Java Programming

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Java 415
Summer 2024

W N oA W N

class Lecture5 {
"Methods and Recursion"

}

// Keywords:
return, var

Zheng-Liang Lu Java Programming

214

Introduction

e Methods! are used to define reusable codes, so that it could
organize and simplify your programs.

® The idea of methods originates from math, like

f(x,y),

where x and y are its two input parameters.
® Every parameter should be declared with one specific type.

® Every method needs one return type even if it has no return!

1As known as functions, procedures and subroutine.
Zheng-Liang Lu Java Programming 215

Example: max

Define a method

Invoke a method

return value method formal
modifier type name parameters

PN

Y e
method __ yp1ic static int[max(int numl, int num2)]{
header
int result; T
method
body parameter list ~ method

if (numl > num2)
result = numl;
else
result = num2;

signature

return result; <—— return value

int z = max(x, y);

Py

actual parameters
(arguments)

® The method signature comprises its name and parameter list.

Zheng-Liang Lu Java Programming

216

© N AW N

=
= o

N o oA W N

Alternatives?

public static int max (int numl,

if (numl > num2) {
return numl;

} else {
return num2;

}

int num2) {

public static int max (int numl,

return numl > num2 ? numl

int num2) {

num2;

Zheng-Liang Lu

Java Programming

217

“All roads lead to Rome.”

— Anonymous
2o fRAR AL BB K > BA Lo AT R BAREGRB K 7 7

— BEY (EHULE o Fw o 144])

Zheng-Liang Lu Java Programming

218

About the return Statement

The return statement terminates the method.
A caller invokes one method, called the callee.

The caller and the callee should follow the method header,
like a contract.

The caller provides the callee with adequate inputs and
receives one return value from the callee (or none if the return
type is void).

Note that a method could have more than one return
statement.

Zheng-Liang Lu Java Programming

219

© N AW N

e e =
o~ W N = O

Pitfalls

public static int fool() {

while (true);
return 0; // Unreachable code.

}
public static int foo2 (int x) {

if (x > 0)
return x; // What if x <= 0? Not allowed.

® Stick to the contract!

Zheng-Liang Lu Java Programming

220

© N oA W N

R R I N < i e
H O © W N O U~ WN RO

More Examples

// Method w/o return.
public static void display(int[] A) {

for (int item : A)
System.out.printf ("%d ", item);
System.out.println();

}

// Method returning array (reference)!
public static int([] arrayFactory(int size, int low,

int[] A = new int|[size];
int numOfStates = high - low + 1;
for (int i = 0; i < A.length; i++)
A[i] = (int) (Math.random() % numOfStates)
return A;

int high)

+ low;

Zheng-Liang Lu Java Programming

221

Method Invocation

pass the value i

pass the value j

public stat

ic voi

i

4 main(String[] args) {
int i - —
int j
int k

max(i, 3); <~

System.out.printin(T~
"The maximum of " + i + ~
"and "+ J o+ " s "+ k); —

. . . . Y
public static int max(int numl, int num2) {

int result;

if (huml > num2)
result = numl;
else
result = num2;

T~ return result;

® The formal parameters are sort of variables declared within

the method as placeholders.

® When invoking the method, th
arguments to the callee, in ord

® This is called passing by value.

Zheng-Liang Lu

e caller passes (copies) the
er and compatible type.

Java Programming

222

Space required for

the main method
k:
j: 2
it 5

Space required for
the max method

num2:
numl:

A A

Space required for
the main method

k
i
i

——————fd

N
T
1
[——

[}
T
1
1

(a) Themain
method is invoked.

(b) The max
method is invoked.

Space required for
the max method
result: Sft==—=fF-=—====——=—=—-
num2: 2
numl: 5
Space required for Space required for
the main method the main metho
: k: 5
j: 2 j: 2
it 5 i: 5

Stack is empty

(c) The max method
is being executed.

Zheng-Liang Lu

(d) The max method is
finished and the return

value is sent to k.

(e) Themain
method is finished.

Java Programming

® The JVM pushes a frame into the call stack?, which stores the
arguments and other necessary information for each method
invocation.

® Once the method reaches any return statement (or the
bottom of the method), the frame will be nullified and the
JVM returns to where the caller jumps from.

® |t also implies that the memory space occupied by the frame
will be recycled for next method invocation.

® Note that the execution flow of method invocation is the
central concept of recursions.

2A data structure with the first-in-last-out (FILO) property is called a stack.
Zheng-Liang Lu Java Programming

224

Variable Scope

A variable scope is the region where one variable is visible.

