Java Programming

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Java 415
Summer 2024

[I N R N

class Lecture4d {

"Arrays and More Data Structures"

Zheng-Liang Lu Java Programming

176

NI SR

Arrays

An array is an object which stores multiple values of the same
type.

// Assume that T is any type and the size is known.
T[] A = new T[size];

® We now proceed to explain Line 3 in two stages.

Zheng-Liang Lu Java Programming

177

Stage 1: Array Creation

We first focus on the RHS of Line 3.

® One array is allocated in the heap by invoking the new
operator followed by T and [] surrounding its size,

Then its starting address is returned and should be cached.

Note that the size cannot be changed after allocation.!

'What if the array is full?! Stay tuned.
Zheng-Liang Lu Java Programming 178

Stage 2: Reference

We then declare one variable, say A in this case, to store the
starting address of the array.

| strongly emphasize that A is not the array, but the reference
to the array!

To understand the type correctly, one should read the type
from right to left.

For example, A is the reference to an array whose elements
are of the T type.

Note that the array type is declared like T[] but without the
size.

Zheng-Liang Lu Java Programming

179

Zero-Based Array Indexing

We access any array element by using its index, which starts
from 0 but not 1.

Explicitly, the first element is A[0], followed by A[1], A[2],
and so on. (Why?)

So the last index of one array is size — 1.

When the index is out of range, the program will fail due to

the runtime exception ArraylndexOutOfBoundsException.

Zheng-Liang Lu Java Programming

180

Memory Allocation for Arrays

® An array is allocated contiguously in the memory.

® To fetch the second element, jump to the address stored by A
and shift by 1 unit size of T, denoted by A[1].

® For example,

int[] A = new int[3];

0x000abc26 0x000abc2a 0x000abc2e

Zheng-Liang Lu Java Programming

181

Zero-Based Array Indexing (Concluded)

® You now could explain why A[0] denotes the first array
element.

® Array index clearly acts as an offset from the starting address
of the array!

® |t is worth to mention that we can treat the whole memory as
an array, indeed.

® This convention is applicable commonly among the
mainstream languages!?> (Why?)

2For example, C, C++, Java, JavaScript, and even Python. However, to
the best of my knowledge, R and MATLAB manipulate arrays with the first
index starting from 1. So it is just an option between choosing 0 and 1.
Zheng-Liang Lu Java Programming

182

Array Initialization

® Every array is initialized implicitly once the array is created.

® Default values for different types are listed below:
® 0 for all numeric types;

\u0000 for char type;

false for boolean type;

null for all reference types.3

® An array can also be created by enumerating all elements
without using the new operator, for example,

int[] A = { 10, 20, 30 }; // sSyntax sugar.

w N =

3We will visit the keyword null in the chapter of OOP.
Zheng-Liang Lu Java Programming

183

Arrays & Loops

[We often use for loops to process array elements.

® Arrays have the attribute called length, which indicates the
array capacity.
® For example, A.length.

® So it is natural to use a for loop to manipulate arrays.

Zheng-Liang Lu Java Programming

184

O © ®W N O A WN

e i e =
a R W N =

Examples

// Create an integer array of size 5.
int[] A = new int[5];

// Generate 5 random integers ranging from 0 to 99.
for (int i = 0; i < A.length; ++i) {

A[i] = (int) (Math.random() =* 100);
}

// Display all elements of A: O(n).
for (int i = 0; i < A.length; ++i) {

System.out.printf ("sd ", A[i]);
}

System.out.println();

® To show all elements, you need to iterate over the array by

loops instead of simply printing A. (Why?)

Zheng-Liang Lu Java Programming

185

© o N O U A W N R

// Find maximum and minimum of A: O(n).
int max = A[OQ];
int min = A[O];
for (int i = 1; i < A.length; ++i) {
if (max < A[i]) max = A[i];
if (min > A[i]) min = A[i];

e How to find the locations of extreme values?*
® Can you find the 2nd maximum value in A?

® Can you track and maintain a record of the first kK maximum
values in A?

*See also Arguments of Maxima (argmax) and Arguments of Minima
(argmin).

Zheng-Liang Lu Java Programming

186

https://en.wikipedia.org/wiki/Arg_max
https://en.wikipedia.org/wiki/Arg_max

~N o R W N =

// Sum of A: O(n).

int sum = 0;

for (int i = 0; i < A.length; ++i) {
sum += A[i];

}

® Calculate the following descriptive statistics:
® the mean of A;
® the median® of A:
® the mode® of A.

®See https://en.wikipedia.org/wiki/Median.
8See https://en.wikipedia.org/wiki/Mode_(statistics}.

