
Java Programming

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Java 405
Spring 2024



1 class Lecture6 {
2

3 // Object−Oriented Programming (OOP)
4

5 }
6

7 // Keywords:
8 class, new, this, static, null, extends, super, final, abstract,
9 interface, implements, protected, package, import, enum

Zheng-Liang Lu Java Programming 254



Object & Class

• An object is an entity to maintain its own states in fields1 and
provide accessory methods (or actions) on fields.

• To create objects of this type, we define a new class as
follows:

• designate a name with the first letter capitalized;
• declare data and function members in the class body.

• Note that a class is one way to create reference types.2

• In this sense, defining a new class is to define a new type!
• You are building a new world!

1It is also called attributes, properties, and whatsoever.
2For example, we will visit more reference types, like interface and enum.

Zheng-Liang Lu Java Programming 255



Example: Points

• For any 2D point, the class could look like the code snippet
below:

1 public class Point {
2

3 // Data members.
4 double x, y;
5

6 }

• Then we manipulate two points in another class, shown in the
next page.

Zheng-Liang Lu Java Programming 256



1 public class PointDemo {
2

3 public static void main(String[] args) {
4

5 Point p1 = new Point();
6 p1.x = 10;
7 p1.y = 20;
8

9 Point p2 = new Point();
10 p2.x = 30;
11 p2.y = 40;
12

13 System.out.printf("(%.2f, %.2f)\n", p1.x, p1.y);
14 System.out.printf("(%.2f, %.2f)\n", p2.x, p2.y);
15

16 }
17

18 }

• Could you draw the current state of memory allocation when
the program reaches Line 15?

Zheng-Liang Lu Java Programming 257



Encapsulation

• Each member may have an access modifier, say public and
private.

• public: accessible by all classes.
• private: accessible only within its own class.

• In OOP practice, the internals like data members should be
isolated from the outside world.

• So all fields should be declared private.
• Note that the private modifier does not guarantee any
information security.3

• What private is good for maintainability and modularity.4

3Thanks to a lively discussion on January 23, 2017.
4Read this article Are private members really more ”secure” in Java?

Zheng-Liang Lu Java Programming 258

https://stackoverflow.com/questions/9201603/are-private-members-really-more-secure-in-java


• We then expose the public methods which perform actions on
these fields, if necessary.

• For example,
• getters: return one specific field.
• setters: assign new value to the field.

• For example, getX() and getY() are the getters; setX() and
setY() are the setters of the Point class.

Zheng-Liang Lu Java Programming 259



Example: Point (Encapsulated)

1 public class Point {
2

3 // Data members: fields or attributes
4 private double x, y;
5

6 // Function members: methods
7 public double getX() { return x; }
8 public double getY() { return y; }
9 public void setX(double a) { x = a; }

10 public void setY(double b) { y = b; }
11

12 }

Zheng-Liang Lu Java Programming 260



Constructors

• To create an object of the type, its constructor is invoked by
the new operator.

• You can define constructors with parameters if necessary.
• For example, one can initialize the object during the creation.

• Note that a constructor has its name identical to the class
name and has no return type. (Why?)

• If you don’t define any explicit constructor, Java assumes a
default constructor for you.

• Adding any explicit constructor disables it but you can recover
it by youself.

Zheng-Liang Lu Java Programming 261



Parameterized Constructors: Example

1 public class Point {
2 ...
3 // Default constructor
4 public Point() {
5 // Do something in common.
6 }
7

8 // Parameterized constructor
9 public Point(double a, double b) {

10 x = a;
11 y = b;
12 }
13 ...
14 }

• You can initialize an object when the object is allocated.

Zheng-Liang Lu Java Programming 262



Self Reference: this

• You can refer to any (instance) member of the current object
by using this, within its (instance) methods and constructors.

• The most common situation to use this is that a field is
shadowed by method parameters.

• It is a direct result of the shadow effect.

• You can also use this to call another constructor of the class,
say this() calling the default constructor, if existing.

Zheng-Liang Lu Java Programming 263



Example: Point (Revisited)

1 public class Point {
2 ...
3 public Point(double x, double y) {
4

5 this.x = x;
6 this.y = y;
7

8 }
9 ...

10 }

• However, the this operator cannot be used in static methods.

Zheng-Liang Lu Java Programming 264



Instance Members v.s. Static Members

• Before this lecture, every method is declared with static.
• For example, the first static method is the main method.

• Notice that all members of the class are declared without
static since we start this lecture.

• These members are called instance members, available only
after one object is created.

• Semantically, each object has its own states, associated with
the accessory methods applying on.

• For example, getX() could be invoked and return the x value
for some specific Point object.

• In other words, you cannot invoke getX() without an existing
Point object.

Zheng-Liang Lu Java Programming 265



Instance Members v.s. Static Members

• A static variable occupies only one space, shared among the
class and its objects.

• You can refer to these static members by calling the class
name in absence of any instance.

• For example, Math.PI.

• In particular, static methods perform algorithms.
• For example, Math.random() and Arrays.sort().

• However, static methods cannot access to instance members
directly. (Why?)

• You may try static initialization blocks.5

5See https://docs.oracle.com/javase/tutorial/java/javaOO/initial.html.
Zheng-Liang Lu Java Programming 266

https://docs.oracle.com/javase/tutorial/java/javaOO/initial.html


Example: Distance Between Points (1/2)

1 public class Point {
2

3 /* Ignore the previous part. */
4

5 public double getDistanceFrom(Point that) {
6 return Math.sqrt(Math.pow(this.x − that.x, 2)
7 + Math.pow(this.y − that.y, 2));
8 }
9

10 public static double measure(Point first, Point second) {
11 return Math.sqrt(Math.pow(first.x − second.x, 2)
12 + Math.pow(first.y − second.y, 2));
13

14 }
15

16 }

• Note that you cannot use this in static context.

