
16 }

Zheng-Liang Lu Java Programming 2 23 / 92



Exercise: Singleton

• In some situations, you may create the only instance of the
class.

1 public class Singleton {
2

3 // Do now allow to invoke the constructor by other classes.
4 private Singleton() {}
5

6 // Will be ready as soon as the class is loaded.
7 private static Singleton INSTANCE = new Singleton();
8

9 // Only way to obtain this singleton by the outside world.
10 public static Singleton getInstance() {
11 return INSTANCE;
12 }
13 }

Zheng-Liang Lu Java Programming 2 24 / 92



Garbage Collection (GC)8

• Java handles deallocation7 automatically.
• Timing: preset period or when memory stress occurs.

• GC is the process of looking at the heap, identifying if the
objects are in use, and deleting those unreferenced objects.

• An object is unreferenced if the object is no longer referenced
by any part of your program. (How?)

• Simply assign null to the reference to make the object
unreferenced.

• Note that you may invoke System.gc() to execute the
deallocation procedure.

• However, frequent invocation of GC is time-consuming.

7Release the memory occupied by the unused objects.
8http://www.oracle.com/webfolder/technetwork/tutorials/obe/

java/gc01/index.html

Zheng-Liang Lu Java Programming 2 25 / 92

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html


finalize()

• The method finalize() conducts a specific task that will be
executed right before the object is reclaimed by GC.

• For example, closing files and terminating network connections.

• The finalize() method can be only invoked prior to GC.

• In practice, it must not rely on the finalize() method for
normal operations. (Why?)

Zheng-Liang Lu Java Programming 2 26 / 92



Example

1 public class Garbage {
2 private static int numOfObjKilled = 0;
3

4 public void finalize() {
5 numOfObjKilled++;
6 }
7

8 public static void main(String[] args) {
9 double n = 1e7;

10 for (int i = 1; i <= n; i++)
11 new Garbage(); // lots of unreferenced objects
12 System.out.println(numOfObjKilled);
13 }
14 }

• You may try different number for instance creation.

• The number of the objects reclaimed by GC is uncertain.

Zheng-Liang Lu Java Programming 2 27 / 92



HAS-A Relationship

• Association is a weak relationship where all objects have their
own lifetime and there is no ownership.

• For example, teacher ↔ student; doctor ↔ patient.

• If A uses B, then it is an aggregation, stating that B exists
independently from A.

• For example, knight ↔ sword; company ↔ employee.

• If A owns B, then it is a composition, meaning that B has no
meaning or purpose in the system without A.

• For example, house ↔ room.

Zheng-Liang Lu Java Programming 2 28 / 92



Example: Lines

• +2: two Point objects used in one Line object.

Zheng-Liang Lu Java Programming 2 29 / 92



1 public class Line {
2 private Point head, end;
3

4 public Line(Point h, Point e) {
5 head = h;
6 end = e;
7 }
8

9 public double getLength() {
10 return head.getDistanceFrom(end);
11 }
12

13 public static double measureLength(Line line) {
14 return line.getLength();
15 }
16 }

Zheng-Liang Lu Java Programming 2 30 / 92



More Examples

• Circle, Triangle, and Polygon.

• Book with Authors.

• Lecturer and Students in the classroom.

• Zoo with many creatures, say Dog, Cat, and Bird.

• Channels played on TV.

• More.

Zheng-Liang Lu Java Programming 2 31 / 92



More About Objects

• Inheritance: passing down states and behaviors from the
parents to their children.

• Interfaces: requiring objects for the demanding methods
which are exposed to the outside world.

• Polymorphism

• Packages: grouping related types, and providing access
controls and name space management.

• Immutability

• Enumeration types

• Inner classes

Zheng-Liang Lu Java Programming 2 32 / 92



First IS-A Relationship: Inheritance

• The relationships among Java classes form class hierarchy.

• We can define new classes by inheriting commonly used states
and behaviors from predefined classes.

• A class is a subclass of some class, which is so-called the
superclass, by using the extends keyword.

• For example, B extends A.

• In semantics, B is a special case of A, or we could say B
specializes A.

• For example, human and dog are two specific types of animals.

