
Java Programming

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Java 415
Summer 2024



1 class Lecture5 {
2

3 "Methods and Recursion"
4

5 }
6

7 // Keywords:
8 return, var

Zheng-Liang Lu Java Programming 214



Introduction

• Methods1 are used to define reusable codes, so that it could
organize and simplify your programs.

• The idea of methods originates from math, like

f (x , y),

where x and y are its two input parameters.

• Every parameter should be declared with one specific type.

• Every method needs one return type even if it has no return!

1As known as functions, procedures and subroutine.
Zheng-Liang Lu Java Programming 215



Example: max

• The method signature comprises its name and parameter list.

Zheng-Liang Lu Java Programming 216



Alternatives?

1 ...
2 public static int max(int num1, int num2) {
3

4 if (num1 > num2) {
5 return num1;
6 } else {
7 return num2;
8 }
9

10 }
11 ...

1 ...
2 public static int max(int num1, int num2) {
3

4 return num1 > num2 ? num1 : num2;
5

6 }
7 ...

Zheng-Liang Lu Java Programming 217



“All roads lead to Rome.”

– Anonymous

“但如你根本並無招式，敵人如何來破你的招式？”

– 風清揚 (笑傲江湖。第十回。傳劍)

Zheng-Liang Lu Java Programming 218



About the return Statement

• The return statement terminates the method.

• A caller invokes one method, called the callee.

• The caller and the callee should follow the method header,
like a contract.

• The caller provides the callee with adequate inputs and
receives one return value from the callee (or none if the return
type is void).

• Note that a method could have more than one return
statement.

Zheng-Liang Lu Java Programming 219



Pitfalls

1 ...
2 public static int foo1() {
3

4 while (true);
5 return 0; // Unreachable code.
6

7 }
8

9 public static int foo2(int x) {
10

11 if (x > 0)
12 return x; // What if x <= 0? Not allowed.
13

14 }
15 ...

• Stick to the contract!

Zheng-Liang Lu Java Programming 220



More Examples

1 ...
2 // Method w/o return.
3 public static void display(int[] A) {
4

5 for (int item : A)
6 System.out.printf("%d ", item);
7 System.out.println();
8

9 }
10

11 // Method returning array (reference)!
12 public static int[] arrayFactory(int size, int low, int high) {
13

14 int[] A = new int[size];
15 int numOfStates = high − low + 1;
16 for (int i = 0; i < A.length; i++)
17 A[i] = (int) (Math.random() * numOfStates) + low;
18 return A;
19

20 }
21 ...

Zheng-Liang Lu Java Programming 221



Method Invocation

• The formal parameters are sort of variables declared within
the method as placeholders.

• When invoking the method, the caller passes (copies) the
arguments to the callee, in order and compatible type.

• This is called passing by value.

Zheng-Liang Lu Java Programming 222



Zheng-Liang Lu Java Programming 223



• The JVM pushes a frame into the call stack2, which stores the
arguments and other necessary information for each method
invocation.

• Once the method reaches any return statement (or the
bottom of the method), the frame will be nullified and the
JVM returns to where the caller jumps from.

• It also implies that the memory space occupied by the frame
will be recycled for next method invocation.

• Note that the execution flow of method invocation is the
central concept of recursions.

2A data structure with the first-in-last-out (FILO) property is called a stack.
Zheng-Liang Lu Java Programming 224



Variable Scope

• A variable scope is the region where one variable is visible.

• A variable has one of the following three scopes: class level3,
(method) local level, and loop level4.

• As a local variable, any changes made inside the method does
not affect the original value.

• Note that one local variable can have its name identical to the
one of class level.

• This is called the shadow effect because we favor the local
one. (Why?)