Zheng-Liang Lu Java Programming 267



Example: Distance Between Points (2/2)

1 public class PointDemo {
2

3 public static void main(String[] args) {
4

5 /* Ignore the previous part. */
6 System.out.println(p1.getDistanceFrom(p2));
7 System.out.println(Point.measure(p1, p2));
8

9 }
10 }

• Both methods produce the same result.
• It concludes that

• if the object keeps its own states, then declare non-static
variables for those;

• one can deal with data with both static or non-static methods.

Zheng-Liang Lu Java Programming 268



Digression: Design Patterns

• Design patterns are a collection of general reusable solutions
to a commonly occurring problem in software design.6

• These patterns fulfill experience reuse instead of code reuse.

• To my personal experience, OOP syntax is structural skeleton;
design patterns are flesh and blood.

• If you wonder why we need OOP and how to exploit it, I
suggest that you could follow any textbook7 or studying
materials for design patterns.

6Gamma et al. (1994).
7For example, Freeman and Robson (2020): Head First Design Patterns.

Zheng-Liang Lu Java Programming 269

https://www.oreilly.com/library/view/head-first-design/0596007124/


Example: Singleton Pattern

• For some situations, you need only one object of this type in
the system.

1 public class Singleton {
2

3 // Do not allow to invoke the constructor by others.
4 private Singleton() { }
5

6 // Will be ready as soon as the class is loaded.
7 private static Singleton instance = new Singleton();
8

9 // Only way to obtain this singleton by the outside world.
10 public static Singleton getInstance() {
11 return instance;
12 }
13

14 }

Zheng-Liang Lu Java Programming 270



Object Elimination: Garbage Collection (GC)8

• JVM handles object deallocation by one daemon thread called
GC.

• GC reclaims the memory space occud by the objects which are
no longer being used (referenced) by the application.

• To make the object unreferenced, simply assign null to the
reference variable.

• You can invoke System.gc() to execute a deallocation
procedure.

• However, frequent invocation of GC is time-consuming.

8See Java Garbage Collection Basics.
Zheng-Liang Lu Java Programming 271

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html


Design Tool: Unified Modeling Language (UML)10

• We could conduct one object-oriented analysis and design by
using UML which specifies, visualizes, constructs, and
documents the artifacts of software systems and business
modeling.9

9You could try some UML softwares, say StarUML.
10See Design and UML Class Diagrams.

Zheng-Liang Lu Java Programming 272

http://staruml.io/
https://courses.cs.washington.edu/courses/cse403/11sp/lectures/lecture08-uml1.pdf


Photo credit: screenshot from http://staruml.io/.

Zheng-Liang Lu Java Programming 273

http://staruml.io/


Example: Class Diagram

• + refers to public.

• − refers to private.

Zheng-Liang Lu Java Programming 274



HAS-A Relationship

• Association is a weak relationship where all objects have their
own lifetime and there is no ownership.

• For example, teacher ↔ student; doctor ↔ patient.

• If A uses B, then it is an aggregation, stating that B exists
independently from A.

• For example, knight ↔ sword; company ↔ employee.

• If A owns B, then it is a composition, meaning that B has no
meaning or purpose in the system without A. (We will see this
later.)

• For example, house ↔ room.

Zheng-Liang Lu Java Programming 275



Example: Lines (Aggregation)

• +2: one Line object uses two Point objects.

Zheng-Liang Lu Java Programming 276



1 public class Line {
2

3 private Point head, tail;
4

5 public Line(Point p1, Point p2) {
6 head = p1;
7 tail = p2;
8 }
9

10 /* Ignore some methods. */
11

12 public double getLength() {
13 return head.getDistanceFrom(tail);
14 }
15

16 }

• In Line 13, we don’t reinvent the wheel if the Point class is
well-designed.

Zheng-Liang Lu Java Programming 277



1 public class LineDemo {
2

3 public static void main(String[] args) {
4

5 Point p1 = new Point(1, 2);
6 Point p2 = new Point(3, 4);
7 Line l = new Line(p1, p2);
8

9 ...
10

11 }
12

13 }

• Make sure that you can make a sketch of the memory
allocation for these three objects.

Zheng-Liang Lu Java Programming 278



Exercise: Circles

1 public class Circle {
2

3 private Point center;
4 private double radius;
5

6 public Circle(Point c, double r) {
7 center = c;
8 radius = r;
9 }

10

11 public double getArea() {
12 return radius * radius * Math.PI;
13 }
14

15 public boolean isOverlapped(Circle that) {
16 return this.radius + that.radius >
17 this.center.getDistanceFrom(that.center);
18 }
19

20 }

Zheng-Liang Lu Java Programming 279



First IS-A Relationship: Class Inheritance

• We can define new classes by inheriting states and behaviors
commonly used in predefined classes (aka prototypes).

• A class is a subclass of some class, which is called the
superclass, by using the extends keyword.

• For example,

1 // Superclass (or parent class)
2 class A {
3 void doAction() { } // A can run doAction().
4 }
5

6 // Subclass (or child class)
7 class B extends A { } // B can also run doAction().

• Note that Java allows single inheritance only.

