
Java Programming

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Java 405
Spring 2024



1 class Lecture8 {
2

3 "Exceptions and Exception Handling"
4

5 }
6

7 // Keywords:
8 try, catch, finally, throw, throws, assert

Zheng-Liang Lu Java Programming 364



Introduction

• An exception is to interrupt “normal” program flows.1

• For example, opening a non-existing file results in
FileNotFoundException.

• When the callee throws an exception object, this object
should be well-handled by the caller, by providing proper
exception handlers.

• In other words, a specific exception handler catches the
associated exception.

1Note that an exception should be a force majeure event.
Zheng-Liang Lu Java Programming 365



The Handling Block: try-catch-finally

• Now we proceed to introduce the three components of
exception handlers: the try, catch, and finally blocks.

• First, wrap the normal operations which may throw exceptions
in the try block.

• We then write down the handlers for specific exceptions.2

• You may consider a multi-catch (using | to separate them).3

• Usually, we put the super-type Exception in the last catch
clause to catch the exceptional exceptions.

• Java provides the finally block, which is always executed when
the try block exits.

• This block is mainly used for cleanup, say closing a file.

2Try to handle each exception but not once at all.
3The grouped exceptions in the same catch clause should be siblings.

Zheng-Liang Lu Java Programming 366



1 import java.util.Scanner;
2 import java.util.InputMismatchException;
3

4 public class ExceptionDemo {
5

6 public static void main(String[] args) {
7

8 Scanner input = new Scanner(System.in);
9

10 try {
11 System.out.println("Enter an integer?");
12 int x = input.nextInt();
13 } catch (InputMismatchException e) {
14 System.out.println("Not an integer.");
15 } catch (Exception e) {
16 System.out.println("Unknown exception.");
17 } finally {
18 input.close();
19 System.out.println("Cleanup is done.");
20 }
21

22 System.out.println("End of program.");
23 }
24

25 }

Zheng-Liang Lu Java Programming 367



Exception Hierarchy4

• The topmost class of the exception hierarchy is Throwable.

• All Throwable subclasses are categorized into two groups:
unchecked exceptions and checked exceptions.

• Checked exceptions must be checked at compile time.
• For example, IOException and Exception.

• Unchecked exceptions are not forced by the compiler to either
handle or specify the exception.

• For example, RuntimeException.

4See Diagram of Exception Hierarchy.
Zheng-Liang Lu Java Programming 368

https://www.programcreek.com/2009/02/diagram-for-hierarchy-of-exception-classes/


Throwing Exceptions

• As a library maker, we disallow some user’s behaviors.

• Java provides the throwing mechanism by using throw
(issuing) and throws (translation).

1 public class Circle {
2

3 private double radius;
4

5 public Circle(double r) throws Exception {
6

7 if (r <= 0) throw new Exception("Invalid radius.");
8 radius = r;
9

10 }
11

12 }

Zheng-Liang Lu Java Programming 369



Customized Exceptions

• Use class inheritance to create our own exceptions.

1 public class InvalidRadiusException extends Exception {
2

3 public InvalidRadiusException(double r) {
4

5 super(String.valueOf(r));
6

7 }
8

9 }

Zheng-Liang Lu Java Programming 370



1 public class Circle {
2

3 private double radius;
4

5 public Circle(double r) throws InvalidRadiusException {
6

7 if (r <= 0) throw new InvalidRadiusException(r);
8 radius = r;
9

10 }
11

12 }

1 public class NewExceptionDemo {
2

3 public static void main(String[] args) {
4

5 try {
6 new Circle(−10);
7 } catch (InvalidRadiusException e) {
8 System.out.println(e); // Check the result!
9 }

10

11 }
12

13 }
Zheng-Liang Lu Java Programming 371



Assertion

• An assertion is a statement that enables you to test your
assumption about the program, as an internal check.

• Before running the program, add “-ea” to the VM arguments
so that these assertion statements can be tested.

1 public class AssertionDemo {
2

3 public static void main(String[] args) {
4

5 int x = 1;
6 assert("x is not equal to 2.", x == 2);
7 // AssertionError occurs!!
8 System.out.println("End of program.");
9

10 }
11

12 }

Zheng-Liang Lu Java Programming 372



Unit Test: JUnit

• Writing test codes is to automate the testing routine for
future changes.

• What works in the past should work after modification.5

• However, we should avoid writing test codes together with the
normal codes!

• In practice, you may use JUnit6 to write test cases for your
project.

5See also Test-Driven Development (TDD).
6See https://junit.org/.

Zheng-Liang Lu Java Programming 373

https://en.wikipedia.org/wiki/Test-driven_development
https://junit.org/


Fin.

Zheng-Liang Lu Java Programming 374


