
Java Programming 2

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Java 281
Spring 2017



1 class Lecture7 {
2

3 // Objects and Classes
4

5 }
6

7 // Key words:
8 class, new, this, static, null, extends, super, abstract, final,

interface, implements, protected

Zheng-Liang Lu Java Programming 2 1 / 85



Observations for Real Objects

• Look around.

• We can easily find many examples for real-world objects.
• For example, a person and his/her bottle of water.

• Real-world objects all have states and behaviors.
• What possible states can the object be in?
• What possible behaviors can the object perform on the states?

• Identifying these states and behaviors for real-world objects is
a great way to begin thinking in object-oriented programming.

• From now, OO is a shorthand for “object-oriented.”

Zheng-Liang Lu Java Programming 2 2 / 85



Software Objects

• An object keeps its states in fields and exposes its behaviors
through methods.

• Plus, internal states are hidden and the interactions to the
object are only performed through an object’s methods.

• This is so-call encapsulation, which is one of OO features.

• Note that the other OO features are inheritance and
polymorphism, which we will see later.

Zheng-Liang Lu Java Programming 2 3 / 85



Classes

• We often find many individual objects all of the same kind.
• For example, each bicycle was built from the same blueprint so

that each contains the same components.

• In OO terms, we say that your bicycle is an instance of the
class of objects known as Bicycle.

• A class is the blueprint to create class instances which are
runtime objects.

• Classes are the building blocks of Java applications.

Zheng-Liang Lu Java Programming 2 4 / 85



Example: Points in 2D Coordinate

1 class Point {
2 double x, y; // fields: data member
3 }

1 public class PointDemo {
2 public static void main(String[] args) {
3 // now create a new instance of Point
4 Point p1 = new Point();
5 p1.x = 1;
6 p1.y = 2;
7 System.out.printf("(%d, %d)\n", p1.x, p1.y);
8

9 // create another instance of Point
10 Point p2 = new Point();
11 p2.x = 3;
12 p2.y = 4;
13 System.out.printf("(%d, %d)\n", p2.x, p2.y);
14 }
15 }

Zheng-Liang Lu Java Programming 2 5 / 85



Class Definition

• First, give a class name with the first letter capitalized, by
convention.

• The class body, surrounded by balanced braces {}, contains
data members (fields) and function members (methods) for
objects.

Zheng-Liang Lu Java Programming 2 6 / 85



Data Members

• The fields are the states of the object.

• The field may have an access modifier, say public and private.
• public: accessible from all classes
• private: accessible only within its own class

• You can decide if these fields are accessible!

• In practice, all fields should be declared private.

• However, this private modifier does not quarantine any
security.1

• What private is good for maintainability and modularity.2

1Thanks to a lively discussion on January 23, 2017.
2Read http://stackoverflow.com/questions/9201603/

are-private-members-really-more-secure-in-java.
Zheng-Liang Lu Java Programming 2 7 / 85

http://stackoverflow.com/questions/9201603/are-private-members-really-more-secure-in-java
http://stackoverflow.com/questions/9201603/are-private-members-really-more-secure-in-java


Function Members

• As said, the fields are hidden.

• So we may need accessors and mutators if necessary.
• Accessors: return the state of the object
• Mutators: set the state of the object

• For example, getX() and getY() are accessors, and
setPoint(double, double) is one mutator in the class Point.

Zheng-Liang Lu Java Programming 2 8 / 85



Example: Point (Encapsulated)

1 class Point {
2 private double x;
3 private double y;
4

5 double getX() { return x; }
6 double getY() { return y; }
7

8 void setX(double a) { x = a; }
9 void setY(double a) { y = a; }

10 void setPoint(double a, double b) {
11 x = a;
12 y = b;
13 }
14 }

Zheng-Liang Lu Java Programming 2 9 / 85



Unified Modeling Language3

• Unified Modeling Language (UML) is a tool for specifying,
visualizing, constructing, and documenting the artifacts of
software systems, as well as for business modeling and other
non-software systems.

• Free software:
• http://staruml.io/ (available for all platforms)

3See http://www.tutorialspoint.com/uml/ and
http://www.mitchellsoftwareengineering.com/IntroToUML.pdf.