Zheng-Liang Lu Java Programming 280



Example: Human & Dog

Photo credit: https://www.sunnyskyz.com/uploads/2016/12/nlf37-dog.jpg

Zheng-Liang Lu Java Programming 281

https://www.sunnyskyz.com/uploads/2016/12/nlf37-dog.jpg


Before Using Inheritance

1 public class Human {
2

3 public void eat() { }
4 public void exercise() { }
5 public void writeCode() { }
6

7 }

1 public class Dog {
2

3 public void eat() { }
4 public void exercise() { }
5 public void wagTail() { }
6

7 }

Zheng-Liang Lu Java Programming 282



After Using Inheritance

Animal

Human Dog

• Extract the part shared between Human and Dog to another
class, say Animal, as the superclass.

Zheng-Liang Lu Java Programming 283



1 public class Animal { // extends Object; implicitly.
2

3 public void eat() { }
4 public void exercise() { }
5

6 }

1 public class Human extends Animal {
2

3 public void writeCode() { }
4

5 }

1 public class Dog extends Animal {
2

3 public void wagTail() { }
4

5 }

Zheng-Liang Lu Java Programming 284



1 public class InheritanceDemo {
2

3 public static void main(String[] args) {
4

5 Human arthur = new Human();
6 arthur.eat(); // Arthur can eat.
7 arthur.exercise(); // Arthur can do exericse.
8 arthur.writeCode(); // Arthur can write code.
9 arthur.wagTail(); // Oops. Arthur has no tail.

10

11 Dog lucky = new Dog();
12 lucky.eat(); // Lucky can eat.
13 lucky.exercise(); // Lucky can do exercise.
14 lucky.writeCode(); // Oops. Lucky cannot write code.
15 lucky.wagTail(); // Lucky can wag its tail.
16

17 }
18

19 }

Zheng-Liang Lu Java Programming 285



Exercise: Add Cat to Animal Hierarchy11

https://cdn2.ettoday.net/images/2590/2590715.jpg

11See also https://en.wikipedia.org/wiki/Kneading (cats) and
https://petsmao.nownews.com/20170124-10587.

Zheng-Liang Lu Java Programming 286

https://cdn2.ettoday.net/images/2590/2590715.jpg
https://en.wikipedia.org/wiki/Kneading_(cats)
https://petsmao.nownews.com/20170124-10587


Animal

Human DogCat

1 public class Cat extends Animal {
2

3 public void makeBiscuits() { }
4

5 }

• You could add more kinds of animals by extending Animal!

• In this sense12, we succeed to reuse the code.

12This is not the whole story. Stay tuned.
Zheng-Liang Lu Java Programming 287



Constructor Chaining

• Once the constructor of the subclass is invoked, JVM will
invoke the constructor of its superclass, recursively.

• So you might think that there will be a whole chain of
constructors called, all the way back to the constructor of the
class Object, the topmost class in Java.

• In this sense, we could say that every class is an immediate or
a distant subclass of Object.

Zheng-Liang Lu Java Programming 288



Illustration for Class Hierarchy13

13See Fig. 3-1 in p. 113 of Evans and Flanagan.
Zheng-Liang Lu Java Programming 289



The super Operator

• Recall that this is used to refer to the object itself.

• You can use super to refer to (non-private) members of the
superclass.

• Note that super() can be used to invoke the constructor of its
superclass, just similar to this().

Zheng-Liang Lu Java Programming 290



Method Overriding

• A subclass is supposed to re-implement the methods inherited
from its superclass.14

1 class B extends A {
2

3 @Override
4 void doAction() { /* New impl. w/o changing API. */ }
5

6 }

• Use @Override, which is one of annotations15, to help check if
the overriding works.

• Note that you cannot override the static methods.

14The overridden method has the signature identical to the parent one with
the same return type. You cannot reduce its visibility, say from public to
private.

15See https://docs.oracle.com/javase/tutorial/java/annotations/.
Zheng-Liang Lu Java Programming 291

https://docs.oracle.com/javase/tutorial/java/annotations/


Conceptual Example

Zheng-Liang Lu Java Programming 292



Example: Animals

1 public class Human extends Animal {
2 ...
3 @Override
4 public void eat() {
5 System.out.println("Eating with chopsticks...");
6 }
7 ...
8 }

1 public class Dog extends Animal {
2 ...
3 @Override
4 public void eat() {
5 System.out.println("Eating on the ground...");
6 }
7 ...
8 }

Zheng-Liang Lu Java Programming 293



Example: Overriding toString()

• Object provides the method toString() which is deliberately
designed to be invoked by System.out.println()!

• It returns a hashcode for this object as default.16

• Override this method to output a customized string.

1 public class Point {
2 ...
3 @Override
4 public String toString() {
5 return "(" + x + ", " + y + ")";
6 }
7 ...
8 }

16See https://en.wikipedia.org/wiki/Java hashCode().
Zheng-Liang Lu Java Programming 294

https://en.wikipedia.org/wiki/Java_hashCode()


Example: List

1 import java.util.List;
2 import java.util.Arrays;
3

4 public class TestDemo {
5

6 public static void main(String[] args) {
7

8 List<String> lst = Arrays.asList("csie", "ntu", "tw");
9 System.out.println(lst); // Output [csie, ntu, tw].

10

11 }
12

13 }

• You may use Arrays.asList() to create a List17 object.

17See https://docs.oracle.com/javase/8/docs/api/java/util/List.html.
Zheng-Liang Lu Java Programming 295

https://docs.oracle.com/javase/8/docs/api/java/util/List.html


Subtype Polymorphism20

• The term polymorphism literally means “many forms.”

