
Java Programming

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Java 405
Spring 2024

1 class Lecture3 {
2

3 "Flow Controls: Branching & Repetition"
4

5 }
6

7 // Keywords:
8 if, else, switch, case, break, default, yield, while, do, for,
9 continue

Zheng-Liang Lu Java Programming 93

Flow Controls

• Most of statements are executed in sequential order.

• Programs can handle automatically with various situations
when the branching (selection) rules are known.

• Moreover, programs may repeat some actions if necessary.

• For example, recall how to find the largest number in the list?

Zheng-Liang Lu Java Programming 94

The if Branching Statement

1 ...
2 if (/* Condition: a boolean expression */) {
3 // Selection body: conditional statements.
4 }
5 ...

• If the condition is evaluated true, then the conditional
statements will be executed once.

• If false, then the selection body will be ignored.

• Note that the braces can be omitted when the body contains
only single statement.

Zheng-Liang Lu Java Programming 95

Zheng-Liang Lu Java Programming 96

Example: Circle Area (Revisited)

Write a program to receive a positive number as the circle
radius and calculate its circle area.

1 ...
2 if (r > 0) {
3 double A = r * r * 3.14;
4 System.out.println(A);
5 }
6 ...

• What if the false case?

Zheng-Liang Lu Java Programming 97

The if-else Statement

1 ...
2 if (/* Condition: a boolean expression */) {
3 // Conditional statements for the true case.
4 } else {
5 // Conditional statement for the false case.
6 }
7 ...

Zheng-Liang Lu Java Programming 98

Example: Circle Area (Revisited)

1 ...
2 if (r > 0) {
3 double A = r * r * 3.14;
4 System.out.println(A);
5 } else {
6 System.out.println("Not a circle.");
7 }
8 ...

Zheng-Liang Lu Java Programming 99

Nested Conditional Statements: Example

1 ...
2 if (score >= 90)
3 System.out.println("A");
4 else {
5 if (score >= 80)
6 System.out.println("B");
7 else {
8 if (score >= 70)
9 System.out.println("C");

10 else {
11 if (score >= 60)
12 System.out.println("D");
13 else
14 System.out.println("F");
15 }
16 }
17 }
18 ...

Zheng-Liang Lu Java Programming 100

A Preferred Alternative: Multiple Branches

1 ...
2 if (score >= 90)
3 System.out.println("A");
4 else if (score >= 80)
5 System.out.println("B");
6 else if (score >= 70)
7 System.out.println("C");
8 else if (score >= 60)
9 System.out.println("D");

10 else
11 System.out.println("F");
12 ...

• Avoid deep indentation to make your program easier to read!

• However, the order of conditions may be influential. (Why?)

• Furthermore, the runtime performance may degrade due to
the order of conditions. (Why?)

Zheng-Liang Lu Java Programming 101

Two Common Bugs

1 ...
2 if (r > 0);
3 double A = r * r * 3.14;
4 System.out.println(A);
5 ...

• Do not attach any semicolon to the condition (in Line 2).
• If the parenthesis is followed by the semicolon in Line 2, Line 3

becomes unconditional and will be always executed.

• Multiple conditional statements should be enclosed by braces.

Zheng-Liang Lu Java Programming 102

Example: Working with Uncertainty

Write a program which (1) shows a math question, say sum
of two random integers ranging from 0 to 9, (2) asks the user
to answer the question, and then (3) judges this input.

• For example, the monitor displays “2 + 5 =?”.

• If the user types 7, then the program reports “Correct.”

• Otherwise, it reports “Wrong. The answer is 7.”

• You can use Math.random() to generate random numbers.

Zheng-Liang Lu Java Programming 103

Digression: How to Generate Random Numbers?1

• Math.random() produces numbers between 0.0 and 1.0,
exclusive.

• To generate integers ranging from 0 to 9, it is clear that

(int) (Math.random() × 10),

because there are 10 possible states: 0, 1, 2,. . . , 9.

• In general, you could generate any integer between L and H
by using

(int) (Math.random() × (H − L + 1)) + L. (Why?)