3We will discuss about this kind later in the next chapter.
4We’ve discussed the loop variables in the chapter of flow control: Any

variable declared in the loop is invisible when the loop is finished.
Zheng-Liang Lu Java Programming 225



Example

1 public class ScopeDemo {
2

3 public static int x = 10; // Class level; global variable.
4

5 public static void main(String[] args) {
6

7 System.out.println(x); // Output 10.
8 int x = 100; // Method level, aka local variable.
9 x++;

10 System.out.println(x); // Output 101.
11 addOne();
12 System.out.println(x); // Output? Why?
13

14 }
15

16 public static void addOne() {
17

18 x = x + 1;
19 System.out.println(x); // Output?
20

21 }
22 }

Zheng-Liang Lu Java Programming 226



Local Variable Type Inference6

1 ...
2 var x = 100; // x will be an integer.
3 var y = "type inference"; // y will be a string.
4 var z = new ArrayList<>(); // z will be an ArrayList object.
5 ...

• Type inference is a compiler’s ability to automatically infer
unspecified data type parameters from contextual information.

• It allows us to write more concise Java code when it comes to
generics and lambda expression5.

• Note that this is applicable only for local variables.

5We will meet lambda expressions soon.
6Added in JDK 10. See Java 10 Local Variable Type Inference.

Zheng-Liang Lu Java Programming 227

https://developer.oracle.com/learn/technical-articles/jdk-10-local-variable-type-inference


Manual for Math Toolbox: Math Class

• The Math class provides basic math functions and two global
constants Math.PI and Math.E.

• Check out the official document for Math.7

• As you can see, its methods are all public and static.

• As a professional programmer, you should be capable to read
documents (manuals) to survive in the future!8

7See Math from Oracle’s official document.
8You may hear about RTFM: https://en.wikipedia.org/wiki/RTFM.

Zheng-Liang Lu Java Programming 228

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Math.html
https://en.wikipedia.org/wiki/RTFM


Method Overloading

• Naming conflict is allowed when methods with the same name
can be identified by method signatures.

1 ...
2 public static int max(int x, int y) { ... }
3

4 // Differ in types.
5 public static double max(double x, double y) { ... }
6

7 // Differ in numbers of inputs.
8 public static int max(int x, int y, int z) { ... }
9 ...

• Note that this mechanism does not relate to the return type.

Zheng-Liang Lu Java Programming 229



Special Issue: Variadic Functions9

1 ...
2 // You don’t have to do these below:
3 // public static int max(int n1, int n2) { /* Ignored */ }
4 // public static int max(int n1, int n2, int n3) { /* Ignored */ }
5

6 public static int max(int... nums) { /* Ignored */ }
7 // The above method definition is equivalent to
8 // public static int max(int[] nums) { /* Ignored */ }
9

10 public static void main(String[] args) {
11

12 int x = max(100, 200, 300);
13 int y = max(100, 200, 300, 400);
14

15 }
16 ...

• The ellipsis (...) allows the user to pass an arbitrary number
of arguments to the method.

9Since JDK5. It is one of syntactic sugars.
Zheng-Liang Lu Java Programming 230



The Entry Method: main(String[] args)

• You can start the program together with a series of strings.

• Those attached strings are stored in one String array as the
program parameters.

1 ...
2 public static void main(String... args) {
3

4 for (String arg : args)
5 System.out.println(arg);
6

7 }
8 ...

• In Eclipse, you may turn on the input dialog by adding
“${string prompt}“ as a program argument to JVM.

• You can also compile and run the program in the command
line interface (CLI).

Zheng-Liang Lu Java Programming 231



Recursion10

Recursion is a process of defining something in terms of itself.

• A method that calls itself in some way is recursive.

• Recursion is an alternative form of repetition without any
loop.

10Recursion is a commom pattern in nature.
Zheng-Liang Lu Java Programming 232

http://en.wikipedia.org/wiki/Recursion


Examples of Natural World

• Try Fractal.

Zheng-Liang Lu Java Programming 233

http://en.wikipedia.org/wiki/Fractal


Example: Factorial (Revisited)

Write a program to determine n! by recursion.