Zheng-Liang Lu Java Programming

187

https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Mode_(statistics)

o R W N

Alternative Way: for-each Loops

e A for-each loop is designed to iterate over a collection of

objects, such as arrays and other data structures, in strictly
sequential fashion, from start to finish.

Tl a={ ...}

for (T element : A) {
// Loop body.

}

Zheng-Liang Lu Java Programming

188

oA W N e

oG RA W N

Example

int s = 0;

for (int i = 0; i < A.length; ++i) {
s += A[i];

}

int s = 0;

for (int item : A) {
s += item;

® Short and sweet!

® You may consider using the for-each loop if you iterate over
all elements and the order of iteration is irrelevant.

Zheng-Liang Lu Java Programming

W N oA W N

Exercise

String[] letters = { wpM, mBM, wgm, owpw, wgw };

for (String letter: letters) {
System.out.printf ("%s ", letter);

System.out.println();

Zheng-Liang Lu Java Programming

190

More Examples (1/4): Cloning Arrays

® One might duplicate an array for some purpose, say a backup.

® For example,

© O N AW N R

—
= o

int x = 1;
int yv = x; // You can say that y copies the value of x.
x = 2;

System.out.println(y); // Output 1.

int[] A = { 10, ... }; // Ignore the rest of elements.
int[] B = A;
A[0] = 100;

System.out.println(B[0]); // Output?

® The result differs from our expectation. (Why?)

® This is called the shallow copy.

Zheng-Liang Lu Java Programming

[I N T

N N

® To clone an array, you should create a new array and use
loops to copy every element, one by one.

// Let A be an array to be copied.
int[] B = new int[A.length];

for (int i = 0; i < A.length; ++i) {
) B[i] = A[i];

® This is called the deep copy.

¢ Alternatively, you may use the method System.arraycopy()

for the same purpose.

// Assume that B is ready.
System.arraycopy (A, 0, B, 0, A.length);

Zheng-Liang Lu Java Programming

192

© o N oA W N R

e e =
w N = o

More Examples (2/4): Shuffle Algorithm

for (int i = 0; i < A.length; ++i) {

// Choose a randon integer j.
int j = (int) (Math.random() % A.length);

// Swap A[i] and A[7].
int tmp = A[i];

A[i] = A[J];

A[j] = tmp;

® However, this naive algorithm is fundamentally broken!”
® How to swap by using XOR (that is, A)?

See https://blog.codinghorror.com /the-danger-of-naivetey/.
Zheng-Liang Lu Java Programming

https://blog.codinghorror.com/the-danger-of-naivete/

Exercise

Write a program to deal the first 5 cards from a deck of 52
shuffled cards.

® As you can see, RNG produces only random numbers.
® How to shuffle nonnumerical objects?
e Simply label 52 cards by 0,1,...,51.

® Shuffle these numbers!

Zheng-Liang Lu Java Programming

194

© ® N oA W N R

NN N NN B H R R e R e e
A WN RO ®©®NO U A~ WN R O

String[] suits =
String[] ranks

—

n3w omgw oowgm owmgw owgw oowgw owgn,
llloll, an’ "Q", "K", "A", nomn };

int size = 52;

int[] deck = new int[size];

for (int i = 0; i < deck.length; i++)
deck[i] = 1i;

// Shuffle algorithm: correct version.

for (int i = 0; i < size - 1; i++) {
int j = (int) (Math.random() % (size - 1)) + 1i;
int z = deck[i];

deck[i] = deck[]];
deck[]j] = z;

for (int i = 0; i < 5; i++) {
String suit suits[deck[i] / 13];

String rank = ranks[deck[i] % 13];
System.out.printf ("$2s %-7s\n", rank, suit);

"Club", "Diamond", "Heart", "Spade" };

Zheng-Liang Lu Java Programming

195

More Examples (3/4): Sorting Problem

® |n computer science, a sorting algorithm is an algorithm that
puts elements of a list in a certain order.

® You may call Arrays.sort(A) to rearrange A in ascending
order, for example,

import java.util.Arrays;
int[] A= {5, 2, 8 };
Arrays.sort(A); // Becomes { 2, 5, 8 }.

String[] B = { "www", "csie", "ntu", "edu", "tw" };
Arrays.sort (B); // Result?

® Note that we sort strings in lexicographical (dictionary) order
for most cases.