Zheng-Liang Lu Java Programming 2 10 / 85

http://staruml.io/
http://www.tutorialspoint.com/uml/
http://www.mitchellsoftwareengineering.com/IntroToUML.pdf


Example: Class Diagram for Point

• Modifiers can be placed before the fields and the methods:
• + for public
• − for private

Zheng-Liang Lu Java Programming 2 11 / 85



Constructors

• A constructor is called by the new operator.

• A constructor acts like other methods.

• However, its names should be identical to the name of the
class and it has no return type.

• A class may have several constructors if needed.
• Constructors can be overloaded.

• Note that the constructors are used only during the objection
creation.

• Constructors cannot be invoked by any object.

• If you don’t define any explicit constructor, Java assumes a
default constructor for your class.

• Moreover, adding any explicit constructor disables the default
constructor.

Zheng-Liang Lu Java Programming 2 12 / 85



Parameterized Constructors

• You can provide specific information to the parameterized
constructor during the object creation.

• For example,

1 class Point {
2 ...
3

4 Point() {} // restore a default constructor;
5

6 // parameterized constructor
7 Point(double a, double b) {
8 x = a;
9 y = b;

10 }
11 ...
12 }

Zheng-Liang Lu Java Programming 2 13 / 85



Self-reference

• You can refer to any (instance) member of the current object
within methods and constructors by using this.

• The most common reason for using the this keyword is
because a field is shadowed by method parameters.

• You can also use this to call another constructor in the same
class by invoking this().

Zheng-Liang Lu Java Programming 2 14 / 85



Example: Point (Revisited)

1 class Point {
2 ...
3 Point(int x, int y) {
4 this.x = x;
5 this.y = y;
6 }
7 ...
8 }

• Note that the this operator cannot be used in static methods.

Zheng-Liang Lu Java Programming 2 15 / 85



Instance Members and Static Members

• You may notice that, until now, all members are declared w/o
static.

• It means that each object has its own values with behaviors.

• The aforesaid members are called instance members.

• Note that these instance members are available only after the
object is created.

Zheng-Liang Lu Java Programming 2 16 / 85



Zheng-Liang Lu Java Programming 2 17 / 85



Static Members

• The static members belong to the class4, and are shared
between the instance objects.

• In other word, there is only one copy of the static members,
no matter how many objects of the class are created.

• They are ready once the class is loaded.

• They can be invoked directly by the class name without using
any instance.

• For example, Math.random().

4Aka class members.
Zheng-Liang Lu Java Programming 2 18 / 85



• A static method can access other static members. (Trivial.)

• However, static methods cannot access to instance members
directly. (Why?)

• For example,

1 ...
2 double getDistanceFrom(Point p) {
3 return Math.sqrt(Math.pow(this.x − p.x, 2) + Math.pow(

this.y − p.y, 2));
4 }
5

6 static double distanceBetween(Point p1, Point p2) {
7 // You cannot access to x and y directly!
8 return Math.sqrt(Math.pow(p1.x − p2.x, 2) + Math.pow(p1.

y − p2.y, 2));
9 }

10 ...

Zheng-Liang Lu Java Programming 2 19 / 85



Example: Count of Points

1 class Point {
2 ...
3 private static int numOfPoint = 0;
4

5 Point() {
6 numOfPoint++;
7 }
8

9 Point(int x, int y) {
10 this(); // calling the constructor with no input

argument; should be placed in the first line in the
constructor

11 this.x = x;
12 this.y = y;
13 }
14 ...
15 }

Zheng-Liang Lu Java Programming 2 20 / 85



Exercise: Singleton5

• In some situations, you may create the only instance of the
class.

1 class Singleton {
2

3 // Will be ready as soon as the class is loaded.
4 private static Singleton instance = new Singleton();
5

6 // Do now allow to invoke the constructor by other classes.
7 private Singleton() {}
8

9 // Only way to obtain the singleton from the outside world.
10 public static Singleton getSingleton() {
11 return instance;
12 }
13 }

5See any textbook for design patterns.
Zheng-Liang Lu Java Programming 2 21 / 85



Garbage Collection (GC)6

• Java handles deallocation automatically.

• Automatic GC is the process of looking at the heap memory,
identifying whether or not the objects are in use, and deleting
the unreferenced objects.

• An object is said to be unreferenced if the object is no longer
referenced by any part of your program.

• Simply assign null to the reference to make the object
unreferenced.

• So the memory used by these objects can be reclaimed.