A variable has one of the following three scopes: class level3,
(method) local level, and loop level*.

® As a local variable, any changes made inside the method does
not affect the original value.

® Note that one local variable can have its name identical to the
one of class level.

® This is called the shadow effect because we favor the local
one. (Why?)

3We will discuss about this kind later in the next chapter.
*We've discussed the loop variables in the chapter of flow control: Any
variable declared in the loop is invisible when the loop is finished.
Zheng-Liang Lu Java Programming

225

© N oA W N

11
12
13
14
15
16
17
18
19
20
21
22

Example

public class ScopeDemo {
public static int x = 10; // Class level; global variable.
public static void main(String[] args) {
System.out.println(x); // Output 10.
int x = 100; // Method level, aka local wvariable.
x++;
System.out.println(x); // Output 101.
addOne () ;
System.out.println(x); // Output? Why?
}
public static void addOne () {
x =x + 1;
System.out.println(x); // Output?
}
}

Zheng-Liang Lu Java Programming

226

[S, I NI SR

Local Variable Type Inference®

var x = 100;
var y "type inference";

var z = new ArrayList<>();

// x will be an integer.
// y will be a string.
// z will be an ArrayList obijg

® Type inference is a compiler’s ability to automatically infer

unspecified data type paramete

rs from contextual information.

® |t allows us to write more concise Java code when it comes to

generics and lambda expression

5

® Note that this is applicable only for local variables.

SWe will meet lambda expressions soon

6Added in JDK 10. See Java 10 Local Variable Type Inference.

Zheng-Liang Lu

Java Programming

ct.

227

https://developer.oracle.com/learn/technical-articles/jdk-10-local-variable-type-inference

Manual for Math Toolbox: Math Class

The Math class provides basic math functions and two global
constants Math.Pl and Math.E.

Check out the official document for Math.”

® As you can see, its methods are all public and static.

As a professional programmer, you should be capable to read
documents (manuals) to survive in the future!®

"See Math from Oracle’s official document.
8You may hear about RTFM: https://en.wikipedia.org/wiki/RTFM.

Zheng-Liang Lu Java Programming

228

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Math.html
https://en.wikipedia.org/wiki/RTFM

© N oA W N

Method Overloading

® Naming conflict is allowed when methods with the same name
can be identified by method signatures.

public static int max(int x, int y) { ... }

// Differ in types.
public static double max (double x, double y) { ... }

// Differ in numbers of inputs.
public static int max(int x, int y, int z) { ... }

® Note that this mechanism does not relate to the return type.

Zheng-Liang Lu Java Programming

229

© O N oA W N R

e e =
o O r W N = O

Special Issue: Variadic Functions®

// You don’t have to do these below:
// public static int max(int nl, int n2) { /x Ignored x/ }
// public static int max(int nl, int n2, int n3) { /x Ignoj
public static int max(int... nums) { /» Ignored x/ }
// The above method definition is equivalent to
// public static int max(int[] nums) { /* Ignored =/ }
public static void main(String[] args) {
int x = max (100, 200, 300);
int y = max (100, 200, 300, 400);
}
® The ellipsis (...) allows the user to pass an arbitrary number
of arguments to the method.
%Since JDK5. It is one of syntactic sugars.
Zheng-Liang Lu Java Programming

ed */

230

® ~N o o

The Entry Method: main(String]] args)

® You can start the program together with a series of strings.

® Those attached strings are stored in one String array as the
program parameters.

public static void main(String... args) {

for (String arg : args)
System.out.println(arg);

® |n Eclipse, you may turn on the input dialog by adding
“${string_prompt} " as a program argument to JVM.

® You can also compile and run the program in the command
line interface (CLI).

Zheng-Liang Lu Java Programming

231

Recursion!®

[Recursion is a process of defining something in terms of itself.

® A method that calls itself in some way is recursive.

® Recursion is an alternative form of repetition without any
loop.

©Recursion is a commom pattern in nature.
Zheng-Liang Lu Java Programming

232

http://en.wikipedia.org/wiki/Recursion

Examples

® Try Fractal.

Zheng-Liang Lu

of Natural World

Java Programming

Pag)

http://en.wikipedia.org/wiki/Fractal

Example: Factorial (Revisited)

[Write a program to determine n! by recursion.

® For example,

4l =4 x 3 x2x 1 (in view of loops)

=4 x3! (in view of recursion)
=4x(3x2!)

=4x(3x(2x1))
=4x(3x(2x(1x01))

=4x (3x(2x(1x1))

=24.

® Find any recursive pattern?