1See https://en.wikipedia.org/wiki/Pseudorandom number generator.
Zheng-Liang Lu Java Programming 104

https://en.wikipedia.org/wiki/Pseudorandom_number_generator

1 ...
2 // (1) Generate two random integers.
3 int x = (int) (Math.random() * 10);
4 int y = (int) (Math.random() * 10);
5

6 // (2) Display the math question.
7 System.out.println(x + " + " + y + " = ?");
8

9 // (3) Ask the user to type his/her answer.
10 Scanner input = new Scanner(System.in);
11 int z = input.nextInt();
12 input.close();
13

14 // (4) Judge the input.
15 if (z == x + y) {
16 System.out.println("Correct.");
17 } else {
18 System.out.println("Wrong.");
19 System.out.println("It is " + (x + y) + ".");
20 }
21 ...

• Extend this program for all arithmetic operators (+−×÷).

Zheng-Liang Lu Java Programming 105

“Exploring the unknown requires tolerating uncertainty.”

– Brian Greene

“I can live with doubt, and uncertainty, and not knowing.
I think it is much more interesting to live not knowing than
have answers which might be wrong.”

– Richard Feynman

Zheng-Liang Lu Java Programming 106

Exercise

First generate 3 random integers ranging from −50 to 50,
inclusive. Then find the largest value of these integers.

• Recall the first algorithm example in our class.

Zheng-Liang Lu Java Programming 107

1 ...
2 int x = (int) (Math.random() * 101) − 50;
3 int y = (int) (Math.random() * 101) − 50;
4 int z = (int) (Math.random() * 101) − 50;
5

6 int max = x;
7 if (y > max) max = y;
8 if (z > max) max = z;
9 System.out.println("MAX = " + max);

10 ...

• However, this program is limited by the number of data.

• To develop a reusable solution, we need arrays and loops.

Zheng-Liang Lu Java Programming 108

The switch-case-break-default Statement

1 ...
2 switch (target) {
3 case v1:
4 // Conditional statements.
5 break; // Leaving (jump to Line 16).
6 case v2:
7 .
8 .
9 .

10 case vk:
11 // Conditional statements.
12 break; // Leaving (jump to Line 16).
13 default:
14 // Default statements.
15 }
16 ...

Zheng-Liang Lu Java Programming 109

• The variable target must be a value of char, byte, short, int,
or String type.

• The type of v1, . . ., and vk must be identical to target.

• A break statement should be necessary to leave the construct;
otherwise, there will be a fall-through behavior.

• The default case is used to perform default actions when none
of cases matches target.

• Like the else statements.

Zheng-Liang Lu Java Programming 110

Example
1 ...
2 String symbol = "XS";
3

4 int size;
5 switch (symbol) {
6 case "L":
7 size = 10;
8 break;
9 case "M":

10 size = 5;
11 break;
12 case "XS":
13 case "S": // "XS" and "S" share the same action.
14 size = 1;
15 break;
16 default:
17 size = 0;
18 }
19

20 System.out.println(size); // Output 1.
21 ...

Zheng-Liang Lu Java Programming 111

New Syntax (1/3): No More Breaks2

1 ...
2 String symbol = "XS";
3

4 int size;
5 switch (symbol) {
6 case "L" −> size = 10;
7 case "M" −> size = 5;
8 case "S", "XS" −> size = 1;
9 default −> size = 0;

10 }
11

12 System.out.println(size); // Output 1.
13 ...

2Since JDK12.
Zheng-Liang Lu Java Programming 112

New Syntax (2/3): Switch Expressions

1 ...
2 String symbol = "XS";
3

4 int size = switch (symbol) {
5 case "L" −> 10;
6 case "M" −> 5;
7 case "S", "XS" −> 1;
8 default −> 0;
9 };

10

11 System.out.println(size); // Output 1.
12 ...

• Like all expressions, switch expressions evaluate to a single
value and can be used in statements, say Line 4.