6http://www.oracle.com/webfolder/technetwork/tutorials/obe/

java/gc01/index.html

Zheng-Liang Lu Java Programming 2 22 / 85

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html


finalize()

• The method finalize() conducts a specific task that will be
executed right before the object is reclaimed by GC.

• The finalize() method can be only invoked prior to GC.

• In practice, it must not rely on the finalize() method for
normal operations. (Why?)

Zheng-Liang Lu Java Programming 2 23 / 85



Example

1 public class FinalizeDemo {
2 private static int numOfObjKilled = 0;
3

4 public void finalize() {
5 numOfObjKilled++;
6 }
7

8 public static void main(String[] args) {
9 double n = 1e7;

10 for (int i = 1; i <= n; i++)
11 new FinalizeDemo(); // lots of unreferenced objects
12 System.out.println(numOfObjKilled);
13 }
14 }

• You may try different number for instance creation.

• The number of the objects reclaimed by GC is uncertain.

Zheng-Liang Lu Java Programming 2 24 / 85



HAS-A Relationship

• Association is a weak relationship where all objects have their
own lifetime and there is no ownership.

• For example, teacher ↔ student; doctor ↔ patient.

• If A uses B, then it is an aggregation, stating that B exists
independently from A.

• For example, knight ↔ sword; company ↔ employee.

• If A owns B, then it is a composition, meaning that B has no
meaning or purpose in the system without A.

• For example, house ↔ room.

Zheng-Liang Lu Java Programming 2 25 / 85



Example: Lines

• +2: two Point objects used in one Line object.

Zheng-Liang Lu Java Programming 2 26 / 85



More Examples

• Circle, Triangle, and Polygon.

• Book with Authors.

• Lecturer and Students in the classroom.

• Zoo with many creatures, say Dog, Cat, and Bird.

• Channels played on TV.

• More.

Zheng-Liang Lu Java Programming 2 27 / 85



More Relationships Between Classes

• Inheritance: passing down states and behaviors from the
parents to their children

• Interfaces: grouping the methods, which belongs to some
classes, as an interface to the outside world

• Packages: grouping related types, providing access protection
and name space management

Zheng-Liang Lu Java Programming 2 28 / 85



First IS-A Relationship

• OOP allows classes to inherit commonly used states and
behaviors from previously defined classes.

• This is called inheritance.

• Furthermore, the classes exist in some hierarchy.

• A class can be declared as a subclass of some class, which is
called the superclass, by using the extends keyword.

• Hence, we can say that a subclass specializes its superclass.

• Equivalently, one subclass is a special case of the superclass.
• For example, human and dog are two specific types of animals.

• Note that a class can extend only one other class, while each
superclass has the potential for an unlimited number of
subclasses.

Zheng-Liang Lu Java Programming 2 29 / 85



Class Hierarchy7

7See Fig. 3-1 in p. 113 of Evans and Flanagan.
Zheng-Liang Lu Java Programming 2 30 / 85



Example

1 class Animal {
2 String name;
3 int weight;
4

5 Animal(String s, int w) { name = s; weight = w; }
6

7 void eat() { weight += 1; }
8 void exercise() { weight −= 1; }
9 }

10

11 class Human extends Animal {
12 Human(String s, int w) { super(s, w); }
13 void writeCode() { System.out.println("Write codes..."); }
14 }
15

16 class Dog extends Animal {
17 Dog(String s, int w) { super(s, w); }
18 void watchDoor() { System.out.println("Watch my door..."); }
19 }

Zheng-Liang Lu Java Programming 2 31 / 85



super

• Recall that the keyword this is used to refer to the object
itself.

• You can use the keyword super to refer to (non-private)
members of the superclass.

• Note that super() can be used to invoke the constructor of its
superclass, just similar to this().

Zheng-Liang Lu Java Programming 2 32 / 85



Constructor Chaining

• As the constructor is invoked, the constructor of its superclass
is invoked accordingly.

• You might think that there will be a whole chain of
constructors called, all the way back to the constructor of the
class Object, the topmost class in Java.

• So every class is an immediate or a distant subclass of Object.

• Recall that the method finalize() and toString() are inherited
from Object.

• toString(): return a string which can be any information
stored in the object.