• For example,

4! = 4× 3× 2× 1 (in view of loops)

= 4× 3! (in view of recursion)

= 4× (3× 2!)

= 4× (3× (2× 1!))

= 4× (3× (2× (1× 0!)))

= 4× (3× (2× (1× 1)))

= 24.

• Find any recursive pattern?

Zheng-Liang Lu Java Programming 234



1 ...
2 public static int factorial(int n) {
3

4 if (n < 2)
5 return 1; // base case
6 else
7 return n * factorial(n − 1); // recurrence relation
8

9 }
10 ...

• Remember to set a base case in recursion. (Why?)

• What is the time complexity?

Zheng-Liang Lu Java Programming 235



Zheng-Liang Lu Java Programming 236



1 ...
2 int s = 1;
3 for (int i = n; i > 1; i−−) {
4 s *= i;
5 }
6 ...

• Both run in O(n) time.
• One intriguing question is, Can we always turn a recursive
method into a loop version of that?

• Affirmative.
• The Church-Turing Thesis11 implies that both are equivalent.

11See http://plato.stanford.edu/entries/church-turing/.
Zheng-Liang Lu Java Programming 237

http://plato.stanford.edu/entries/church-turing/


Remarks

• Recursion bears substantial overhead.

• So the recursive algorithm may execute a bit more slowly than
the iterative equivalent.

• Moreover, a deep recursion depletes the call stack, which is
limited, and causes the error StackOverflowError.12

12See https://stackoverflow.com/, https://www.oreilly.com/, and
https://www.quora.com/Does-reading-Copying-and-Pasting-from-Stack-Overflow-make-you-a-better-developer.

Zheng-Liang Lu Java Programming 238

https://stackoverflow.com/
https://www.oreilly.com/
https://www.quora.com/Does-reading-Copying-and-Pasting-from-Stack-Overflow-make-you-a-better-developer


Memory Layout

Zheng-Liang Lu Java Programming 239



Exercise: Summation (Revisited)

Write a function to calculate the sum from 1 to n by recursion.

• For example,

sum(100) = 100 + sum(99)

= 100 + 99 + sum(98)

= 100 + 99 + 98 + sum(97)

...

= 100 + 99 + 98 + · · ·+ 1.

• Can you find the recurrence relation?

Zheng-Liang Lu Java Programming 240



1 ...
2 public static int sum(int n) {
3

4 if (n == 1)
5 return 1;
6 return n + sum(n − 1);
7

8 }
9 ...

• Time complexity?

Zheng-Liang Lu Java Programming 241



Exercise: Greatest Common Divisor (GCD)

Let a and b be two positive integers. Calculate GCD(a, b) by
recursion.

• We implement the Euclidean algorithm for GCD.13

• For example,

GCD(54, 32) = GCD(32, 22)

= GCD(22, 10)

= GCD(10, 2)

= 2.

13See https://en.wikipedia.org/wiki/Euclidean algorithm.
Zheng-Liang Lu Java Programming 242

https://en.wikipedia.org/wiki/Euclidean_algorithm


1 ...
2 public static int gcd by recursion(int a, int b) {
3

4 int r = a % b;
5 if (r == 0)
6 return b;
7 return gcd by recursion(b, r); // Straightforward?!
8

9 }
10 ...

1 ...
2 public static int gcd by loop(int a, int b) {
3

4 int r = a % b;
5 while (r > 0) {
6 a = b;
7 b = r;
8 r = a % b;
9 }

10 return b;
11

12 }
13 ...

Zheng-Liang Lu Java Programming 243



Example: Fibonacci Sequence14

Let n be a nonnegative integer. Calculate the n-th Fibonacci
number Fn.

• Set F0 = 0 and F1 = 1.

• For n > 1, the Fibonacci numbers follows the recurrence
relation

Fn = Fn−1 + Fn−2.