• One of OOP design rules is design by contract18: separate the
interface from implementations and program to abstraction,
not to implementation.19

• Subtype polymorphism fulfills this rule.
• How can a “single” interface be designed to accommodate
different implementations?

• Use the superclass of those types as the placeholder.

18Meyer (1986).
19See GoF (1994). The original statement is “program to interface, not to

implementation.”
20See also Java Polymorphism and its Types.

Zheng-Liang Lu Java Programming 296

http://www.javaworld.com/article/3033445/learn-java/java-101-polymorphism-in-java.html


Example: Animals (Revisited)

1 public class AnimalDemo { // before decoupling
2

3 public static void goDinner(Human someone) { someone.eat(); }
4

5 public static void main(String[] args) {
6

7 Human arthur = new Human();
8 goDinner(arthur);
9 Dog lucky = new Dog();

10 goDinner(lucky); // Oops!
11

12 }
13

14 }

• You cannot pass a dog to the method goDinner(). (Why?)

• Instead, you need to write another method for dogs.

• How to decouple this dependency?

Zheng-Liang Lu Java Programming 297



1 public class AnimalDemo { // after decoupling
2

3 public static void goDinner(Animal someone) { someone.eat(); }
4

5 public static void main(String[] args) {
6

7 Animal arthur = new Human();
8 goDinner(arthur);
9 Animal lucky = new Dog();

10 goDinner(lucky); // It works now!
11

12 }
13

14 }

• This example illustrates the analogy between the relationship
of toString() and println().

Zheng-Liang Lu Java Programming 298



Reflection: Big Picture of Why We Need OOP?21

• OOP is the solid foundation of modern (large-scale) software
design.

• In particular, great reuse mechanism and abstraction are
realized by these three concepts:

• encapsulation isolates the internals (private members) from the
externals, fulfilling the abstraction and providing the sufficient
accessibility (public methods);

• inheritance provides method overriding w/o changing method
headers (return type + signatures);

• polymorphism use superclass as a placeholder to manipulate
the implementations (subtype objects).

• We use PIE as the shorthand for these three concepts.

21See https://en.wikipedia.org/wiki/Programming paradigm
Zheng-Liang Lu Java Programming 299

https://en.wikipedia.org/wiki/Programming_paradigm


Zheng-Liang Lu Java Programming 300



• This leads to the production of frameworks22, which actually
do most of the job, leaving the (application) programmer only
with the job of customizing with business logic rules and
providing hooks into it.

• This greatly reduces programming time and makes feasible the
creation of larger and larger systems.

• In daily life, we often interact with objects at an abstract
level.

• We don’t need to know the details to use them effectively, say
using computers and cellphones, driving a car, and so on.

22See Spring Framework, especially Spring Boot for web applications. See
also Android SDK for mobile applications.

Zheng-Liang Lu Java Programming 301

https://spring.io/projects/spring-framework
https://spring.io/projects/spring-boot
https://developer.android.com/


Another Example

1 class Animal {
2 /* Ignore the previous part. */
3 void speak() { }
4 }
5

6 class Dog extends Animal {
7 @Override
8 void speak() { System.out.println("Woof! Woof!"); }
9 }

10

11 class Cat extends Animal {
12 @Override
13 void speak() { System.out.println("Meow˜"); }
14 }
15

16 class Bird extends Animal {
17 @Override
18 void speak() { System.out.println("Tweet!"); }
19 }

Zheng-Liang Lu Java Programming 302



1 public class PolymorphismDemo2 {
2

3 public static void main(String[] args) {
4

5 Animal[] animals = { new Dog(), new Cat(), new Bird() };
6

7 for (Animal animal: animals) {
8 animal.speak();
9 }

10

11 }
12

13 }

• Again, Animal is a placeholder for its three subclasses.

Zheng-Liang Lu Java Programming 303



Liskov Substitution Principle23

• For convenience, let U be a subtype of T.

• We manipulate objects (right-hand side) via references
(left-hand side)!

• Liskov states that T-type objects may be replaced with
U-type objects without altering any of the desirable properties
of T (correctness, task performed, etc.).

23See https://en.wikipedia.org/wiki/Liskov substitution principle.
Zheng-Liang Lu Java Programming 304

https://en.wikipedia.org/wiki/Liskov_substitution_principle


Casting

• Upcasting24 is to cast the U object/variable to the T variable.

1 U u1 = new U(); // Trivial.
2 T t1 = u1; // OK.
3 T t2 = new U(); // OK.

• Downcasting25 is to cast the T variable to a U variable.

1 U u2 = (U) t2; // OK, but dangerous. Why?
2 U u3 = new T(); // Error! Why?

24Widening conversion; back compatibility.
25Narrow conversion; forward advance.

Zheng-Liang Lu Java Programming 305



Solution: instanceof

• Upcasting is wanted and always allowed. (Why?)
• However, downcasting is not always possible even when you
use cast operators.

• In fact, type checking at compilation time becomes unsound if
any cast operator is applied. (Why?)

• ClassCastException is thrown for invalid casting or explicit
conversion.

• In particular, a T-type variable, acting as a placeholder, can
point to all siblings of U-type.

• We can use instanceof to check if the referenced object is
compatible with the target type at runtime.

Zheng-Liang Lu Java Programming 306



Example

A

B C

D E

F

• The class inheritance can be
represented by a digraph (directed
graph).

• For example, D is a subtype of A
and B, which are both reachable
from D on the digraph.