Zheng-Liang Lu Java Programming 2 33 / 85



Example
1 class A {
2 A() { System.out.println("A is creating..."); }
3 }
4

5 class B extends A {
6 B() { System.out.println("B is creating..."); }
7 public String toString() {
8 return "This is inherited from Object."
9 }

10 }
11

12 public class ConstructorChainingDemo {
13 public static void main(String[] args) {
14 B b = new B();
15 System.out.println(b);
16 }
17 }

• The println() method (and similar methods) can take an
object as input, and invoke toString() method implicitly.

Zheng-Liang Lu Java Programming 2 34 / 85



Method Overriding

• The subclass is allowed to change the behavior inherited from
its superclass, if needed.

• If one defines an instance method with its method name,
parameters, and its return type, all identical to the previously
defined method in its superclass, then this newly defined
method overrides the one in the superclass.8

• Compared to overridden methods, method overloading occurs
only in the same class.

• Note that you can invoke the overridden method through the
use of the keyword super.

8The static methods do not follow this rule.
Zheng-Liang Lu Java Programming 2 35 / 85



Example

Zheng-Liang Lu Java Programming 2 36 / 85



Binding

• Association of the method definition to the method call is
known as binding.

• The binding which can be resolved at the compilation time is
known as static binding or early binding.

• They are the static, private or final methods.9

• If the compiler is not able to resolve the binding, such binding
is known as dynamic binding or late binding.

• For example, method overriding.

• When there are multiple implementations of the method in
the inheritance hierarchy, the one in the “most derived” class
(the furthest down the hierarchy) always overrides the others,
even if we refer to the object through a reference variable of
the superclass type.10

9We will see the final keyword soon.
10An overridden method in Java acts like a virtual function in C++.

Zheng-Liang Lu Java Programming 2 37 / 85



Polymorphism11

• The word polymorphism literally means “many forms.”

• Java allows 4 types of polymorphism:
• coercion (casting)
• ad hoc polymorphism (overloading)
• subtype polymorphism
• parametric polymorphism (generics)

• Modeling polymorphism in a programming language lets you
create a uniform interface to different kinds of operands,
arguments, and objects.

11Read http://www.javaworld.com/article/3033445/learn-java/

java-101-polymorphism-in-java.html.
Zheng-Liang Lu Java Programming 2 38 / 85

http://www.javaworld.com/article/3033445/learn-java/java-101-polymorphism-in-java.html
http://www.javaworld.com/article/3033445/learn-java/java-101-polymorphism-in-java.html


Subtype Polymorphism

• For convenience, let U be a subtype of T.

• Liskov Substitution Principle states that T-type objects may
be replaced with U-type objects without altering any of the
desirable properties of T (correctness, task performed,
etc.).12,13

12See
https://en.wikipedia.org/wiki/Liskov_substitution_principle.

13Also see
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design).

Zheng-Liang Lu Java Programming 2 39 / 85

https://en.wikipedia.org/wiki/Liskov_substitution_principle
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)


Casting

• Upcasting (widening conversion) is to cast the U object to the
T variable.

1 T t = new U();

• Downcasting (narrow conversion) is to cast the T variable to
a U variable.

1 U u = (U) t; // t is T variable reference to a U object.

• Upcasting is always allowed, but downcasting is allowed only
when a U object is passed to the U-type variable.

• This involves type compatibility by JVM during program
execution.

Zheng-Liang Lu Java Programming 2 40 / 85



instanceof

• The operator instanceof allows us to test whether or not a
reference variable is compatible to the object.

• If not compatible, then JVM will throw an exception
ClassCastException.14

14We will see the exceptions later.
Zheng-Liang Lu Java Programming 2 41 / 85



Example

1 class T {}
2 class U extends T {}
3

4 public class InstanceofDemo {
5 public static void main(String[] args) {
6 T t1 = new T();
7

8 System.out.println(t1 instanceof U); // output false
9 System.out.println(t1 instanceof T); // output true

10

11 T t2 = new U(); // upcasting
12

13 System.out.println(t2 instanceof U); // output true
14 System.out.println(t2 instanceof T); // output true
15

16 U u = (U) t2; // downcasting; this is ok.
17

18 u = (U) new T(); // pass the compilation; fail during
execution!

19 }
20 }

Zheng-Liang Lu Java Programming 2 42 / 85



Abstraction by Method Overriding and Polymorphism

• JVM invokes the appropriate method for the current object by
looking up from the bottom of the class hierarchy to the top.

• These methods are also called virtual methods.

• This mechanism preserves the behaviors of the objects and
the super-type variables play the role of placeholders.