• When both B and C are subclasses of A, we say that A
generalizes B and C. (Déjà vu.)

• Note that Java allows single inheritance only.

Zheng-Liang Lu Java Programming 2 33 / 92



Example

1 class Animal {
2 String name;
3 int weight;
4

5 Animal(String s, int w) { name = s; weight = w; }
6

7 void eat() { weight++; }
8 void exercise() { weight−−; }
9 }

10

11 class Human extends Animal {
12 Human(String s, int w) { super(s, w); }
13 void writeCode() {}
14 }
15

16 class Dog extends Animal {
17 Dog(String s, int w) { super(s, w); }
18 void watchDoor() {}
19 }

Zheng-Liang Lu Java Programming 2 34 / 92



Class Hierarchy9

9See Fig. 3-1 in p. 113 of Evans and Flanagan.
Zheng-Liang Lu Java Programming 2 35 / 92



super

• Recall that the keyword this is used to refer to the object
itself.

• You can use the keyword super to refer to (non-private)
members of the superclass.

• Note that super() can be used to invoke the constructor of its
superclass, just similar to this().

Zheng-Liang Lu Java Programming 2 36 / 92



Constructor Chaining

• As the constructor is invoked, the constructor of its superclass
is invoked accordingly.

• You might think that there will be a whole chain of
constructors called, all the way back to the constructor of the
class Object, the topmost class in Java.

• So every class is an immediate or a distant subclass of Object.

• Recall that the method finalize() and toString() are inherited
from Object.

• toString(): return a string which can be any information
stored in the object.

Zheng-Liang Lu Java Programming 2 37 / 92



Example

1 class A {
2 A() { System.out.println("A is creating..."); }
3 }
4

5 class B extends A {
6 B() { System.out.println("B is creating..."); }
7 // overriding toString()
8 public String toString() { return "I am B."; }
9 }

10

11 public class ConstructorChainingDemo {
12 public static void main(String[] args) {
13 B b = new B();
14 System.out.println(b);
15 }
16 }

• The println() method (and similar methods) can take an
object as input, and invoke toString() method implicitly.

Zheng-Liang Lu Java Programming 2 38 / 92



Method Overriding

• The subclass is allowed to change the behavior inherited from
its superclass, if needed.

• If one defines an instance method with its method name,
parameters, and also return type, all identical to the
previously defined method in its superclass, then we say this
newly-defined method overrides the one in the superclass.10

• Recall that method overloading occurs only in the same class.

• Note that you can invoke the overridden method through the
use of the keyword super.

10Notice that the static methods do not follow this rule.
Zheng-Liang Lu Java Programming 2 39 / 92



Example

Zheng-Liang Lu Java Programming 2 40 / 92



Binding

• Association of the method definition to the method call is
known as binding.

• The binding which can be resolved at the compilation time is
known as static binding or early binding.

• They are the static, private or final methods.11

• If the compiler is not able to resolve the binding, such binding
is known as dynamic binding or late binding.

• For example, method overriding.

11We will see the final keyword soon.
Zheng-Liang Lu Java Programming 2 41 / 92



• When there are multiple implementations of the method in
the inheritance hierarchy, the one in the “most derived” class
(the furthest down the hierarchy) always overrides the others,
even if we refer to the object through a reference variable of
the superclass type.12

• As you can see in Cat Simon.

• This is so-called subtype polymorphism.

12An overridden method in Java acts like a virtual function in C++.
Zheng-Liang Lu Java Programming 2 42 / 92



Polymorphism13

• The word polymorphism literally means “many forms.”

• Java allows 4 types of polymorphism:
• coercion (casting)
• ad hoc polymorphism (overloading)
• subtype polymorphism
• parametric polymorphism (generics)

• Modeling polymorphism in a programming language lets you
create a uniform interface to different kinds of operands,
arguments, and objects.

