
Introduction Case Study Big O Order of Growth Open Issue

Algorithms Lab
Analysis of Algorithms

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Introduction Case Study Big O Order of Growth Open Issue

Introduction

• A problem may be solved by various algorithms.

• We compare these algorithms by measuring their efficiency.

• Adopting a theoretical approach, we identify the growth rate
of running time in function of input size n.

• This introduces the notion of time complexity.1

• Let’s start with the following two examples.

1See https://en.wikipedia.org/wiki/Time complexity. Similar to time
complexity, we later turn to the notion of space complexity.

Zheng-Liang Lu Algorithms Lab 1

https://en.wikipedia.org/wiki/Time_complexity

Introduction Case Study Big O Order of Growth Open Issue

Example 1: SUM

1 ...
2 int sum = 0, i = 1; // Assign −> 2.
3 while (i <= n) { // Compare −> n + 1.
4 sum = sum + i; // Add and assign −> 2n.
5 ++i; // Increase by 1 −> n.
6 }
7 ...

• Let n be any nonnegative number.

• Then count the number of all runtime operations.

• Note that we ignore declarations in the calculation. (Why?)

• In this case, the total number of operations is 4n + 3.

Zheng-Liang Lu Algorithms Lab 2

Introduction Case Study Big O Order of Growth Open Issue

Example 2: TRIANGLE

*
* *
* * *
* * * *
* * * * *

1 ...
2 for (int i = 1; i <= n; i++) {
3 for (int j = 1; j <= i; j++)
4 System.out.printf("*");
5 System.out.println();
6 }
7 ...

• Before counting, I assume that it will be
cn2 + · · · for some constant c . (Why?)

Zheng-Liang Lu Algorithms Lab 3

Introduction Case Study Big O Order of Growth Open Issue

Big O Notation2

• Let f (n) be the time cost of your algorithm, and g(n) be
some simple function.

• We define
f (n) = O(g(n)) as n → ∞

provided that there is a constant c > 0 and some n0 such that

f (n) ≤ c × g(n), ∀n ≥ n0.

• Too abstract? See the illustration shown in the next page.

2See https://en.wikipedia.org/wiki/Big O notation. You can also check the
other 4 symbols: o, Θ, Ω, and ω.

Zheng-Liang Lu Algorithms Lab 4

https://en.wikipedia.org/wiki/Big_O_notation

Introduction Case Study Big O Order of Growth Open Issue

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Input size (log scale)

0

20

40

60

80

100

120

Ru
nn

in
g

tim
e

f (n)
cxg (n)

• Clearly, g(n) is the asymptotic upper bound of f (n).3

• In other words, big O implies the worst case of the algorithm.

• We then classify the algorithms in Big O sense.

3See https://en.wikipedia.org/wiki/Big O notation#Infinite asymptotics.
Zheng-Liang Lu Algorithms Lab 5

https://en.wikipedia.org/wiki/Big_O_notation#Infinite_asymptotics

Introduction Case Study Big O Order of Growth Open Issue

Discussions (1/4)

• Assume that the algorithm takes 8n2 − 3n + 4 steps.

• When n becomes large enough, the leading term dominates
the whole behavior of the polynomial.

• So we simply focus on the leading term.

• It is easy to find a constant, say c = 9, so that 9n2 ≥ 8n2

holds.

• We then conclude that

8n2−3n + 4 = O(n2).

• It could say that the algorithm runs in O(n2) time.

Zheng-Liang Lu Algorithms Lab 6

Introduction Case Study Big O Order of Growth Open Issue

Discussions (2/4)

• It is clear that SUM runs in O(n) time and TRIANGLE runs
in O(n2) time. (Why?)

• As a thumb rule, k-level loops run in O(nk) time.

• Determine the time complexity for the loop shown below.

1 ...
2 for (int i = 1; i <= n; i++) {
3 for (int j = 1; j <= i; j++) {
4 for (int k = 1; k <= 5; k++) {
5 // Loop body.
6 }
7 }
8 }
9 // This algorithm runs in O(?) time.

10 ...

Zheng-Liang Lu Algorithms Lab 7

Introduction Case Study Big O Order of Growth Open Issue

Discussions (3/4): Which Will You Choose?

Benchmark

Size O(n) O(n2) O(n3)

1 c1 c2 c3
10 10c1 100c2 1000c3
100 100c1 10000c2 1000000c3

• In theory, the smaller the order, the faster the algorithm.