Zheng-Liang Lu Java Programming 113

New Syntax (3/3): yield

1 ...
2 String symbol = "XS";
3

4 int size = switch (symbol) {
5 case "L":
6 yield 10;
7 case "M":
8 yield 5;
9 case "S", "XS":

10 yield 1;
11 default:
12 yield 0;
13 };
14

15 System.out.println(size); // Output 1.
16 ...

Zheng-Liang Lu Java Programming 114

Conditional Operator: Example

1 ...
2 if (num1 > num2)
3 max = num1;
4 else
5 max = num2;
6

7 // The above statement is equivalent to the following:
8 max = num1 > num2 ? num1 : num2;
9 ...

• If num1 > num2, then execute max = num1 ; otherwise,

max = num2 .

Zheng-Liang Lu Java Programming 115

“We must all face the choice between what is right and
what is easy.”

– Prof. Albus Dumbledore,
Harry Potter and the Goblet of Fire, J.K. Rowling

“To be or not to be, that is the question.”

– Prince Hamlet, Hamlet, William Shakespeare

Zheng-Liang Lu Java Programming 116

Essence of Loops3

A loop is used to repeat statements.

• For example, output “Hello, Java.” for 100 times.

1 ...
2 System.out.println("Hello, Java.");
3 System.out.println("Hello, Java.");
4 .
5 . // Copy and paste for 97 times.
6 .
7 System.out.println("Hello, Java.");
8 ...

3Try Celebrating 50 Years of Kids Coding.
Zheng-Liang Lu Java Programming 117

https://www.google.com/doodles/celebrating-50-years-of-kids-coding

1 ...
2 int cnt = 0;
3 while (cnt < 100) {
4 System.out.println("Hello, Java.");
5 cnt++;
6 }
7 ...

• This is a toy example to show the power of loops.

• In practice, any routine which repeats couples of times, so
called patterns, can be done by wrapping them into a loop.

Zheng-Liang Lu Java Programming 118

成也迴圈，敗也迴圈

• Loops provide substantial computational power.

• Loops bring an efficient way of programming.

• However, loops could consume a lot of time.4

4You may check any algorithm textbook or course, say Algorithms Lab.
Zheng-Liang Lu Java Programming 119

https://hackmd.io/@arthurzllu/SkZBc7GoI

The while Loops

A while loop executes some statements repeatedly until the
condition is false.

1 ...
2 while (/* Condition: a boolean expression */) {
3 // Loop body.
4 }
5 ...

• If the condition is evaluated true, execute the loop body once
and re-check the condition.

• The loop no longer continues when the condition is evaluated
false.

Zheng-Liang Lu Java Programming 120

Zheng-Liang Lu Java Programming 121

Example: Summation

Write a program to sum up all integers from 1 to 100.

• In math,
sum = 1 + 2 + · · ·+ 100.

• One may doubt why not (1 + 100)× 100/2 ?

• The above formula is applicable to only arithmetic series!

• We don’t assume the data being an arithmetic series. (Why?)

• To get a general solution, we decompose this summation into
several statements, shown in the next page.

Zheng-Liang Lu Java Programming 122

1 ...
2 int sum = 0;
3 sum = sum + 1;
4 sum = sum + 2;
5 .
6 .
7 .
8 sum = sum + 100;
9 ...

• As you can see, there exist many similar statements and we
proceed to wrap them by using a while loop!

Zheng-Liang Lu Java Programming 123

1 ...
2 int sum = 0;
3 int i = 1;
4 while (i <= 100) {
5 sum = sum + i;
6 ++i;
7 }
8 ...

• Make sure that the loop terminates properly and outputs the
correct result.

• In practice, the number of iterations often depends on the
data size or the input parameter. (Why?)

Zheng-Liang Lu Java Programming 124

Lurked Bugs: Malfunctioned Loops

• It is easy to make an infinite loop: always true.

1 ...
2 while (true);
3 ...

• The common issues of writing loops are as follows:
• loops never start;
• loops never stop;
• loops do not finish the expected iterations.

Zheng-Liang Lu Java Programming 125

Example: Working with Uncertainty (Revisited)

Based on the previous program, allow the user to re-enter
answers repeatedly until correct.

1 ...
2 ...
3

4 while (z != x + y) {
5 System.out.println("Try again?");
6 z = input.nextInt();
7 }
8 System.out.println("Correct.");
9

10 ...
11 ...

Zheng-Liang Lu Java Programming 126

Loop Design Strategy

• Identify the statements that need to be repeated.