13Read http://www.javaworld.com/article/3033445/learn-java/

java-101-polymorphism-in-java.html.
Zheng-Liang Lu Java Programming 2 43 / 92

http://www.javaworld.com/article/3033445/learn-java/java-101-polymorphism-in-java.html
http://www.javaworld.com/article/3033445/learn-java/java-101-polymorphism-in-java.html


Example: Uniform Interface

1 class Student {
2 void doMyWork() { /∗ Do not know the detail. ∗/}
3 }
4

5 class HighSchoolStudent extends Student {
6 void writeHomework() {
7 System.out.println("Write homework orz");
8 }
9

10 void doMyWork() { writeHomework(); }
11 }
12

13 class CollegeStudent extends Student {
14 void writeReports() {
15 System.out.println("Write reports qq");
16 }
17

18 void doMyWork() { writeReports(); }
19 }

Zheng-Liang Lu Java Programming 2 44 / 92



1 public class PolymorphismDemo {
2

3 public static void main(String[] args) {
4 HighSchoolStudent h = new HighSchoolStudent();
5 goStudy(h);
6 CollegeStudent c = new CollegeStudent();
7 goStudy(c);
8 }
9

10 // uniform interface, multiple implementations
11 // for future extension (scalability)
12 public static void goStudy(Student s) {
13 s.doMyWork();
14 }
15

16 /∗ no need to write these methods
17 public static void goStudy(HighSchoolStudent s) {
18 s.writeHomework();
19 }
20

21 public static void goStudy(CollegeStudent s) {
22 s.writeReports();
23 }
24 ∗/
25 }

Zheng-Liang Lu Java Programming 2 45 / 92



Subtype Polymorphism

• For convenience, let U be a subtype of T.

• Liskov Substitution Principle states that T-type objects may
be replaced with U-type objects without altering any of the
desirable properties of T (correctness, task performed,
etc.).14,15

14See
https://en.wikipedia.org/wiki/Liskov_substitution_principle.

15Also see
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design).

Zheng-Liang Lu Java Programming 2 46 / 92

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)


Casting

• Upcasting (widening conversion) is to cast the U object to the
T variable.

1 T t = new U();

• Downcasting (narrow conversion) is to cast the T variable to
a U variable.

1 U u = (U) t; // t is T variable reference to a U object.

• Upcasting is always allowed, but downcasting is allowed only
when a U object is passed to the U-type variable.

• Java type system makes sure that the referenced object
provides services adequate for T type.

Zheng-Liang Lu Java Programming 2 47 / 92



instanceof

• However, type-checking in compilation time is unsound.

• The operator instanceof checks if an object reference is an
instance of a type, and returns a boolean value.

Zheng-Liang Lu Java Programming 2 48 / 92



Example

1 class T {}
2 class U extends T {}
3

4 public class InstanceofDemo {
5 public static void main(String[] args) {
6 T t1 = new T();
7

8 System.out.println(t1 instanceof U); // output false
9 System.out.println(t1 instanceof T); // output true

10

11 T t2 = new U(); // upcasting
12

13 System.out.println(t2 instanceof U); // output true
14 System.out.println(t2 instanceof T); // output true
15

16 U u = (U) t2; // downcasting; this is ok.
17

18 u = (U) new T(); // pass the compilation; fail during
execution!

19 }
20 }

Zheng-Liang Lu Java Programming 2 49 / 92



Abstraction, Method Overriding, and Polymorphism

• JVM invokes the appropriate method for the current object by
looking up from the bottom of the class hierarchy to the top.

• These methods are also called virtual methods.

• This preserves the behaviors of the subtype objects and the
super-type variables play the role of placeholder.

• We often manipulate objects in an abstract level; we don’t
need to know the details when we use them.

• For example, computers, cellphones, driving.

Zheng-Liang Lu Java Programming 2 50 / 92



Exercise

• Imagine that we have a zoo with some animals.

1 class Animal {
2 void speak() {}
3 }
4 class Dog extends Animal {
5 void speak() { System.out.println("woof"); }
6 }
7 class Cat extends Animal {
8 void speak() { System.out.println("meow"); }
9 }

10 class Bird extends Animal {
11 void speak() { System.out.println("tweet"); }
12 }
13

14 public class PolymorphismDemo {
15 public static void main(String[] args) {
16 Animal[] zoo = {new Dog(), new Cat(), new Bird()};
17 for (Animal a: zoo) a.speak();
18 }
19 }

Zheng-Liang Lu Java Programming 2 51 / 92



final

• A final variable is a variable which can be initialized once and
cannot be changed later.