Zheng-Liang Lu Java Programming 307



1 class A { }
2 class B extends A { }
3 class C extends A { }
4 class D extends B { }
5 class E extends B { }
6 class F extends D { }
7

8 public class InstanceofDemo {
9

10 public static void main(String[] args) {
11

12 Object o = new D();
13

14 System.out.println(o instanceof A); // Output true.
15 System.out.println(o instanceof B); // Output true.
16 System.out.println(o instanceof C); // Output false.
17 System.out.println(o instanceof D); // Output true.
18 System.out.println(o instanceof E); // Output false.
19 System.out.println(o instanceof F); // Output false.
20

21 }
22

23 }

Zheng-Liang Lu Java Programming 308



Abstract Classes / Methods

• A method can be declared abstract without braces but ending
with a semicolon.

• When one class has one or more abstract methods, the class
itself must be declared abstract as well.26

• Typically, one abstract class sits at the top of one class
hierarchy, acting as an placeholder.

• No abstract class cannot be instantiated directly. (Why not?)

• When inheriting an abstract class, Eclipse (or any IDE) could
help you insert all abstract methods.

26You can also declare one abstract class which has no abstract method.
Zheng-Liang Lu Java Programming 309



Example

• In UML, abstract methods and classes are in italic.

• The method draw() and resize() can be implemented when
the specific shape is known.

Zheng-Liang Lu Java Programming 310



The final Keyword27

• A final variable is a variable which can be initialized once and
cannot be changed later.

• The compiler makes sure that you can do it only once.
• A final variable is often declared with static keyword and

treated as a constant, for example, Math.PI.

• A final method is a method which cannot be overridden by
subclasses.

• Make a method final if its implementation should be preserved.

• A class that is declared final cannot be inherited.
• For example, again, Math.

27In Java, the keyword const is reserved.
Zheng-Liang Lu Java Programming 311



Second IS-A Relationship: Interface Inheritance

• Objects of different types often work together without a
proper vertical relationship.28

• For example, consider Bird inherited from Animal and
Airplane inherited from Transportation.

• Both Bird and Airplane are able to fly in the sky, say by
calling the method fly().

• The Fly method should not be defined in each superclass.
(Why?)

28Recall that Java allows single inheritance between classes.
Zheng-Liang Lu Java Programming 312



• We want those flyable objects to go flying by calling one
single, uniform API, just like the way of Animal.

• Recall that Object is the superclass of everything.
• So, how about using Object as the placeholder?

• No good. (Why?)

• Clearly, we need an extra horizontal relationship: interface.

1 public interface Flyable {
2

3 void fly(); // Implicitly public and abstract.
4

5 }

Zheng-Liang Lu Java Programming 313



Object

Animal

Bird...

Transportation

Airplane ...

Flyable

Zheng-Liang Lu Java Programming 314



1 public class Animal { }

1 public class Bird extends Animal implements Flyable {
2

3 public void flyByFlappingWings() {
4 System.out.println("Flapping wings!");
5 }
6

7 @Override
8 public void fly() { flyByFlappingWings(); }
9

10 }

1 public class Transportation { }

1 public class Airplane extends Transportation implements Flyable {
2

3 public void flyByCastingMagic() {
4 System.out.println("@#!ˆ$%&#!$%@$");
5 }
6

7 @Override
8 public void fly() { flyByCastingMagic(); }
9

10 }
Zheng-Liang Lu Java Programming 315



https://i.imgur.com/y2bmNpz.jpg

Zheng-Liang Lu Java Programming 316



1 public class InterfaceDemo {
2

3 public static void main(String[] args) {
4

5 Bird owl = new Bird();
6 goFly(owl);
7

8 Airplane a380 = new Airplane();
9 goFly(a380);

10

11 }
12

13 public static void goFly(Flyable flyableObj) {
14

15 flyableObj.fly();
16

17 }
18

19 }

• Again, a single interface allows multiple implementations!

Zheng-Liang Lu Java Programming 317



A Deep Dive into Interfaces

• An interface defines behaviors for multiple types, acting like a
contract between objects and clients.

• It could have abstract methods so that it cannot be
instantiated (directly).

• Interfaces are also reference types, just like classes.

• Interfaces are stateless because they may not declare fields.

• A class can inherit multiple interfaces!

• Note that an interface can extend another interfaces, kike a
collection of contracts in some sense.

Zheng-Liang Lu Java Programming 318



• We conventionally names interfaces using nouns and
adjectives, often ending with “able.”

• For example, Runnable, Callable29, Serializable30, and
Comparable31.

• JDK8 introduces new features as follows:
• Declare final static non-blank fields and methods;
• Define default methods which are already implemented;
• Use functional interfaces for lambda expressions (anonymous

functions) which are widely used in the Stream framework.

29Runnable and Callable are related to Java multithreading.
30Used for an object which can be represented as a sequence of bytes. This

is called object serialization.
31Use to define the ordering among objects. This is widely utilized in Java

Collections, say sort and binary search.
Zheng-Liang Lu Java Programming 319



Which to Use? Interfaces or Abstract Classes

• Use abstract classes when you want to:
• share common code for a group of related classes, and
• declare non-static members such as properties and methods.

• Use interfaces for any of situations as follows:
• define a contract or a set of method signatures that classes

must adhere to;
• take advantage of multiple inheritance.

Zheng-Liang Lu Java Programming 320



Exercise: RPG

Zheng-Liang Lu Java Programming 321



• First, Wizard, SeaDragon, and Merchant are three of
Characters.