• We manipulate objects in an abstract level; we don’t need to
know the details when we use them.

Zheng-Liang Lu Java Programming 2 43 / 85



Example

• Imagine that we have a zoo with some animals.

1 class Animal {
2 void speak() {}
3 }
4 class Dog extends Animal {
5 void speak() { System.out.println("woof"); }
6 }
7 class Cat extends Animal {
8 void speak() { System.out.println("meow"); }
9 }

10 class Bird extends Animal {
11 void speak() { System.out.println("tweet"); }
12 }
13

14 public class PolymorphismDemo {
15 public static void main(String[] args) {
16 Animal[] zoo = {new Dog(), new Cat(), new Bird()};
17 for (Animal a: zoo) a.speak();
18 }
19 }

Zheng-Liang Lu Java Programming 2 44 / 85



The final Keyword

• A final variable is a variable which can be initialized once and
cannot be changed later.

• The compiler makes sure that you can do it only once.
• A final variable is often declared with static keyword and

treated as a constant, for example, Math.PI.

• A final method is a method which cannot be overridden by
subclasses.

• You might wish to make a method final if it has an
implementation that should not be changed and it is critical to
the consistent state of the object.

• A class that is declared final cannot be inherited.

Zheng-Liang Lu Java Programming 2 45 / 85



Abstract Class

• An abstract class is a class declared abstract.

• The classes that sit at the top of an object hierarchy are
typically abstract classes.15

• These abstract class may or may not have abstract methods,
which are methods declared without implementation.

• More explicitly, the methods are declared without braces, and
followed by a semicolon.

• If a class has one or more abstract methods, then the class
itself must be declared abstract.

• All abstract classes cannot be instantiated.

• Moreover, abstract classes act as placeholders for the subclass
objects.

15The classes that sit near the bottom of the hierarchy are called concrete
classes.

Zheng-Liang Lu Java Programming 2 46 / 85



Example

• Abstract methods and classes are in italic.

• In this example, the abstract method draw() and resize()
should be implemented depending on the real shape.

Zheng-Liang Lu Java Programming 2 47 / 85



Another IS-A Relationship

• Not all classes share a vertical relationship.

• Instead, some are supposed to perform the specific methods
without a vertical relationship.

• Consider the class Bird inherited from Animal and Airplane
inherited from Transportation.

• Both Bird and Airplane are able to be in the sky.
• So they should perform the method canFly(), for example.

• By semantics, the method canFly() could not be defined in
their superclasses.

• We need a horizontal relationship.

Zheng-Liang Lu Java Programming 2 48 / 85



Example

1 interface Flyable {
2 void canFly(); // public + abstract
3 }
4

5 abstract class Animal {}
6

7 class Bird extends Animal implements Flyable {
8 public void canFly() {
9 System.out.println("Bird flying...");

10 }
11 }
12

13 abstract class Transportation {}
14

15 class Airplane extends Transportation implements Flyable {
16 public void canFly() {
17 System.out.println("Airplane flying...");
18 }
19 }

Zheng-Liang Lu Java Programming 2 49 / 85



1 public class InterfaceDemo {
2 public static void main(String[] args) {
3 Airplane a = new Airplane();
4 a.canFly();
5

6 Bird b = new Bird();
7 b.canFly();
8

9 Flyable f = a;
10 f.canFly(); // output ‘‘Airplane flying...’’
11 f = b;
12 f.canFly(); // output ‘‘Bird flying...’’
13 }
14 }

Zheng-Liang Lu Java Programming 2 50 / 85



Interfaces

• An interface forms a contract between the object and the
outside world.

• For example, the buttons on the television set are the interface
between you and the electrical wiring on the other side of its
plastic casing.

• An interface is also a reference type, just like classes, in which
only method signatures are defined.

• So they can be the types of reference variables!

Zheng-Liang Lu Java Programming 2 51 / 85



• Note that interfaces cannot be instantiated (directly).

• A class implementing one or multiple interfaces provides
method bodies for each defined method signature.

• This allows a class to play different roles, with each role
providing a different set of services.

• For example, combatants in RPG are also the characters who
can trade in the market.

Zheng-Liang Lu Java Programming 2 52 / 85



Example

Zheng-Liang Lu Java Programming 2 53 / 85



Properties of Interfaces

• The methods of an interface are implicitly public.