• The compiler makes sure that you can do it only once.
• A final variable is often declared with static keyword and

treated as a constant, for example, Math.PI.

• A final method is a method which cannot be overridden by
subclasses.

• You might wish to make a method final if it has an
implementation that should not be changed and it is critical to
the consistent state of the object.

• A class that is declared final cannot be inherited.

Zheng-Liang Lu Java Programming 2 52 / 92



Abstract Classes

• An abstract class is a class declared abstract.

• The classes that sit at the top of an object hierarchy are
typically abstract classes.16

• These abstract class may or may not have abstract methods,
which are methods declared without implementation.

• More explicitly, the methods are declared without braces, and
followed by a semicolon.

• If a class has one or more abstract methods, then the class
itself must be declared abstract.

• All abstract classes cannot be instantiated.

• Moreover, abstract classes act as placeholders for the subclass
objects.

16The classes that sit near the bottom of the hierarchy are called concrete
classes.

Zheng-Liang Lu Java Programming 2 53 / 92



Example

• Abstract methods and classes are in italic.

• In this example, the abstract method draw() and resize()
should be implemented depending on the real shape.

Zheng-Liang Lu Java Programming 2 54 / 92



Another IS-A Relationship

• Not all classes share a vertical relationship.

• Instead, some are supposed to perform the specific methods
without a vertical relationship.

• Consider the class Bird inherited from Animal and Airplane
inherited from Transportation.

• Both Bird and Airplane are able to be in the sky.
• So they should perform the method canFly(), for example.

• By semantics, the method canFly() could not be defined in
their superclasses.

• We need a horizontal relationship.

Zheng-Liang Lu Java Programming 2 55 / 92



Example
1 interface Flyable {
2 void fly(); // implicitly public, abstract
3 }
4

5 class Animal {}
6

7 class Bird extends Animal implements Flyable {
8 void flyByFlappingWings() {
9 System.out.println("flapping wings");

10 }
11

12 public void fly() { flyByFlappingWings(); }
13 }
14

15 class Transportation {}
16

17 class Airplane extends Transportation implements Flyable {
18 void flyByMagic() {
19 System.out.println("flying with magicsssss");
20 }
21

22 public void fly() { flyByMagic(); }
23 }

• Again, uniform interface with multiple implementations!
Zheng-Liang Lu Java Programming 2 56 / 92



Zheng-Liang Lu Java Programming 2 57 / 92



1 public class InterfaceDemo {
2 public static void main(String[] args) {
3 Bird b = new Bird();
4 goFly(b);
5

6 Airplane a = new Airplane();
7 goFly(a);
8 }
9

10 static void goFly(Flyable f) {
11 f.fly();
12 }
13 }

Zheng-Liang Lu Java Programming 2 58 / 92



Interfaces

• An interface forms a contract between the object and the
outside world.

• For example, the buttons on the television set are the interface
between you and the electrical wiring on the other side of its
plastic casing.

• An interface is also a reference type, just like classes, in which
only method signatures are defined.

• So they can be the types of reference variables!

Zheng-Liang Lu Java Programming 2 59 / 92



• Note that interfaces cannot be instantiated (directly).

• A class implements one or multiple interfaces by providing
method bodies for each predefined signature.

• This requires an object providing a different set of services.

• For example, combatants in RPG can also buy and sell stuffs
in the market.

Zheng-Liang Lu Java Programming 2 60 / 92



Example

Zheng-Liang Lu Java Programming 2 61 / 92



Properties of Interfaces

• The methods of an interface are implicitly public.

• In most cases, the class which implements the interface should
implement all the methods defined in the interface.

• Otherwise, the class should be abstract.

• An interface can declare only fields which are static and final.

• You can also define static methods in the interface.

• An interface can extend another interface, just like a class
which can extend another class.

• In contrast with classes, an interface can extend many
interfaces.

Zheng-Liang Lu Java Programming 2 62 / 92



• Common interfaces are Runnable17 and Serializable18.