• In particular, Wizard fights with SeaDragon by invoking
attack().

• Wizard buys and sells stuffs with Merchant by invoking
buyAndSell().

• However, SeaDragon cannot buy and sell stuffs; Merchant
cannot attack others.

Zheng-Liang Lu Java Programming 322



Character

Wizard SeaDragonMerchant

CombatTrade

Zheng-Liang Lu Java Programming 323



1 abstract public class Character { }

1 public interface Combat {
2

3 void attack(Combat enemy);
4

5 }

1 public interface Trade {
2

3 void buyAndSell(Trade counterpart);
4

5 }

Zheng-Liang Lu Java Programming 324



1 public class Wizard extends Character implements Combat, Trade {
2

3 @Override
4 public void attack(Combat enemy) { }
5

6 @Override
7 public void buyAndSell(Trade counterpart) { }
8

9 }

1 public class SeaDragon extends Character implements Combat {
2

3 @Override
4 public void attack(Combat enemy) { }
5

6 }

1 public class Merchant extends Character implements Trade {
2

3 @Override
4 public void buyAndSell(Trade counterpart) { }
5

6 }

Zheng-Liang Lu Java Programming 325



HAS-A (Delegation) vs. IS-A (Inheritance)

• Class inheritance is a powerful way to achieve code reuse.

• However, class inheritance violates encapsulation!

• This is because a subclass depends on the implementation
details of its superclass for its proper function.

• To solve this issue, we favor delegation over inheritance.32

32GoF (1994); See also Item 18 in Bloch (2018).
Zheng-Liang Lu Java Programming 326



Delegation vs. Inheritance

• Class inheritance is a powerful way to achieve code reuse.

• However, class inheritance violates encapsulation!

• This is because a derived class depends on the implementation
details of its base class for its proper function.

• To solve this issue, we favor delegation over inheritance.33

33See GoF (1995); See also Item 18 in Bloch (2018).
Zheng-Liang Lu Java Programming 327



Example: Strategy Pattern34

34See Freeman and Robson (2020).
Zheng-Liang Lu Java Programming 328



1 interface FlyBehavior { void fly(); }
2 interface QuackBehavior { void quack(); }
3

4 class FlyWithWings implements FlyBehavior
5 {
6 public void fly() { /* ... */ }
7 }
8 class CannotFly implements FlyBehavior
9 {

10 public void fly() { /* ... */ }
11 }
12 class Silence implements QuackBehavior
13 {
14 public void quack() { /* ... */ }
15 }
16 class SimpleQuack implements QuackBehavior
17 {
18 public void quack() { /* ... */ }
19 }
20 class Squeak implements QuackBehavior
21 {
22 public void quack() { /* ... */ }
23 }

Zheng-Liang Lu Java Programming 329



1 class Duck {
2

3 private FlyBehavior flyBehavior;
4 private QuackBehavior quackBehavior;
5

6 public void setFlyBehavior(FlyBehavior flyBehavior) {
7 this.flyBehavior = flyBehavior;
8 }
9

10 public void setQuackBehavior(QuackBehavior quackBehavior) {
11 this.quackBehavior = quackBehavior;
12 }
13 public void performFly() {
14 flyBehavior.fly();
15 }
16 public void performQuack() {
17 quackBehavior.quack();
18 }
19 }

Zheng-Liang Lu Java Programming 330



1 class MalladDuck extends Duck { /* ... */ }
2 class RedHeadDuck extends Duck { /* ... */ }
3 class RubberDuck extends Duck { /* ... */ }
4 class DecoyDuck extends Duck { /* ... */ }
5

6 public class DuckDriver {
7

8 public static void processDuck(Duck duck) {
9 duck.performFly();

10 duck.performQuack();
11 }
12

13 public static void main(String[] args) {
14 Duck duck = new MalladDuck();
15 duck.setFlyBehavior(new FlyWithWings());
16 duck.setQuackBehavior(new SimpleQuack());
17 processDuck(duck);
18

19 duck.setFlyBehavior(new CannotFly()); // Injured duck.
20 processDuck(duck);
21 }
22 }

Zheng-Liang Lu Java Programming 331



Special Issue: Wrapper Classes

Zheng-Liang Lu Java Programming 332



Autoboxing and Unboxing of Primitives

• The Java compiler automatically wraps the primitives in
corresponding type, and unwraps them where appropriate.

1 ...
2 Integer i = 1; // Autoboxing.
3 Integer j = 2;
4 Integer k = i + 1; // Autounboxing and then autoboxing.
5

6 System.out.println(k); // Output 2.
7 System.out.println(k == j); // Output true.
8

9 Integer m = new Integer(i);
10 System.out.println(m == i); // Output false?
11 System.out.println(m.equals(i)); // Output true!?
12 ...

Zheng-Liang Lu Java Programming 333



Immutable Objects

• An object is considered immutable if its state cannot change
after it is constructed.

• Often used for value objects.

• Imagine that there is a pool for immutable objects.

• After the value object is first created, this value object is
reused if needed.

• This implies that another object is created when we operate
on the immutable object.

• Another example is String objects.35

• Using immutable objects is a good practice when it comes to
concurrent programming.36

35For you information, StringBuffer is the mutable version of String objects.
36See http://www.javapractices.com/topic/TopicAction.do?Id=29.