• Wrap those statements by a loop.

• Set a proper continuation condition.

Zheng-Liang Lu Java Programming 127

Indefinite Loops

Indefinite loops are the loops with unknown number of itera-
tions.

• It is also called the sentinel-controlled loops, whose sentinel
value is used to determine whether to execute the loop body.

• For example, the operating systems and the GUI apps.

Zheng-Liang Lu Java Programming 128

Example: Cashier

Write a program to (1) sum over positive integers from con-
secutive inputs until the first non-positive integer occurs and
(2) output the total value.

1 ...
2 int total = 0, price = 0;
3 Scanner input = new Scanner(System.in);
4

5 System.out.println("Enter price?");
6 price = input.nextInt();
7 while (price > 0) {
8 total += price;
9 System.out.println("Enter price?");

10 price = input.nextInt();
11 }
12

13 System.out.println("TOTAL = " + total);
14 input.close();
15 ...

Zheng-Liang Lu Java Programming 129

The do-while Loops

A do-while loop is similar to a while loop except that it first
executes the loop body and then checks the loop condition.

1 ...
2 do {
3 // Loop body.
4 } while (/* Condition: a boolean expression */);
5 ...

• Do not miss a semicolon at the end of do-while loops.

• The do-while loops are also called the posttest loops, in
contrast to the while loops, which are the pretest loops.

Zheng-Liang Lu Java Programming 130

Zheng-Liang Lu Java Programming 131

Example: Cashier (Revisited)

Write a program which sums over positive integers from con-
secutive inputs and then outputs the sum when the input is
nonpositive.

1 ...
2 int total = 0, price = 0;
3 Scanner input = new Scanner(System.in);
4

5 do {
6 total += price;
7 System.out.println("Enter price?");
8 price = input.nextInt();
9 } while (price > 0);

10

11 System.out.println("TOTAL = " + total);
12 input.close();
13 ...

Zheng-Liang Lu Java Programming 132

The for Loops

A for loop uses an integer counter to control how many times
the body is executed.

1 ...
2 for (initial−action; condition; increment) {
3 // Loop body.
4 }
5 ...

• initial-action: declare and initialize a counter.

• condition: check if the loop continues.

• increment: how the counter changes after each iteration.

Zheng-Liang Lu Java Programming 133

Example: Summation (Revisited)

Write a program to sum up the integers from 1 to 100.

1 ...
2 int sum = 0;
3 int i = 1;
4 while (i <= 100) {
5 sum = sum + i;
6 ++i;
7 }
8 ...

1 ...
2 int sum = 0;
3 for (int i = 1; i <= 100; ++i)
4 sum = sum + i;
5 ...

• Note that the initial action int i = 1 is executed only once.

• Make sure that you are clear with the execution flow of loops!

Zheng-Liang Lu Java Programming 134

Zheng-Liang Lu Java Programming 135

Example: Even Numbers

Show all even integers from 1 to 100.

1 ...
2 for (int i = 1; i <= 100; i++) { // Good?
3 if (i % 2 == 0)
4 System.out.println(i);
5 }
6 ...

1 ...
2 for (int i = 2; i <= 100; i += 2) { // Which is better?
3 System.out.println(i);
4 }
5 ...

Zheng-Liang Lu Java Programming 136

Exercises

• Calculate the factorial of nonnegative integer N.5

• For example, 10! = 3628800.

• Calculate xn with double value x and integer n.
• For example, 2.010 = 1024.0.

• Calculate the following summation

p = 4×
10000∑
i=0

(−1)i

2i + 1
.

• The result is around 3.14.
• Note that p → π as N → ∞.

5See https://en.wikipedia.org/wiki/Factorial.
Zheng-Liang Lu Java Programming 137

https://en.wikipedia.org/wiki/Factorial

Numerical Example: Monte Carlo Simulation6

• Write a program to estimate π.

• Let N be the total number of points and M be the number of
points falling in a quarter circle, illustrated in the next page.

• The algorithm states as follows:
• For each round, draw a point by invoking Math.random()

twice and check if the point falls in the quarter circle.
• If so, then do M++ ; otherwise, ignore it.
• Repeat the previous two steps for N rounds.