Zheng-Liang Lu Java Programming

196

© o N oA W N R

e i e =
g R W N = O

Exercise: Bubble Sort

// Bubble sort: O(n "~ 2).
boolean swapped;
do {

swapped = false;

for (int 1 = 0; i < A.length - 1; i++) {

if (A[i] > A[i + 1]) {
int tmp = A[i];
A[i] = A[1 + 1];
Ali + 1] = tmp;
swapped = true;

}

} while (swapped);

® Try to implement selection sort and insertion sort.®

8See https://visualgo.net/en/sorting.

Zheng-Liang Lu Java Programming

https://en.wikipedia.org/wiki/Selection_sort
https://en.wikipedia.org/wiki/Insertion_sort
https://visualgo.net/en/sorting

More Examples (4/4): Searching Problem

® |t is often to query one key for its corresponding value.

® For example, the program plans to find one client’s credit card
number.

® In this case, the client name is the query key and his/her
credit card number is the value associated.

Zheng-Liang Lu Java Programming

198

© N O U A W N R

e
N = O

Solution 1: Linear Search

® |inear search compares the query key with all elements in
sequential order.

// Linear search: O(n).
int[] a=4{ ... };

int founds = 0;
for (int i = 0; i < A.length; i++) {
if (A[i] == key) {
System.out.printf ("sd ", 1i);
founds++;
}
}
System.out.println("\nFounds: " + founds);

® Could we do better?

Zheng-Liang Lu Java Programming

199

Solution 2: Binary Search (Revisited)

keyis 11 Tow mid high
Y Y Y
key <50 (0] (1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
list [2 4 7 10 11 45 50 59 60 66 69 70 79|

Tow mid high

Y Y Y

(0] (1] [2] [3] [4] [5]
key > 7 list (2 4 7 10 11 45

Jow mid high

RN A
(31 4 [5]
key ==11 list 10 11 45

Zheng-Liang Lu Java Programming

200

0 NG W N

e e e e =
W N OO~ W N O ©

int idx = -1; // Why?
int high = A.length - 1, low = 0, mid;
while (high > low && idx < 0) {
mid = low + (high - low) / 2; // Why?
if (A[mid] < key)
low = mid + 1;
else if (A[mid] > key)
high = mid - 1;
else
idx = mid;

}

if (idx > -1)

System.out.printf ("%d: %d\n", key, idx);
else

System.out.printf ("%d: not found\n", key);

® |t can be shown that binary search runs in O(log n) time.

® However, binary search works only for ordered data!

Zheng-Liang Lu Java Programming

201

Discussions

’ Scenario / Operation ‘ Insert ‘ Search ‘
Immutable unsorted array | N/A O(n)

Immutable sorted array N/A | O(logn)
Mutable unsorted array | O(1)* O(n)

Mutable sorted array O(n) | O(logn)

*: insert by attaching behind the array.

Assume that the data is immutable (unchangeable).

We sort the data once for all and the binary search works well.
What if the data may be changed all the time?

Is it possible to make it run in O(1) time for both operations?®

%See https://en.wikipedia.org/wiki/Hash _table.

Zheng-Liang Lu Java Programming

https://en.wikipedia.org/wiki/Hash_table

Short Introduction to Data Structures

A data structure is a particular way of organizing data in a
program so that it can perform efficiently.10

The choice for data structures depends on applications.

As an alternative to arrays, linked lists'! are used to store

data in the way different from arrays.

You will see plenty of data structures in the future.®
® For example, trees, graphs, tables, and more.

2

You could also find a huge number of questions about data
structures on LeetCode.

0GSee http://bigocheatsheet.com/.
See https://en.wikipedia.org/wiki/Linked_list.

12Gee Introduction to Collections by Oracle and Java Collections Framework
from Wikipedia.

Zheng-Liang Lu Java Programming

203

https://leetcode.com/
http://bigocheatsheet.com/
https://en.wikipedia.org/wiki/Linked_list
https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://en.wikipedia.org/wiki/Java_collections_framework

Beyond 1D Arrays

2D or higher dimensional arrays are widely used in various
applications.

® For example, RGB images are stored as 3D arrays.

We can create 2D T-type arrays simply by adding one more | |
with its size.

For example,

4; // Row size.
3; // Column size.

int rows
int cols

E N

T[][] M = new T[rows] [cols];

It is similar to create 3D or higher-dimensional arrays.