Zheng-Liang Lu Java Programming 334

http://www.javapractices.com/topic/TopicAction.do?Id=29


Zheng-Liang Lu Java Programming 335



1 ...
2 String str1 = "NTU";
3 String str2 = "ntu";
4

5 System.out.println("str1 = " + str1.toLowerCase());
6 System.out.println("str1 = " + str1);
7

8 str1 = str1.toLowerCase();
9 System.out.println("str1 = " + str1);

10 System.out.println(str1 == str2); // False?!
11 System.out.println(str1.equals(str2)); // True!
12 System.out.println(str1.intern() == str2); // True!!
13 ...

• You can use equals() to check if the text is identical to the
other.

• You may use intern() to check the String pool containing the
String object whose text is identical to the other.37

37See the Interning Pattern in GoF (1995).
Zheng-Liang Lu Java Programming 336



Special Issue: Enumeration

• An enum type is a special type for a set of predefined options.

• You can use a static method values() to enumerate all options.

• This mechanism enhances type safety and makes the source
code more readable!

Zheng-Liang Lu Java Programming 337



Example: Colors

1 public enum Color {
2

3 RED, BLUE, GREEN;
4

5 public static Color random() {
6

7 Color[] colors = values();
8 return colors[(int) (Math.random() * colors.length)];
9

10 }
11

12 }

• Color is indeed a subclass of Enum with three final and static
references to Color objects corresponding to the enumerated
values.

• We could also equip the enum type with static methods.

Zheng-Liang Lu Java Programming 338



1 public class EnumDemo {
2

3 public static void main(String[] args) {
4

5 Color crayon color = Color.RED;
6 Color tshirt color = Color.random();
7 System.out.println(crayon color == tshirt color);
8

9 }
10

11 }

Zheng-Liang Lu Java Programming 339



Exercise

1 public enum PowerState {
2

3 ON("The power is on."),
4 OFF("The power is off."),
5 SUSPEND("The power is low.");
6

7 private String status;
8 private PowerState(String msg) { status = msg; }
9

10 @Override
11 public String toString() { return msg; }
12

13 }

Zheng-Liang Lu Java Programming 340



1 public class PowerMachine {
2

3 private PowerState state = PowerState.OFF;
4

5 public PowerState getState() {
6 return state;
7 }
8

9 public void turnOn() {
10 state = PowerState.ON;
11 }
12

13 public void turnOff() {
14 state = PowerState.OFF;
15 }
16

17 public void sleep() {
18 state = PowerState.SUSPEND;
19 }
20

21 }

Zheng-Liang Lu Java Programming 341



1 public class PowerMachineDemo {
2

3 public static void main(String[] args) {
4

5 PowerMachine p = new PowerMachine();
6 System.out.println(p.getState());
7 p.turnOn();
8 System.out.println(p.getState());
9 p.sleep();

10 System.out.println(p.getState());
11 p.turnOff();
12

13 }
14

15 }

• Try to illustrate the memory allocation of this program.

Zheng-Liang Lu Java Programming 342



Discussion: What behind enum?

1 public enum Action { PLAY, WORK, SLEEP, EAT }

1 public class Action {
2

3 public final static Action PLAY = new Action("PLAY");
4 public final static Action WORK = new Action("WORK");
5 public final static Action SLEEP = new Action("SLEEP");
6 public final static Action EAT = new Action("EAT");
7

8 public static Action[] values() {
9 return new Action[] { PLAY, WORK, SLEEP, EAT };

10 }
11

12 private final String text;
13 private Action(String str) { text = str; }
14

15 // Some functionalities are not listed explicitly.
16 // Check java.lang.Enum.
17

18 }

Zheng-Liang Lu Java Programming 343



Special Issue: Packages, Imports, and Access Control

• The first statement, other than comments, in a Java source
file, must be a package declaration, if there exists.

• A package is a grouping of related types providing access
protection (shown below) and namespace management.

Scope \ Modifier private (package) protected public

Within the class ✓ ✓ ✓ ✓
Within the package x ✓ ✓ ✓
Inherited classes x x ✓ ✓
Out of package x x x ✓

Zheng-Liang Lu Java Programming 344



Example

1 package www.csie.ntu.edu.tw;
2

3 public class Util {
4

5 void doAction1() { }
6 public void doAction2() { }
7 protected void doAction3() { }
8 public static void doAction4() { }
9

10 }

• Use package to indicate the package the class belongs to.

• The package is implemented by folders.

Zheng-Liang Lu Java Programming 345



1 import www.csie.ntu.edu.tw.Greeting;
2

3 public class ImportDemo {
4

5 public static void main(String[] args) {
6

7 Util util = new Util();
8 util.doAction1(); // Error!
9 util.doAction2(); // OK!

10 util.doAction3(); // Error!!
11 Util.doAction4(); // OK!!
12

13 }
14

15 }

• As you can see, doAction1() is not visible. (Why?)

• Note that protected members are visible under inheritance,
even if separated in different packages.

Zheng-Liang Lu Java Programming 346



Example: More about Imports

1 import www.csie.ntu.edu.tw.*; // Import all classes.
2 import static www.csie.ntu.edu.tw.Util.doAction4;
3

4 public class GreetingDemo {
5

6 public static void main(String[] args) {
7

8 Util util = new Util();
9 util.doAction2(); // ok!

10 Util.doAction4(); // ok!!
11

12 doAction4(); // No need to indicate the class name.
13 }
14

15 }

• Use the wildcard (*) to import all classes within the package.

• We could also import static members in the package only.

Zheng-Liang Lu Java Programming 347



Special Issue: Nested Classes

• A nested class is a member of its enclosing class.

• Nesting classes increases encapsulation and also leads to more
readable and maintainable code.