• In most cases, the class which implements the interface should
implement all the methods defined in the interface.

• Otherwise, the class should be abstract.

• An interface can declare only fields which are static and final.

• You can also define static methods in the interface.

• A new feature since Java SE 8 allows to define the methods
with implementation in the interface.

• A method with implementation in the interface is declared
default.

Zheng-Liang Lu Java Programming 2 54 / 85



• An interface can extend another interface, just like a class
which can extend another class.

• However, an interface can extend many interfaces as you need.

• For example, Driveable and Updateable are good interface
names.

• Common interfaces are Runnable16, Serializable17, and
Collections18.

16Related to multithreading.
17Aka object serialization where an object can be represented as a sequence

of bytes that includes the object’s data as well as information about the
object’s type and the types of data stored in the object.

18Collections are related to data structures.
Zheng-Liang Lu Java Programming 2 55 / 85



Timing for Interfaces and Abstract Classes

• Consider using abstract classes if you want to:
• share code among several closely related classes
• declare non-static or non-final fields

• Consider using interfaces for any of situations as follows:
• unrelated classes would implement your interface
• specify the behavior of a particular data type, but not

concerned about who implements its behavior
• take advantage of multiple inheritance

Zheng-Liang Lu Java Programming 2 56 / 85



Wrapper Classes

• To treat values as objects, Java supplies standard wrapper
classes for each primitive type.

• For example, you can construct a wrapper object from a
primitive value or from a string representation of the value.

1 ...
2 Double pi = new Double("3.14");
3 ...

Zheng-Liang Lu Java Programming 2 57 / 85



Zheng-Liang Lu Java Programming 2 58 / 85



Autoboxing and Unboxing of Primitives

• The Java compiler automatically wraps the primitives in their
wrapper types, and unwraps them where appropriate.

1 ...
2 Integer i = 1; // autoboxing
3 Integer j = 1;
4 System.out.println(i + j); // unboxing; output 2
5

6 System.out.println(i == j); // output true
7 System.out.println(i.equals(j)); // output true
8 ...

• The method equals() inherited from Object is used to
compare the contents of two objects.

• Herein, the values of wrapper objects.

Zheng-Liang Lu Java Programming 2 59 / 85



Immutable Objects

• An object is considered immutable if its state cannot change
after it is constructed.

• Often used for value objects.

• Imagine that there is a pool for immutable objects.

• After the value object is first created, this value object is
reused if needed.

• This implies that another object is created when we operate
on the immutable object.

Zheng-Liang Lu Java Programming 2 60 / 85



• For example,

1 ...
2 k = new Integer(1);
3 System.out.println(i == k); // output false (why?)
4 System.out.println(k.equals(i)); // output true
5

6 Integer q = 2;
7 i++;
8 System.out.println(i == q); // output true
9 System.out.println(i.equals(q)); // output true

10 ...

• Good practice when it comes to concurrent programming.19

• Another example is String objects.

19See http://www.javapractices.com/topic/TopicAction.do?Id=29.
Zheng-Liang Lu Java Programming 2 61 / 85

http://www.javapractices.com/topic/TopicAction.do?Id=29


enum Types20

• An enum type is an reference type limited to an explicit set of
values.

• An order among these values is defined by their order of
declaration.

• There exists a correspondence with string names identical to
the name declared.

20The keyword enum is a shorthand for enumeration.
Zheng-Liang Lu Java Programming 2 62 / 85



Example

1 ...
2 enum Weekday {Sunday, Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday}
3 ...

• Actually, Weekday is a subclass of enum type with seven
static and final objects corresponding to the seven enumerated
values.

• The Weekday instances which really exist are the seven
enumerated values.

• So this mechanism enhances type safety!

Zheng-Liang Lu Java Programming 2 63 / 85



1 public class EnumerationDemo {
2 public static void main(String[] args) {
3 Weekday[] weekdays = Weekday.values();
4 // The method values() returns a Weekday array.
5

6 for (Weekday day: weekdays) {
7 System.out.println(day);
8 }
9

10 Weekday today = Weekday.Sunday;
11 Weekday tomorrow = Weekday.Monday;
12

13 System.out.println(today == tomorrow); // output false
14 }
15 }

Zheng-Liang Lu Java Programming 2 64 / 85



Exercise: Colors

1 enum Color {
2

3 Red, Green, Blue; // three options
4

5 static Color randomColor() {
6 Color[] colorSet = values();
7 int pickOneColor = (int) (Math.random() ∗ colorSet.