Zheng-Liang Lu

Java Programming

204

[01[11[2][3][4] [01[11[2][3][4] [01r11r21]

[0]|0]0O|0O|0O]|O [0][0]0O|0]|0O]|O [o]{1]2](3

[1]]0]0|0]|0O]|O [1]]0]0]0]|0]|O0 [1]1]4]5]|6

[2]]{0]0|0]|0O]|O [2]1]0]7]0]0]0 [2]1]17]18]9

[31]0]0|0]0O]|O [31/]0]0]0]|0]0 [3]]10]11|12

[4]|0]O0fO|0O]O [4]1|{0]0f0O|0O]|O int[1[] array = {
{1, 2, 3},

matrix = new int[5][5]; matrix[2][1] = 7; {4, 5, 6},
{7! 8' 9},
{10, 11, 12}

};
(a) (b) (c)

Zheng-Liang Lu Java Programming

Memory Allocation for 2D Arrays

~ /|x[0] [01|x[01r11|xro1r21 x[O][3]| x[0].Tength s 4
x[0]
x[1] ////"x[l][m‘x[u [1]|x[1][2]‘x[1][3]‘ x[1].lengthis 4

x[2] I

jx[z][o]‘x[Z][1]|x[2][2]‘x[2][3]‘ x[2].Tengthis 4

x.lengthis 3

intl10) trisnglearray = {
2eaash
%i’ i — [3]4]5

"’ 4

Zheng-Liang Lu Java Programming 206

© N AW N R

R e e e =
N o 0~ W N H O

Example: 2D Arrays & Loops!3

int[1(]1 & ={ { 10, 20, 30 }, { 40, 50 }, { 60 } };

// Conventional for loop.
for (int i = 0; i < A.length; i++) {
for (int j = 0; J < A[i].length; Jj++)
System.out.printf ("$3d", A[i]l[]]);
System.out.println();

}

// For—each loop.
for (int[] row : A) {
for (int item : row)
System.out.printf ("$3d", item);
System.out.println();

3Thanks to a lively discussion on January 31, 2016.
Zheng-Liang Lu Java Programming

207

Exercise: Matrix Multiplication

Let Apmxn and Bxg be two matrices for m, n,q € N. Write
a program to calculate C = AB.

® Let aj and by; be elements of A and B, respectively.

® For k=1,2,...,n, use the formula

n
Cij = E a,-kbkj
k=1

fori=1,2,...,mandforj=1,2,...,q.
® Following the formula, it takes O(n%) time. (Why?)

Zheng-Liang Lu Java Programming

208

© o N O U A W N R

e e e
g R W N = O

Digression: ArrayList

int[] A = new int[3]; // The size should be known in advd

A[0] = 100;

A[l] = 200;

A[2] = 300;

for (int item : A)
System.out.printf ("%d ", item);

System.out.println();

ArrayList<Integer> B = new ArrayList<>();
B.add (100);
B.add (200);
B.add (300) ;
System.out.println(B); // Short and sweet!

// Size?

Zheng-Liang Lu Java Programming

nce.

209

Arrays are the simplest form of data structures but not
convenient to use.

For example, resizing arrays can be costly when you frequently
move data to a newly created, larger array. (Why?)

So it is advisable to use ArrayList<E>, where E is the type
parameter.

Using angle brackets < - > in Java is called the generics
starting from JDK5 in 2004.

Zheng-Liang Lu Java Programming 210

Digression: Generics

® Generics are widely used in data structures, like Stack<T>,
Map<K, V>, Graph<V, E>, etc.}

® To use ArrayList<E> correctly, we need to replace E with
Integer, which is the wrapper class® for int values.

® Be aware that only reference types can substitute the type
parameters.

® This technique is also utilized in C++4 and C#.

1See also Generics by Orcale. Stay-tuned-inJava—Programming2:
15See The Numbers Classes.

Zheng-Liang Lu Java Programming

211

https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/java/data/numberclasses.html

NG AW N

Case Study: Order Reversing

® How to rearrange an input array in reverse order?
® Let A be an integer array.

® The first attempt is to create another array with same size
and copy each element from A to B.

int[] A={1, 2, 3, 4, 5 };

int[] B = new int[A.length];

for (int i = 0; i < A.length; i++) {
B[A.length - 1 - i] = A[i];

}

A

= B; // Why?

Zheng-Liang Lu Java Programming

212

© 0 N O U A W N R

Another Attempt

int[] A ={1, 2, 3, 4, 5 };

for (int i = 0; i < A.length / 2; i++) {
int j = A.length - 1 - i;
int tmp = A[i];
Ali] = A[]J];

A[3j] = tmp;

] Approach \ Time Complexity \ Space Complexity ‘

1st attempt O(n) O(n)

2nd attempt O(n) 0(1)

® The second is better in both time!® and space.

® This is an in-place algorithm.

81t runs in only half time of the first attempt.
Zheng-Liang Lu Java Programming

213