Zheng-Liang Lu Java Programming 234

© o N O U A W N R

=
o

public static int factorial (int n) {

if (n < 2)
return 1; // base case
else
return n » factorial(n - 1); // recurrence relation

¢ Remember to set a base case in recursion. (Why?)

® What is the time complexity?

Zheng-Liang Lu Java Programming

235

Space required
for factorial(0)
n: 0

Space required
for factorial(l)
n: 1

Space required
for factorial(1)
n: 1

Space required
for factorial(2)
n: 2

Space required
for factorial(2)
n: 2

Space required
for Factom al(2)
n:

Space required
for factorial(3)
n: 3

Space required
for factorial(3)
n: 3

Space required
for factorial(3)
n: 3

Space require(l
for factorial (3)
n: 3

’T

Space required
for factorial (4)
n: 4

Space required
for factorial (4)
n: 4

Space required
for factorial (4)
n: 4

Space required
for factorial(4)
n: 4

Space required
for factorial(4)
n: 4

’T

Space required
for factorial(l)
n: |

Space required
for factorial(2)
n; 2

Space required
for Factom al(2)
n:

Space required
for factorial(3)
n: 3

Space l'equired
for factorial(3)
n: 3

[¢]

Space required
for factorial (3)
n: 3

Space required
for factorial (4)
n: 4

Space required
for factorial(4)
n: 4

Space required
for factorial (4)
n: 4

[

Space required
for factorial(4)
n: 4

Zheng-Liang Lu

Java Programming

236

oA W N

int s = 1;

for (int i = n; 1 > 1; i--) {
s x= 1i;

}

e Both run in O(n) time.

® One intriguing question is, Can we always turn a recursive
method into a loop version of that?

® Affirmative.

® The Church-Turing Thesis'! implies that both are equivalent.

See http://plato.stanford.edu/entries/church-turingy/.
Zheng-Liang Lu Java Programming

237

http://plato.stanford.edu/entries/church-turing/

Remarks

® Recursion bears substantial overhead.

® So the recursive algorithm may execute a bit more slowly than
the iterative equivalent.

® Moreover, a deep recursion depletes the call stack, which is
limited, and causes the error StackOverflowError.12

12See https://stackoverflow.com/, https://www.oreilly.com/, and
https://www.quora.com/Does-reading- Copying-and-Pasting=from-Stack= Overflow:mal

Zheng-Liang Lu Java Programming 238

https://stackoverflow.com/
https://www.oreilly.com/
https://www.quora.com/Does-reading-Copying-and-Pasting-from-Stack-Overflow-make-you-a-better-developer

Zheng-Liang Lu

Memory Layout

32

Memory 27-1

Stack

|
T

Heap

BSS (uninitialized)
Data (initialized)
Text (Code)

Java Programming

239

Exercise: Summation (Revisited)

Write a function to calculate the sum from 1 to n by recursion.

® For example,

sum(100) = 100 + sum(99)
= 100 + 99 + sum(98)
= 100 + 99 + 98 + sum(97)

=100+99+98 + --- + 1.

® Can you find the recurrence relation?

Zheng-Liang Lu Java Programming

240

© N AW N R

public static int sum(int n) {

if (n == 1)
return 1;
return n + sum(n - 1);

® Time complexity?

Zheng-Liang Lu

Java Programming

241

Exercise: Greatest Common Divisor (GCD)

Let a and b be two positive integers. Calculate GCD(a, b) by
recursion.

® We implement the Euclidean algorithm for GCD.13

® For example,

GCD(54,32) = GCD(32,22)
= GCD(22, 10)
= GCD(10,2)
=2.

3See https://en.wikipedia.org/wiki/Euclidean_algorithm.

Zheng-Liang Lu Java Programming 242

https://en.wikipedia.org/wiki/Euclidean_algorithm

© N O AW N

=
o

© W N AW N R

P el
w N = o

public static int gcd.-by.recursion(int a, int b) {

int r = a % b;
)

if (r ==
return b;
return gcd-by.recursion(b, r); // Straightforward?!

public static int gcd_by-loop (int a, int b) {

int r = a % b;
while (r > 0)

{

a b;
b = r;
r =a % b;

}

return b;

Zheng-Liang Lu Java Programming

243

Example: Fibonacci Sequence!

Let n be a nonnegative integer. Calculate the n-th Fibonacci
number F,.

® Set Fp =0and F = 1.

® For n > 1, the Fibonacci numbers follows the recurrence
relation

Fn: n—1+Fn—2-
® The first 10 numbers are 0,1,1,2,3,5,8,13,21, and 34.