• Hence we can calculate the estimate

π̂ = 4× M

N
.

6See https://en.wikipedia.org/wiki/Monte Carlo method.
Zheng-Liang Lu Java Programming 138

https://en.wikipedia.org/wiki/Monte_Carlo_method

Zheng-Liang Lu Java Programming 139

1 ...
2 int N = 100000;
3 int M = 0;
4

5 for (int i = 1; i <= N; i++) {
6

7 double x = Math.random();
8 double y = Math.random();
9

10 if (x * x + y * y < 1) M++;
11

12 }
13

14 System.out.println("pi ˜ " + 4.0 * M / N);
15 // Why 4.0 but not 4?
16 ...

• Note that π̂ → π as N → ∞ by the law of large numbers
(LLN).7

• This algorithm is one example of Monte Carlo simulation.8

7See https://en.wikipedia.org/wiki/Law of large numbers.
8See https://en.wikipedia.org/wiki/Monte Carlo method.

Zheng-Liang Lu Java Programming 140

https://en.wikipedia.org/wiki/Law_of_large_numbers
https://en.wikipedia.org/wiki/Monte_Carlo_method

Numerical Example: Root Finding

• Consider to find the root for the polynomial x3 − x − 2.

• Choose a = 1 and b = 2 as initial guess.9

• By the bisection method10, divide the search interval into two
sub-intervals, and decide which sub-interval is the next search
interval.

• The algorithm will stop to output the approximate root when
it meets the preset error tolerance, say ε = 10−9. (Why?)

• This strikes a balance between efficiency and accuracy.

9For most of numerical algorithms, say Newton’s method, we need an initial
guess to start the root-finding procedure. Even more, the result is severely
sensitive to an initial guess.

10It is also called the binary search. See Bisection Method.
Zheng-Liang Lu Java Programming 141

https://en.wikipedia.org/wiki/Bisection_method

https://en.wikipedia.org/wiki/Bisection method#/media/File:Bisection method.svg

Zheng-Liang Lu Java Programming 142

1 ...
2 double a = 1, b = 2, c = 0, eps = 1e−9;
3

4 while (b − a > eps) {
5

6 c = (a + b) / 2; // Find the middle point.
7

8 double fa = a * a * a − a − 2;
9 double fc = c * c * c − c − 2;

10

11 if (fa * fc < 0) {
12 b = c;
13 } else {
14 a = c;
15 }
16

17 }
18

19 System.out.println("Root = " + c);
20 double residual = c * c * c − c − 2;
21 System.out.println("Residual = " + residual);
22 ...

Zheng-Liang Lu Java Programming 143

Jump Statements: Example

The statement break and continue are often used to provide
additional controls in repetition structures.

1 for (int i = 1; i <= 5; ++i) {
2

3 if (i == 3) {
4 break;
5 // Early termination.
6 }
7

8 System.out.println(i);
9 }

10 // Output: 1 2

1 for (int i = 1; i <= 5; ++i) {
2

3 if (i == 3) {
4 continue;
5 // Skip this round.
6 }
7

8 System.out.println(i);
9 }

10 // Output: 1 2 4 5

Zheng-Liang Lu Java Programming 144

Example: Primality Test11

Write a program to check if the input integer is a prime
number.

• Let x be any integer larger than 2.

• Then x is a prime number if x has no positive divisors other
than 1 and itself.

• It is straightforward to divide x by all integers from 2 to x − 1.

• To speed up, divide x by only integers smaller than
√
x

instead of x . (Why?)

11See https://en.wikipedia.org/wiki/Primality test.
Zheng-Liang Lu Java Programming 145

https://en.wikipedia.org/wiki/Primality_test

1 ...
2 Scanner input = new Scanner(System.in);
3 System.out.println("Enter x > 2?");
4 int x = input.nextInt();
5 boolean isPrime = true;
6 input.close();
7

8 for (int y = 2; y <= Math.sqrt(x); y++) {
9 if (x % y == 0) {

10 isPrime = false;
11 break;
12 }
13 }
14

15 if (isPrime) {
16 System.out.println("Prime");
17 } else {
18 System.out.println("Composite");
19 }
20 ...