• A new feature since Java SE 8 allows to define the methods
with implementation in the interface.

• A method with implementation in the interface is declared
default.

17See Java Multithread.
18Used for an object which can be represented as a sequence of bytes. This

is called object serialization.
Zheng-Liang Lu Java Programming 2 63 / 92



Timing for Interfaces and Abstract Classes

• Consider using abstract classes if you want to:
• share code among several closely related classes
• declare non-static or non-final fields

• Consider using interfaces for any of situations as follows:
• unrelated classes would implement your interface
• specify the behavior of a particular data type, but not

concerned about who implements its behavior
• take advantage of multiple inheritance

• Program to abstraction, not to implementation.19

19See software engineering or object-oriented analysis and design.
Zheng-Liang Lu Java Programming 2 64 / 92



Wrapper Classes

• To treat values as objects, Java supplies standard wrapper
classes for each primitive type.

• For example, you can construct a wrapper object from a
primitive value or from a string representation of the value.

1 ...
2 Double pi = new Double("3.14");
3 ...

Zheng-Liang Lu Java Programming 2 65 / 92



Zheng-Liang Lu Java Programming 2 66 / 92



Autoboxing and Unboxing of Primitives

• The Java compiler automatically wraps the primitives in their
wrapper types, and unwraps them where appropriate.

1 ...
2 Integer i = 1; // autoboxing
3 Integer j = 2;
4 Integer k = i + 1; // autounboxing and then autoboxing
5 System.out.println(k); // output 2
6

7 System.out.println(k == j); // output true
8 System.out.println(k.equals(j)); // output true
9 ...

• The method equals() inherited from Object is used to
compare two objects.

• You may override this method if necessary.

Zheng-Liang Lu Java Programming 2 67 / 92



Immutable Objects

• An object is considered immutable if its state cannot change
after it is constructed.

• Often used for value objects.

• Imagine that there is a pool for immutable objects.

• After the value object is first created, this value object is
reused if needed.

• This implies that another object is created when we operate
on the immutable object.

Zheng-Liang Lu Java Programming 2 68 / 92



Zheng-Liang Lu Java Programming 2 69 / 92



• For example,

1 ...
2 k = new Integer(1);
3 System.out.println(i == k); // output false (why?)
4 System.out.println(k.equals(i)); // output true
5 ...

• Good practice when it comes to concurrent programming.20

• Another example is String objects.

20See http://www.javapractices.com/topic/TopicAction.do?Id=29.
Zheng-Liang Lu Java Programming 2 70 / 92

http://www.javapractices.com/topic/TopicAction.do?Id=29


enum Types21

• An enum type is an reference type limited to an explicit set of
values.

• An order among these values is defined by their order of
declaration.

• There exists a correspondence with string names identical to
the name declared.

21The keyword enum is a shorthand for enumeration.
Zheng-Liang Lu Java Programming 2 71 / 92



Example: Colors

1 enum Color {
2 RED, GREEN, BLUE; // three options
3

4 static Color random() {
5 Color[] colors = values();
6 return colors[(int) (Math.random() ∗ colors.length)];
7 }
8 }

• Note that Color is indeed a subclass of enum type with 3
static and final references to 3 Color objects corresponding to
the enumerated values.

• This mechanism enhances type safety and makes the source
code more readable!

Zheng-Liang Lu Java Programming 2 72 / 92



1 Class Pen {
2 Color color;
3 Pen(Color color) { this.color = color; }
4 }
5

6 Class Clothes {
7 Color color;
8 T Shirt(Color color) { this.color = color; }
9 void setColor(Color new color) { this.color = new color; }

10 }
11

12 public class EnumDemo {
13 public static void main(String[] args) {
14 Pen crayon = new Pen(Color.RED);
15 Clothes T shirt = new Clothes(Color.random());
16 System.out.println(crayon.color == T shirt.color);
17 }
18 }