Zheng-Liang Lu Algorithms Lab 8

Introduction Case Study Big O Order of Growth Open Issue

Discussions (4/4)

• It is worth to note that

8n2 − 3n + 4 ̸= O(n), and 8n2 − 3n + 4 = O(n3). (Why?)

• We would say that 8n2 − 3n + 4 = O(n2) for complexity
analysis. (Why?)

Zheng-Liang Lu Algorithms Lab 9

Introduction Case Study Big O Order of Growth Open Issue

Orders of Growth Rates

0 20 40 60 80 100
Input size (log scale)

0

20

40

60

80

100

Ru
nn

in
g
tim

e
(lo

g
sc

al
e)

1: constant
logn: logarithmic
n: linear
n log n: linearithmic
n2: quadratic
n3: cubic
2n: exponential

Zheng-Liang Lu Algorithms Lab 10

Introduction Case Study Big O Order of Growth Open Issue

Big O Table

Growth order Description Example

O(1) independent of n x = y + z

O(log n) divide in half binary search

O(n) one loop find maximum

O(n log n) divide and conquer merge sort

O(n2) double loop check all pairs

O(n3) triple loop check all triples

O(2n) exhaustive search check all subsets

Zheng-Liang Lu Algorithms Lab 11

Introduction Case Study Big O Order of Growth Open Issue

Constant-Time Algorithms

• Basic instructions (e.g. +) run in O(1) time. (Why?)

• Some algorithms indeed run in O(1) time, for example, the
arithmetic formulas. (Why?)

• However, there is no free lunch. (Why?)
• We should strike a balance by making a trade-off between
generality and efficiency.

• To reuse the program, it must be a general solution whose
assumption should be little and weak.

• To speed up the program, it could be optimized for the desire
cases (so making assumptions).

Zheng-Liang Lu Algorithms Lab 12

Introduction Case Study Big O Order of Growth Open Issue

• In addition, a program without writing explicit loops may not
run in O(1) time.

• For example, calling Arrays.sort() still takes more than O(1)
time to finish the sorting task.

• All in all, the time complexity is about the effort spent on the
task but not how many time you sacrifice.

Zheng-Liang Lu Algorithms Lab 13

Introduction Case Study Big O Order of Growth Open Issue

Exponential-Time Algorithms & Computability

• We, in fact, are overwhelmed by lots of intractable problems.
• For example, the travelling salesman problem (TSP).4

• Playing game well is hard.5

• Even worse, Turing (1936) proved the first undecidable
(unsolvable) problem, called the halting problem.6

• You can find any textbook for theory of computation or
computational complexity for further details.

4See https://en.wikipedia.org/wiki/Travelling salesman problem.
5See https://en.wikipedia.org/wiki/Game complexity. Check out AlphaGo.
6See https://en.wikipedia.org/wiki/Halting problem.

Zheng-Liang Lu Algorithms Lab 14

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Game_complexity
https://en.wikipedia.org/wiki/AlphaGo
https://en.wikipedia.org/wiki/Halting_problem

Introduction Case Study Big O Order of Growth Open Issue

Zheng-Liang Lu Algorithms Lab 15

Introduction Case Study Big O Order of Growth Open Issue

Logarithmic-Time Algorithms

• We have met one of logarithmic-time algorithms. (Which?)

• In conclusion, the log-time algorithms run much faster than
the linear-time algorithms.

• However, the log-time algorithms require one assumption:
ordered sequence.

• You will learn this kind of algorithms in any course about
algorithms and data structures.

Zheng-Liang Lu Algorithms Lab 16

Introduction Case Study Big O Order of Growth Open Issue

Outstanding Theoretical Problem8

P ?
= NP

• In layman’s term, P is the problem set of “being solved and
verified in polynomial time.”

• NP is the problem set of “being verified in polynomial time
but perhaps being solved in exponential time.”

• For example, id verification is easier than hacking an account.

• One could say that P is easier than NP.
• P ?

= NP asks if NP is solved by P.
• It is still an open issue and also one of the Millennium Prize
Problems.7

7See https://en.wikipedia.org/wiki/Millennium Prize Problems.
8See https://en.wikipedia.org/wiki/P versus NP problem.

Zheng-Liang Lu Algorithms Lab 17

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://en.wikipedia.org/wiki/P_versus_NP_problem

	Introduction
	Case Study
	Big O
	Order of Growth
	Open Issue