Zheng-Liang Lu Java Programming 146

Example: Cashier (Revisited)

1 ...
2 while (true) {
3

4 System.out.println("Enter price?");
5 price = input.nextInt();
6 if (price <= 0) break; // Stop criteria.
7 total += price;
8

9 }
10 System.out.println("Total = " + total);
11 ...

Zheng-Liang Lu Java Programming 147

Remarks

• The while loops are equivalent to the for loops.

• You can always rewrite the for loops by the while loops, and
versa.

• In practice, you could use a for loop when the number of
repetitions is known.

• Otherwise, a while loop is preferred.

Zheng-Liang Lu Java Programming 148

One More Example: Compounding

Write a program to determine the holding years for an invest-
ment doubling its value.

• Let balance be the current amount, goal be the goal of this
investment, and r be the annual interest rate (%).

• The compounding formula is represented in recursive form:

balance = balance × (1 + r / 100.0).

• Output the holding years with the final balance.

Zheng-Liang Lu Java Programming 149

1 ...
2 int r = 18; // In percentage.
3 int balance = 100;
4 int goal = 200;
5

6 int years = 0;
7 while (balance < goal) {
8 balance *= (1 + r / 100.0);
9 years++;

10 }
11

12 System.out.println("Holding years = " + years);
13 System.out.println("Balance = " + balance);
14 ...

• If the interests are paid monthly, how many months you may
hold to reach the goal?

Zheng-Liang Lu Java Programming 150

1 ...
2 int years = 0; // Should be declared here; scope issue.
3 for (; balance < goal; years++) {
4 balance *= (1 + r / 100.0);
5 }
6 ...

1 ...
2 int years = 1; // Why?
3 for (; ; years++) {
4 balance *= (1 + r / 100.0);
5 if (balance >= goal) break;
6 }
7 ...

• Leaving the condition blank assumes true.

Zheng-Liang Lu Java Programming 151

Nested Loops: Example

Write a program to print the 9× 9 multiplication table.

1 2 3 4 5 6 7 8 9
2 4 6 8 10 12 14 16 18
3 6 9 12 15 18 21 24 27
4 8 12 16 20 24 28 32 36
5 10 15 20 25 30 35 40 45
6 12 18 24 30 36 42 48 54
7 14 21 28 35 42 49 56 63
8 16 24 32 40 48 56 64 72
9 18 27 36 45 54 63 72 81

Zheng-Liang Lu Java Programming 152

1 ...
2 public static void main(String[] args) {
3

4 for (int i = 1; i <= 9; ++i) {
5

6 // In row i, output each i * j.
7 for (int j = 1; j <= 9; ++j) {
8 System.out.printf("%3d", i * j);
9 }

10 System.out.println();
11

12 }
13

14 }
15 ...

• For each i , the inner loop goes from j = 1 to j = 9.

• As an analog, i acts like the hour hand of the clock, while j
acts like the minute hand of the clock.

Zheng-Liang Lu Java Programming 153

Digression: Output Format

• Use System.out.printf() to display formatted outputs.

• For example,

1 ...
2 System.out.printf("Pi = %4.2f", 3.1415926);
3 // Output 3.14.
4 ...

• Without specifying the width, only 6 digits after the decimal
point are displayed.

Zheng-Liang Lu Java Programming 154

Format specifier Corresponding type Example

%b boolean true, false

%c char a

%d int 123

%f float, double 3.141592

%e float, double 6.626070e−34

%s String NTU

• By default, the output is right justified.

• If a value requires more spaces than the specified width, then
the width is automatically increased.

• You may try various parameters such as the plus sign (+), the
minus sign (-), and 0 in the middle of format specifiers.

• Say %+8.2f, %−8.2f, and %08.2f.

Zheng-Liang Lu Java Programming 155

Formatted Output with Multiple Items

• All items must match the format specifiers in order, in
number, and in exact type.