length);
8 return colorSet[pickOneColor];
9 }

10 }
11

12 public class EnumDemo {
13 public static void main(String[] args) {
14 for(int i = 1 ; i <= 3; i++)
15 System.out.println(Color.randomColor());
16 }
17 }

Zheng-Liang Lu Java Programming 2 65 / 85



Exercise: Size

1 enum Size {
2

3 Large("L"), Medium("M"), Small("S");
4

5 private String abbr;
6 private Size(String abbr) { this.abbr = abbr; }
7

8 public String getAbbr() {
9 return this.abbr;

10 }
11 }
12

13 public class EnumDemo {
14 public static void main(String[] args) {
15 System.out.println(Size.Small.getAbbr()); // output S
16 }
17 }

Zheng-Liang Lu Java Programming 2 66 / 85



Packages

• We organize related types into packages for the following
purposes:

• To make types easier to find and use
• To avoid naming conflicts
• To control access

• For example, fundamental classes are in java.lang and classes
for I/O are in java.io.

Zheng-Liang Lu Java Programming 2 67 / 85



Access Control

Scope \ Modifier private (package) protected public

Within the class X X X X
Within the package x X X X
Inherited classes x x X X
Out of package x x x X

Zheng-Liang Lu Java Programming 2 68 / 85



Nested Classes

• A nested class is a member of its enclosing class.

• Non-static nested classes, aka inner classes, have access to
other members of the enclosing class, even if they are declared
private.

• Instead, static nested classes do not have access to other
instance members of the enclosing class.

• Timing of usage:
• Logically grouping classes that are only used in one place
• Increasing encapsulation
• Leading to more readable and maintainable code

Zheng-Liang Lu Java Programming 2 69 / 85



Family of Nested Classes

Zheng-Liang Lu Java Programming 2 70 / 85



Inner Classes

• Inner classes can be classified depending on how and where
you define them:

• Inner class
• Method-local inner class
• Anonymous inner class

• Unlike a normal class21, an inner class can be declared private.

• Note that the creation of inner-type objects is available after
the outer-type object is created.

• In other words, you cannot invoke the constructor of the inner
type without having the outer type object.

• For static members in the inner classes,
• you can declare a static member which is supposed to be final;
• however, static methods can only be declared in a static or top

level type.

21We call these the top classes.
Zheng-Liang Lu Java Programming 2 71 / 85



Example: Inner Class
1 class OuterClass {
2 private int x = 1;
3 InnerClass y = new InnerClass();
4

5 class InnerClass {
6 public void print() {
7 System.out.println(x); // ok!
8 }
9 }

10 }
11

12 public class InnerClassDemo {
13 public static void main(String[] args) {
14 OuterClass outer = new OuterClass();
15 outer.x.print(); // output 1
16

17 InnerClass inner = new InnerClass(); // oops
18 // Since InnerClass type cannot be resolved out of

OuterClass.
19 outer.new InnerClass().print(); // output 1
20 }
21 }

Zheng-Liang Lu Java Programming 2 72 / 85



Example: Method-local Inner Class

1 class OuterClass {
2 private int x = 1;
3

4 void outerClassMethod() {
5 class MLInnerClass { // should be in the beginning
6 int y = 2;
7 static int z = 3; // implicitly final
8

9 void print() {
10 System.out.println(x);
11 System.out.println(y);
12 System.out.println(z);
13 }
14 }
15

16 MLInnerClass w = new MLInnerClass();
17 w.print();
18 }
19 }

Zheng-Liang Lu Java Programming 2 73 / 85



Anonymous Inner Class

• Anonymous inner classes are an extension of the syntax of the
new operation, enabling you to declare and instantiate a class
at the same time.

• However, these do not have a name.

• Use them when you need to use these types only once.

Zheng-Liang Lu Java Programming 2 74 / 85



Example

1 abstract class A {
2 void foo();
3 }
4

5 public class AnonymousClassDemoOne {
6 public static void main(String[] args) {
7 A a = new A() {
8 public void foo() { /∗ different implementation ∗/ }
9 void helper() { /∗ a subroutine for foo ∗/ }

10 };
11

12 a.foo();
13 }
14 }

• You may invoke a.foo() but not a.helper() because helper() is
not defined in class A.