Zheng-Liang Lu Java Programming 2 73 / 92



Exercise: Directions

1 enum Direction {UP, DOWN, LEFT, RIGHT}
2

3 /∗ equivalence
4 class Direction {
5 final static Direction UP = new Direction("UP");
6 final static Direction DOWN = new Direction("DOWN");
7 final static Direction LEFT = new Direction("LEFT");
8 final static Direction RIGHT = new Direction("RIGHT");
9

10 private final String name;
11

12 static Direction[] values() {
13 return new Direction[] {UP, DOWN, LEFT, RIGHT};
14 }
15

16 private Direction(String str) {
17 this.name = str;
18 }
19 }
20 ∗/

Zheng-Liang Lu Java Programming 2 74 / 92



Packages

• We organize related types into packages for the following
purposes:

• To make types easier to find and use
• To avoid naming conflicts
• To control access

• For example, fundamental classes are in java.lang and classes
for I/O are in java.io.

Zheng-Liang Lu Java Programming 2 75 / 92



Access Control

Scope \ Modifier private (package) protected public

Within the class X X X X
Within the package x X X X
Inherited classes x x X X
Out of package x x x X

Zheng-Liang Lu Java Programming 2 76 / 92



Nested Classes

• A nested class is a member of its enclosing class.

• Non-static nested classes have access to other members of the
enclosing class, even if they are declared private.

• Instead, static nested classes do not have access to other
instance members of the enclosing class.

• We use nested classes when it needs to
• logically group classes that are only used in one place
• increase encapsulation
• lead to more readable and maintainable code

Zheng-Liang Lu Java Programming 2 77 / 92



Family of Nested Classes

Zheng-Liang Lu Java Programming 2 78 / 92



Non-Static Nested Classes

• Depending on how and where you define them, they can be
further divided in three types:

• inner classes
• method-local inner classes
• anonymous inner classes

• Unlike a normal class, an inner class can be declared private.

• Note that the creation of inner-type objects is available after
the outer-type object is created.

• In other words, you cannot invoke the constructor of the inner
type without having the outer type object.

• For static members in the inner classes,
• you can declare a static variable which is supposed to be final;
• however, static methods can only be declared in a static or top

level type.

Zheng-Liang Lu Java Programming 2 79 / 92



Example: Inner Class

1 class OuterClass {
2 private int x = 1;
3 InnerClass innerObject = new InnerClass();
4

5 class InnerClass {
6 public void print() {
7 System.out.println(x); // ok!
8 }
9 }

10 }
11

12 public class InnerClassDemo {
13 public static void main(String[] args) {
14 OuterClass outerObject = new OuterClass();
15 outerObject.innerObject.print(); // output 1
16

17 // you cannot do below
18 InnerClass innerObject = new InnerClass();
19 }
20 }

Zheng-Liang Lu Java Programming 2 80 / 92



Example: Method-Local Inner Class
1 class OuterClass {
2 private int x = 1;
3

4 void doSomething() {
5 class LocalClass { // should be in the beginning
6 int y = 2;
7 static int z = 3; // implicitly final
8

9 void print() {
10 System.out.println(x);
11 System.out.println(y);
12 System.out.println(z);
13 }
14 }
15

16 LocalClass w = new LocalClass();
17 w.print();
18 }
19 }
20

21 public class InnerClassDemo {
22 ...
23 }

Zheng-Liang Lu Java Programming 2 81 / 92



Anonymous Inner Class

• Anonymous inner classes are an extension of the syntax of the
new operation, enabling you to declare and instantiate a class
at the same time.

• However, these do not have a name.

• Use them when you need to use these types only once.

Zheng-Liang Lu Java Programming 2 82 / 92



Example

1 abstract class A {
2 abstract void foo();
3 }
4

5 public class AnonymousClassDemoOne {
6 public static void main(String[] args) {
7 A a = new A() {
8 public void foo() { /∗ different implementation ∗/ }
9 void helper() { /∗ a subroutine for foo ∗/ }

10 };
11

12 a.foo();
13 }
14 }

• You may invoke a.foo() but not a.helper() because helper() is
not defined in class A.