1See https://www.mathsisfun.com /numbers/fibonacci-sequence.html and
https://en.wikipedia.org/wiki/Fibonacci_number.
Zheng-Liang Lu

Java Programming 244

https://www.mathsisfun.com/numbers/fibonacci-sequence.html
https://en.wikipedia.org/wiki/Fibonacci_number

© © N O U A W N R

[
= o

public static int fib(int n) {

if (n<2) {

return n;
} else {

return fib(n - 1) + fib(n - 2);
}

® Time complexity: O(2"). (Why!!!)
® This algorithm suffers from the performance issue.

® Assume that the modern CPU can finish 10° times of method
invocation per second.
® Then it takes 36.6 years for Fgp.'°

You could reproduce the number by calculating 2°°/(10%x 86400).

Zheng-Liang Lu Java Programming

245

fib(4)
17: return fib(4) ¢ 0: call fib(4)

return Fib(3) + fib(2)

10: return Fib(3) 11: call Fib(2)
ﬁ M@)

LI | r
return fib(2) + fib(1) return fib(1) + fib(0)

14: return Fib(0)

7: return Fib(2)

8:call fib(1) 13: return Fib(1)

2:call fib(2) 12: call fib(1)

—= 15: return fib(0)
return 1 return 1 return 0

return Fib(1) + Fib(0) 9: return fib(1)

4:return Fib(1)

S:call fib(0)
3:call fib(1)

6: return Fib(0)

return 1 return 0

e A binary tree with height level h has at most 2" — 1 nodes.
(Why?)

® The algorithm runs in O(2") time because its execution
counts grow like a binary tree.

e Can we do better by avoiding recomputaions?

Zheng-Liang Lu Java Programming 246

W NG W N

e i e
R W N = O ©

public static double fib2 (int n) {
if (n < 2) return n;

1;

int x = 0, y =
= 2; i <=n; i++) {

4
for (int i

int z = x + y;
X =Y
Yy = Z;

}

return y; // Why not z?

¢ The algorithm runs in O(n) time!

¢ Could you find the O(n)-time recursive one?

® In fact, this problem can be solved in O(log n) time!®

16See 509. Fibonacci Number of LeetCode.

Zheng-Liang Lu Java Programming

247

https://leetcode.com/problems/fibonacci-number/

Problem-Solving Skill: Divide & Conquer (DC)

® We often use the DC strategy to decompose the original
problem into several manageable subproblems.

® |t is also similar to do a study: narrow down to one doable
topic and solve it.

® This approach benefits the program development, say easier
to write, more possible to reuse, and better to facilitate
teamwork.

® One more thing to note is that one method should not
exceed, in principle, 20 lines of codes.}”

17See Clean Code.

Zheng-Liang Lu Java Programming 248

https://zh.wikipedia.org/wiki/Clean_Code

COMPUTATIONAL THINKING

DECOMPOSITION PATTERN
Breaking big problems RECOGNITION

into smaller, easier to
mange problems Analyze_ & look for a
repeating sequence

Step-by-Step
Remove parts instructions
of a problem that on how to
are unnecessary and do something
make one solution work

for multiple problems ALGORITHM
3 DESIGN

Zheng-Liang Lu Java Programming

Programming Concept: Abstraction

Abstraction provides an interface to application programmers
that separates policy from mechanism.

® Policy: what the interface commits to accomplishing.
® Mechanism: how the interface is implemented.

This process enables us to build large and complex systems.

Abstraction is everywhere, even in everyone's daily life.
You can find a lot of similar experiences about abstraction.
® For example, driving a car, writing Java programs.

Zheng-Liang Lu Java Programming

250

Example: Graphical User Interface (GUI)

® You probably have no idea about electromagnetism and
communication systems.

® However, you know how to make a phone call because you are
familiar to its user interface!

Zheng-Liang Lu Java Programming

251

Conclusions

Methods are control abstractions while data structures are
data abstractions.

We can treat the notion of objects as a way to combine data
and control abstractions.

For example, try to enumerate the data with its associated
controls in your cellphone.

® Data: phone book, photo album, music library, clips, etc.
® Controls? The buttons you can press in those apps.

We will start with the object-oriented programming (OOP)
paradigm in the next chapter.

Zheng-Liang Lu Java Programming 252

"Abstraction is selective ignorance.”

“We can solve any problem by introducing an extra level
of indirection.”

— Andrew Koenig (1952-)

“Being abstract is something profoundly different from be-
ing vague... The purpose of abstraction is not to be vague,
but to create a new semantic level in which one can be ab-
solutely precise.”

— Edsger Dijkstra (1930-2002)

Zheng-Liang Lu Java Programming

253