Zheng-Liang Lu Java Programming 2 75 / 85



Exercise

1 interface B {
2 void foo();
3 }
4

5 public class AnonymousClassDemoTwo {
6 public static void main(String[] args) {
7 B b = new B() {
8 public void foo() { /∗ different implementation ∗/ }
9 };

10

11 b.foo();
12 }
13 }

• An interface can be used to instantiate an object indirectly by
anonymous classes with implementing the abstract methods.

Zheng-Liang Lu Java Programming 2 76 / 85



Iterators

• An important use of inner classes is to define an adapter class
as a helper object.

• Using adapter classes, we can write classes more naturally,
without having to anticipate every conceivable user’s needs in
advance.

• Instead, you provide adapter classes that marry your class to a
particular interface.

• For example, an iterator is a simple and standard interface to
enumerate objects in many data structures.

• The java.util.Iterator interface defines two methods: public
boolean hasNext() and public Object next().

Zheng-Liang Lu Java Programming 2 77 / 85



Example: An Iterator
1 class Box implements Iterable {
2

3 int[] arr = {1, 2, 3};
4 Iterator iter = new Iterator() {
5 int count = 0;
6

7 public boolean hasNext() {
8 if (count < arr.length)
9 return true;

10 else
11 return false;
12 }
13

14 public Object next() {
15 return arr[count++];
16 }
17 };
18

19 public Iterator iterator() {
20 return iter;
21 }
22 }

Zheng-Liang Lu Java Programming 2 78 / 85



1 import java.util.Iterator;
2 import java.util.Scanner;
3

4 public class IteratorDemo {
5 public static void main(String[] args) {
6 Box b = new Box();
7 for (Object x: b) {
8 System.out.println(x);
9 }

10 }
11 }

Zheng-Liang Lu Java Programming 2 79 / 85



Static Nested Class

• A static inner class is a nested class which is a static member
of the outer class.

• So they can access to other static members without
instantiating the outer class.

• Just like static members, a static nested class does not have
access to the instance members of the outer class.

• Most important, a static nested class can be instantiated
directly, without instantiating the outer class object first.

• Static nested classes act something like a minipackage.

Zheng-Liang Lu Java Programming 2 80 / 85



Example

1 class OuterClass {
2 static int x = 1;
3 int y = 2;
4

5 void OuterClassMethod() {
6 System.out.println(y);
7 }
8

9 static class StaticNestedClass {
10 int z = 3;
11 void StaticNestedClassMethod() {
12 System.out.println(x);
13 System.out.println(y); // Oops, static members

cannot access to instance members.
14 System.out.println(z);
15 }
16 }
17 }

Zheng-Liang Lu Java Programming 2 81 / 85



1 public class StaticNestedClassDemo {
2 public static void main(String[] args) {
3 OuterClass.StaticNestedClass x = new OuterClass.

StaticNestedClass();
4 x.StaticNestedClassMethod();
5 }
6 }

Zheng-Liang Lu Java Programming 2 82 / 85



Classpath22

• The variable classpath is an environment variable for the
Java compiler to specify the location of user-defined classes
and packages.

• By default, only the packages of the JDK standard API and
extension packages are accessible without needing to set where
to find them.

• The path for all user-defined packages and libraries must be
set in the command-line (or in the Manifest associated with
the JAR file containing the classes).

22https://en.wikipedia.org/wiki/Classpath_(Java)

Zheng-Liang Lu Java Programming 2 83 / 85

https://en.wikipedia.org/wiki/Classpath_(Java)


Usage of Classpath

• You may use the following command in any terminal:

java -cp [the absolute path of the classes or packages] [the full
name of the application to run]

• For Windows users, try

java -cp c:\workspace\project train.java.HelloWorld

• On Linux/Unix/Mac OS users, try

java -cp /workspace/project train.java.HelloWorld

Zheng-Liang Lu Java Programming 2 84 / 85



Java Archive (JAR)24

• JAR is a packed format typically used to aggregate many Java
class files, associated metadata23 and resources (text, images,
etc.) into one file to distribute the application software or
libraries running on the Java platform.

• Try an executable JAR!

23Metadata refers data of data.
24See https://docs.oracle.com/javase/tutorial/deployment/jar/.

Zheng-Liang Lu Java Programming 2 85 / 85

https://docs.oracle.com/javase/tutorial/deployment/jar/