Zheng-Liang Lu Java Programming 156

Exercise: Triangles

*
* *
* * *
* * * *
* * * * *
Case (a)

* * * * *
* * * *
* * *
* *
*
Case (b)

*
* *

* * *
* * * *

* * * * *
Case (c)

* * * * *
* * * *
* * *
* *
*

Case (d)

Zheng-Liang Lu Java Programming 157

1 ...
2

3 // Case (a)
4 for (int i = 1; i <= 5; i++) {
5 for (int j = 1; j <= i; j++) {
6 System.out.printf("*");
7 }
8 System.out.println();
9 }

10

11 // Case (b)
12 // Your work here.
13

14 // Case (c)
15 // Your work here.
16

17 // Case (d)
18 // Your work here.
19

20 ...

Zheng-Liang Lu Java Programming 158

Analysis of Algorithms

• A problem may be solved by various algorithms.

• We compare these algorithms by measuring their efficiency.

• Adopting a theoretical approach, we identify the growth rate
of running time in function of input size n.

• This introduces the notion of time complexity.12

• Let’s analyze the following two examples.

12See https://en.wikipedia.org/wiki/Time complexity. Similar to time
complexity, we later turn to the notion of space complexity.

Zheng-Liang Lu Java Programming 159

https://en.wikipedia.org/wiki/Time_complexity

Example 1: SUM

1 ...
2 int sum = 0, i = 1; // Assign −> 2.
3 while (i <= n) { // Compare −> n + 1.
4 sum = sum + i; // Add and assign −> 2n.
5 ++i; // Increase by 1 −> n.
6 }
7 ...

• Let n be any nonnegative number.

• Then count the number of all runtime operations.

• Note that we ignore declarations in the calculation. (Why?)

• In this case, the total number of operations is 4n + 3.

Zheng-Liang Lu Java Programming 160

Example 2: TRIANGLE

*
* *
* * *
* * * *
* * * * *
...

1 ...
2 for (int i = 1; i <= n; i++) {
3 for (int j = 1; j <= i; j++)
4 System.out.printf("*");
5 System.out.println();
6 }
7 ...

• We estimate the time cost by counting
the total number of asterisks:

1 + 2 + · · ·+ n =
(1 + n)× n

2
.

Zheng-Liang Lu Java Programming 161

Big O Notation13

• Let f (n) be the time cost of your algorithm, and g(n) be
some simple function.

• We define
f (n) = O(g(n)) as n → ∞

provided that there is a constant c > 0 and some n0 such that

f (n) ≤ c × g(n), ∀n ≥ n0.

• No clue? See the illustration shown in the next page.

13See https://en.wikipedia.org/wiki/Big O notation. You can also check the
other 4 symbols (o, Θ, Ω, and ω) in any algorithm textbook.

Zheng-Liang Lu Java Programming 162

https://en.wikipedia.org/wiki/Big_O_notation

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Input size (log scale)

0

20

40

60

80

100

120

Ru
nn

in
g
tim

e

f (n)
cxg (n)

• Clearly, g(n) is the asymptotic upper bound of f (n).14

• In other words, Big O implies the worst case of the algorithm.

• We then classify the algorithms in Big O sense.

14See https://en.wikipedia.org/wiki/Big O notation#Infinite asymptotics.
Zheng-Liang Lu Java Programming 163

https://en.wikipedia.org/wiki/Big_O_notation#Infinite_asymptotics

Discussions (1/4)

• Assume that the algorithm takes 8n2 − 3n + 4 steps.

• When n becomes large enough, the leading term dominates
the whole behavior of the polynomial.

• So we simply focus on the leading term.

• It is easy to find a constant, say c = 9, so that 9n2 ≥ 8n2

holds.

• We then conclude that

8n2−3n + 4 = O(n2).

• It could say that the algorithm runs in O(n2) time.

Zheng-Liang Lu Java Programming 164

Discussions (2/4)

• It is clear that SUM runs in O(n) time and TRIANGLE runs
in O(n2) time. (Why?)

• As a thumb rule, k-level loops run in O(nk) time.

• Determine the time complexity for the loop shown below.

1 ...
2 for (int i = 1; i <= n; i++) {
3 for (int j = 1; j <= i; j++) {
4 for (int k = 1; k <= 5; k++) {
5 // Loop body.
6 }
7 }
8 }
9 // This algorithm runs in O(?) time.