Zheng-Liang Lu Java Programming 2 83 / 92



Exercise

1 interface B {
2 void foo();
3 }
4

5 public class AnonymousClassDemoTwo {
6 public static void main(String[] args) {
7 B b = new B() {
8 public void foo() { /∗ different implementation ∗/ }
9 };

10

11 b.foo();
12 }
13 }

• An interface can be used to instantiate an object indirectly by
anonymous classes with implementing the abstract methods.

Zheng-Liang Lu Java Programming 2 84 / 92



One of Adapters: Iterators

• An important use of inner classes is to define an adapter class
as a helper object.

• Using adapter classes, we can write classes more naturally,
without having to anticipate every conceivable user’s needs in
advance.

• Instead, you provide adapter classes that marry your class to a
particular interface.

• For example, an iterator is a simple and standard interface to
enumerate elements in data structures.

• The class which implements the interface Iterable has the
responsibility to provide an iterator.

• An iterator is defined in the interface Iterator with two
uninplemented methods: hasNext() and next().

Zheng-Liang Lu Java Programming 2 85 / 92



Example

1 import java.util.Iterator;
2

3 class Box implements Iterable<Integer> {
4

5 int[] items = {10, 20, 30};
6

7 public Iterator iterator() {
8 return new Iterator() {
9 private int ptr = 0;

10

11 public boolean hasNext() {
12 return ptr < items.length;
13 }
14

15 public Integer next() {
16 return items[ptr++];
17 }
18 };
19 }
20 }

Zheng-Liang Lu Java Programming 2 86 / 92



1 public class IteratorDemo {
2 public static void main(String[] args) {
3 Box myBox = new Box();
4

5 // for−each loop
6 for (Integer item: myBox) {
7 System.out.println(item);
8 }
9

10 // equivalence
11 Iterator iterOfMyBox = myBox.iterator();
12 while (iterOfMyBox.hasNext())
13 System.out.println(iterOfMyBox.next());
14 }
15 }

Zheng-Liang Lu Java Programming 2 87 / 92



Static Nested Class

• A static inner class is a nested class declared static.
• Similar to the static members, they can access to other static

members without instantiating the outer class.
• Also, a static nested class does not have access to the instance

members of the outer class.

• In particular, the static nested class can be instantiated
directly, without instantiating the outer class object first.

• Static nested classes act something like a minipackage.

Zheng-Liang Lu Java Programming 2 88 / 92



Example

1 class OuterClass {
2 static int x = 1;
3 int y = 2;
4

5 static class StaticClass {
6 int z = 3;
7 void doSomething() {
8 System.out.println(x);
9 System.out.println(y); // cannot do this

10 System.out.println(z);
11 }
12 }
13 }
14

15 public class StaticNestedClassDemo {
16 public static void main(String[] args) {
17 OuterClass.StaticClass x = new OuterClass.StaticClass();
18 x.doSomething();
19 }
20 }

Zheng-Liang Lu Java Programming 2 89 / 92



Classpath22

• The variable classpath is an environment variable for the
Java compiler to specify the location of user-defined classes
and packages.

• By default, only the packages of the JDK standard API and
extension packages are accessible without needing to set where
to find them.

• The path for all user-defined packages and libraries must be
set in the command-line (or in the Manifest associated with
the JAR file containing the classes).

22https://en.wikipedia.org/wiki/Classpath_(Java)

Zheng-Liang Lu Java Programming 2 90 / 92

https://en.wikipedia.org/wiki/Classpath_(Java)


Usage of Classpath

• You may use the following command in any terminal:

java -cp [the absolute path of the classes or packages] [the full
name of the application to run]

• For Windows users, try

java -cp c:\workspace\project train.java.HelloWorld

• On Linux/Unix/Mac OS users, try

java -cp /workspace/project train.java.HelloWorld

Zheng-Liang Lu Java Programming 2 91 / 92



Java Archive (JAR)24

• JAR is a packed format typically used to aggregate many Java
class files, associated metadata23 and resources (text, images,
etc.) into one file to distribute the application software or
libraries running on the Java platform.

• Try an executable JAR!

23Metadata refers data of data.
24See https://docs.oracle.com/javase/tutorial/deployment/jar/.

Zheng-Liang Lu Java Programming 2 92 / 92

https://docs.oracle.com/javase/tutorial/deployment/jar/