• Especially, it is a good practice to seal classes which are only
used in one place.

Zheng-Liang Lu Java Programming 348



Family of Nested Classes

Nested Classes

Nested Classes w/o static

Inner Classes Method-Local Classes Anonymous Classes

Static Nested Classes

Zheng-Liang Lu Java Programming 349



Example: Stack by Linked List

Zheng-Liang Lu Java Programming 350



1 public class LinkedListStack {
2

3 private Node first; // Trait of linked list!
4

5 private class Node {
6 String item;
7 Node next;
8 }
9

10 public String pop() {
11 String item = first.item;
12 first = first.next; // Deja vu?
13 return item;
14 }
15

16 public void push(String item) {
17 oldfirst = first;
18 first = new Node();
19 first.item = item;
20 first.next = oldfirst;
21 }
22

23 }

Zheng-Liang Lu Java Programming 351



1 public class LinkedListStackDemo {
2

3 public static void main(String[] args) {
4

5 LinkedListStack langs = new LinkedListStack();
6 langs.push("Java");
7 langs.push("C++");
8 langs.push("Python");
9

10 System.out.println(langs.pop()); // Output Python.
11 System.out.println(langs.pop()); // Output C++.
12 System.out.println(langs.pop()); // Output Java.
13

14 }
15

16 }

• Note that the method push() and pop() run in O(1) time!

• The output shows the FILO (first-in last-out) property of
stack.

Zheng-Liang Lu Java Programming 352



Exercise: House & Rooms

Zheng-Liang Lu Java Programming 353



1 import java.util.ArrayList;
2

3 public class House {
4

5 private ArrayList<Room> rooms = new ArrayList<>();
6

7 private class Room {
8 String name;
9 @Override

10 public String toString() { return name; }
11 }
12

13 public void add(String name) {
14 Room room = new Room();
15 room.name = name;
16 rooms.add(room);
17 }
18

19 @Override
20 public String toString() { return rooms.toString(); }
21

22 }

Zheng-Liang Lu Java Programming 354



1 public class HouseDemo {
2

3 public static void main(String[] args) {
4

5 House home = new House();
6 home.add("Living room");
7 home.add("Bedroom");
8 home.add("Bathroom");
9 home.add("Kitchen");

10 home.add("Storeroom");
11

12 System.out.println(home);
13

14 }
15

16 }

Zheng-Liang Lu Java Programming 355



Anonymous Class

• Anonymous classes enable you to declare and instantiate the
class at the same time.

• They are like inner classes except that they don’t have a name.

• Use anonymous class if you need only one instance of the
inner class.

Zheng-Liang Lu Java Programming 356



Example: Button

1 abstract class Button {
2

3 abstract void onClicked();
4

5 }

1 public class AnonymousClassDemo1 {
2

3 public static void main(String[] args) {
4

5 Button btnOK = new Button() {
6 @Override
7 public void onClicked() { System.out.println("OK"); }
8 };
9

10 btnOK.onClicked();
11

12 }
13

14 }

Zheng-Liang Lu Java Programming 357



Exercise: Fly Again

1 public class AnonymousClassDemo2 {
2

3 public static void main(String[] args) {
4

5 Flyable butterfly = new Flyable() {
6 @Override
7 public void fly() { /* ... */ }
8 };
9

10 butterfly.fly();
11

12 }
13

14 }

• We can instantiate objects for one interface by using
anonymous classes.

Zheng-Liang Lu Java Programming 358



Special Issue: Iterator Patterns

• An iterator is the standard interface to enumerate elements of
the data structure in the for-each loop:

• One class implementing the interface Iterable should provide
the detail of the method iterator().

• The iterator() method should produce an iterator defined by
the interface Iterator, which has two unimplemented methods:
hasNext() and next().

• For example, you has a box containing 3 strings (shown next
page) and make it iterable.

• Then the box could be iterated in the for-each loop!

Zheng-Liang Lu Java Programming 359



Example

1 import java.util.Iterator;
2

3 class Box implements Iterable<String> {
4

5 String[] items = { "Java", "C++", "Python" };
6

7 public Iterator<String> iterator() {
8

9 return new Iterator<String>() {
10 private int ptr = 0;
11 public boolean hasNext() {
12 return ptr < items.length;
13 }
14 public String next() {
15 return items[ptr++];
16 }
17 }; // anonymous class
18

19 }
20 }

Zheng-Liang Lu Java Programming 360



1 public class IteratorDemo {
2

3 public static void main(String[] args) {
4

5 Box books = new Box();
6

7 // for−each loop
8 /*
9 for (String book : books) {

10 System.out.println(book);
11 }
12 */
13

14 Iterator iter = books.iterator();
15 while (iter.hasNext())
16 System.out.println(iter.next());
17

18 }
19

20 }

Zheng-Liang Lu Java Programming 361



Static Nested Class

• A static nested class is an enclosed class declared static.

• Note that only nested class can be static.

• As a static member, it can access to other static members
without instantiating the enclosing class.

• In particular, a static nested class can be instantiated directly,
without instantiating the enclosing class object first; it acts
like a minipackage.

Zheng-Liang Lu Java Programming 362



Example

1 public class StaticClassDemo {
2

3 public static class Greeting {
4

5 @Override
6 public String toString() {
7 return "This is a static class.";
8 }
9

10 }
11

12 public static void main(String[] args) {
13

14 System.out.println(new StaticClassDemo.Greeting());
15

16 }
17

18 }

Zheng-Liang Lu Java Programming 363