10 ...

Zheng-Liang Lu Java Programming 165

Discussions (3/4): Which Will You Choose?

Benchmark

Size O(n) O(n2) O(n3)

1 c1 c2 c3
10 10c1 100c2 1000c3
100 100c1 10000c2 1000000c3

• In theory, the smaller the order, the faster the algorithm.

Zheng-Liang Lu Java Programming 166

Discussions (4/4)

• It is worth to note that

8n2 − 3n + 4 ̸= O(n), and 8n2 − 3n + 4 = O(n3). (Why?)

• We would say that 8n2 − 3n + 4 = O(n2) for complexity
analysis. (Why?)

Zheng-Liang Lu Java Programming 167

Orders of Growth Rates

0 20 40 60 80 100
Input size (log scale)

0

20

40

60

80

100

Ru
nn

in
g
tim

e
(lo

g
sc

al
e)

1: constant
logn: logarithmic
n: linear
n log n: linearithmic
n2: quadratic
n3: cubic
2n: exponential

Zheng-Liang Lu Java Programming 168

Big O Table

Growth order Description Example

O(1) independent of n x = y + z

O(log n) divide in half binary search

O(n) one loop find maximum

O(n log n) divide and conquer merge sort

O(n2) double loop check all pairs

O(n3) triple loop check all triples

O(2n) exhaustive search check all subsets

Zheng-Liang Lu Java Programming 169

Constant-Time Algorithms

• Basic instructions (e.g. +) run in O(1) time. (Why?)

• Some algorithms indeed run in O(1) time, for example, the
arithmetic formulas. (Why?)

• However, there is no free lunch. (Why?)
• We should strike a balance by making a trade-off between
generality and efficiency.

• To reuse the program, it must be a general solution whose
assumption should be little and weak.

• To speed up the program, it could be optimized for the desire
cases (so making assumptions).

Zheng-Liang Lu Java Programming 170

• In addition, a program without writing explicit loops may not
run in O(1) time.

• For example, calling Arrays.sort() still takes more than O(1)
time to finish the sorting task.

• All in all, the time complexity is about the effort spent on the
task but not how many time you sacrifice.

Zheng-Liang Lu Java Programming 171

Exponential-Time Algorithms & Computability

• We, in fact, are overwhelmed by lots of intractable problems.
• For example, the travelling salesman problem (TSP).15

• Playing game well is hard.16

• Even worse, Turing (1936) proved the first undecidable
(unsolvable) problem, called the halting problem.17

• You can find any textbook for theory of computation or
computational complexity for further details.

15See https://en.wikipedia.org/wiki/Travelling salesman problem.
16See https://en.wikipedia.org/wiki/Game complexity. Check out AlphaGo.
17See https://en.wikipedia.org/wiki/Halting problem.

Zheng-Liang Lu Java Programming 172

https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Game_complexity
https://en.wikipedia.org/wiki/AlphaGo
https://en.wikipedia.org/wiki/Halting_problem

Zheng-Liang Lu Java Programming 173

Logarithmic-Time Algorithms

• We have met one of logarithmic-time algorithms. (Which?)

• In conclusion, the log-time algorithms run much faster than
the linear-time algorithms.

• However, the log-time algorithms require one assumption:
ordered sequence.

• You will learn this kind of algorithms in any course about
algorithms and data structures.

Zheng-Liang Lu Java Programming 174

Outstanding Theoretical Problem19

P ?
= NP

• In layman’s term, P is the problem set of “being solved and
verified in polynomial time.”

• NP is the problem set of “being verified in polynomial time
but perhaps being solved in exponential time.”

• For example, id verification is easier than hacking an account.

• One could say that P is easier than NP.
• P ?

= NP asks if NP is solved by P.
• It is still an open issue and also one of the Millennium Prize
Problems.18

18See https://en.wikipedia.org/wiki/Millennium Prize Problems.
19See https://en.wikipedia.org/wiki/P versus NP problem.

Zheng-Liang Lu Java Programming 175

https://en.wikipedia.org/wiki/Millennium_Prize_Problems
https://en.wikipedia.org/wiki/P_versus_NP_problem