• The first 10 numbers are 0, 1, 1, 2, 3, 5, 8, 13, 21, and 34.

14See https://www.mathsisfun.com/numbers/fibonacci-sequence.html and
https://en.wikipedia.org/wiki/Fibonacci number.

Zheng-Liang Lu Java Programming 244

https://www.mathsisfun.com/numbers/fibonacci-sequence.html
https://en.wikipedia.org/wiki/Fibonacci_number


1 ...
2 public static int fib(int n) {
3

4 if (n < 2) {
5 return n;
6 } else {
7 return fib(n − 1) + fib(n − 2);
8 }
9

10 }
11 ...

• Time complexity: O(2n). (Why!!!)
• This algorithm suffers from the performance issue.

• Assume that the modern CPU can finish 109 times of method
invocation per second.

• Then it takes 36.6 years for F60.
15

15You could reproduce the number by calculating 260/(109 × 86400).
Zheng-Liang Lu Java Programming 245



• A binary tree with height level h has at most 2h − 1 nodes.
(Why?)

• The algorithm runs in O(2n) time because its execution
counts grow like a binary tree.

• Can we do better by avoiding recomputaions?

Zheng-Liang Lu Java Programming 246



1 ...
2 public static double fib2(int n) {
3

4 if (n < 2) return n;
5

6 int x = 0, y = 1;
7 for (int i = 2; i <= n; i++) {
8 int z = x + y;
9 x = y;

10 y = z;
11 }
12 return y; // Why not z?
13

14 }
15 ...

• The algorithm runs in O(n) time!

• Could you find the O(n)-time recursive one?

• In fact, this problem can be solved in O(log n) time!16

16See 509. Fibonacci Number of LeetCode.
Zheng-Liang Lu Java Programming 247

https://leetcode.com/problems/fibonacci-number/


Problem-Solving Skill: Divide & Conquer (DC)

• We often use the DC strategy to decompose the original
problem into several manageable subproblems.

• It is also similar to do a study: narrow down to one doable
topic and solve it.

• This approach benefits the program development, say easier
to write, more possible to reuse, and better to facilitate
teamwork.

• One more thing to note is that one method should not
exceed, in principle, 20 lines of codes.17

17See Clean Code.
Zheng-Liang Lu Java Programming 248

https://zh.wikipedia.org/wiki/Clean_Code


Zheng-Liang Lu Java Programming 249



Programming Concept: Abstraction

• Abstraction provides an interface to application programmers
that separates policy from mechanism.

• Policy: what the interface commits to accomplishing.
• Mechanism: how the interface is implemented.

• This process enables us to build large and complex systems.

• Abstraction is everywhere, even in everyone’s daily life.
• You can find a lot of similar experiences about abstraction.

• For example, driving a car, writing Java programs.

Zheng-Liang Lu Java Programming 250



Example: Graphical User Interface (GUI)

• You probably have no idea about electromagnetism and
communication systems.

• However, you know how to make a phone call because you are
familiar to its user interface!

Zheng-Liang Lu Java Programming 251



Conclusions

• Methods are control abstractions while data structures are
data abstractions.

• We can treat the notion of objects as a way to combine data
and control abstractions.

• For example, try to enumerate the data with its associated
controls in your cellphone.

• Data: phone book, photo album, music library, clips, etc.
• Controls? The buttons you can press in those apps.

• We will start with the object-oriented programming (OOP)
paradigm in the next chapter.

Zheng-Liang Lu Java Programming 252



“Abstraction is selective ignorance.”

“We can solve any problem by introducing an extra level
of indirection.”

– Andrew Koenig (1952–)

“Being abstract is something profoundly different from be-
ing vague... The purpose of abstraction is not to be vague,
but to create a new semantic level in which one can be ab-
solutely precise.”

– Edsger Dijkstra (1930–2002)

Zheng-Liang Lu Java Programming 253


