Java Programming

Zheng-Liang Lu
Department of Computer Science \& Information Engineering National Taiwan University

Java 405
Spring 2024

```
class Lecture3 {
    "Flow Controls: Branching & Repetition"
}
// Keywords:
if, else, switch, case, break, default, yield, while, do, for,
continue
```


Flow Controls

- Most of statements are executed in sequential order.
- Programs can handle automatically with various situations when the branching (selection) rules are known.
- Moreover, programs may repeat some actions if necessary.
- For example, recall how to find the largest number in the list?

The if Branching Statement

```
if (/* Condition: a boolean expression */) {
    // Selection body: conditional statements.
}
```

- If the condition is evaluated true, then the conditional statements will be executed once.
- If false, then the selection body will be ignored.
- Note that the braces can be omitted when the body contains only single statement.

Example: Circle Area (Revisited)

Write a program to receive a positive number as the circle radius and calculate its circle area.

```
if (r>0) {
    double A = r * r * 3.14;
    System.out.println(A);
}
```

- What if the false case?

The if-else Statement

Example: Circle Area (Revisited)

```
if (r>0) {
    double A = r * r * 3.14;
    System.out.println(A);
} else {
    System.out.println("Not a circle.");
}
```


Nested Conditional Statements: Example

A Preferred Alternative: Multiple Branches

..

```
if (score >= 90)
    System.out.println("A");
else if (score >= 80)
    System.out.println("B");
else if (score >= 70)
    System.out.println("C");
else if (score >= 60)
    System.out.println("D");
else
    System.out.println("F");
```

- Avoid deep indentation to make your program easier to read!
- However, the order of conditions may be influential. (Why?)
- Furthermore, the runtime performance may degrade due to the order of conditions. (Why?)

Two Common Bugs

```
if (r>0);
    double A = r * r * 3.14;
    System.out.println(A);
```

- Do not attach any semicolon to the condition (in Line 2).
- If the parenthesis is followed by the semicolon in Line 2, Line 3 becomes unconditional and will be always executed.
- Multiple conditional statements should be enclosed by braces.

Example: Working with Uncertainty

Write a program which (1) shows a math question, say sum of two random integers ranging from 0 to 9 , (2) asks the user to answer the question, and then (3) judges this input.

- For example, the monitor displays " $2+5=$?"
- If the user types 7, then the program reports "Correct."
- Otherwise, it reports "Wrong. The answer is 7. ."
- You can use Math.random() to generate random numbers.

Digression: How to Generate Random Numbers? ${ }^{1}$

- Math.random() produces numbers between 0.0 and 1.0, exclusive.
- To generate integers ranging from 0 to 9 , it is clear that

$$
\text { (int) (Math.random() } \times 10 \text {), }
$$

because there are 10 possible states: $0,1,2, \ldots, 9$.

- In general, you could generate any integer between L and H by using

$$
\text { (int) }(\text { Math.random }() \times(\mathrm{H}-\mathrm{L}+1))+\mathrm{L} \text {. (Why?) }
$$

[^0]```
// (1) Generate two random integers.
int x = (int) (Math.random() * 10);
int y = (int) (Math.random() * 10);
// (2) Display the math question.
System.out.println(x + " + " + y + " = ?");
// (3) Ask the user to type his/her answer.
Scanner input = new Scanner(System.in);
int z = input.nextInt();
input.close();
// (4) Judge the input.
if (z == x + y) {
 System.out.println("Correct.");
} else {
 System.out.println("Wrong.");
 System.out.println("It is " + (x + y) + ".");
}
```

- Extend this program for all arithmetic operators $(+-\times \div)$.
"Exploring the unknown requires tolerating uncertainty."
- Brian Greene
"I can live with doubt, and uncertainty, and not knowing. I think it is much more interesting to live not knowing than have answers which might be wrong."
- Richard Feynman


## Exercise

First generate 3 random integers ranging from -50 to 50 , inclusive. Then find the largest value of these integers.

- Recall the first algorithm example in our class.

```
int x = (int) (Math.random() * 101) - 50;
int y = (int) (Math.random() * 101) - 50;
int z = (int) (Math.random() * 101) - 50;
int max = x;
if (y > max) max = y;
if (z > max) max = z;
System.out.println("MAX = " + max);
```

- However, this program is limited by the number of data.
- To develop a reusable solution, we need arrays and loops.


## The switch-case-break-default Statement



- The variable target must be a value of char, byte, short, int, or String type.
- The type of $v_{1}, \ldots$, and $v_{k}$ must be identical to target.
- A break statement should be necessary to leave the construct; otherwise, there will be a fall-through behavior.
- The default case is used to perform default actions when none of cases matches target.
- Like the else statements.


## Example



## New Syntax (1/3): No More Breaks ${ }^{2}$



## ${ }^{2}$ Since JDK12.

## New Syntax (2/3): Switch Expressions

```
String symbol = "XS";
int size = switch (symbol) {
 case "L" -> 10;
 case "M" -> 5;
 case "S", "XS" -> 1;
 default -> 0;
};
System.out.println(size); // Output 1.
```

- Like all expressions, switch expressions evaluate to a single value and can be used in statements, say Line 4.


## New Syntax (3/3): yield

```
String symbol = "XS";
int size = switch (symbol) {
 case "L":
 yield 10;
 case "M":
 yield 5;
 case "S", "XS":
 yield 1;
 default:
 yield 0;
};
System.out.println(size); // Output 1.
```


## Conditional Operator: Example



- If num1 > num2, then execute max = num1; otherwise, $\max =$ num 2 .
"We must all face the choice between what is right and what is easy."
- Prof. Albus Dumbledore, Harry Potter and the Goblet of Fire, J.K. Rowling
"To be or not to be, that is the question."
- Prince Hamlet, Hamlet, William Shakespeare


## Essence of Loops ${ }^{3}$

## A loop is used to repeat statements.

- For example, output "Hello, Java." for 100 times.

${ }^{3}$ Try Celebrating 50 Years of Kids Coding.

```
int cnt = 0;
while (cnt < 100) {
 System.out.println("Hello, Java.");
 cnt++;
}
```

- This is a toy example to show the power of loops.
- In practice, any routine which repeats couples of times, so called patterns, can be done by wrapping them into a loop.


## 成也迴圈，敗也迴圈

－Loops provide substantial computational power．
－Loops bring an efficient way of programming．
－However，loops could consume a lot of time．${ }^{4}$

[^1]
## The while Loops

A while loop executes some statements repeatedly until the condition is false.

```
while (/* Condition: a boolean expression */) {
 // Loop body.
}
```

- If the condition is evaluated true, execute the loop body once and re-check the condition.
- The loop no longer continues when the condition is evaluated false.



## Example: Summation

Write a program to sum up all integers from 1 to 100 .

- In math,

$$
\text { sum }=1+2+\cdots+100 .
$$

- One may doubt why not $(1+100) \times 100 / 2$ ?
- The above formula is applicable to only arithmetic series!
- We don't assume the data being an arithmetic series. (Why?)
- To get a general solution, we decompose this summation into several statements, shown in the next page.

- As you can see, there exist many similar statements and we proceed to wrap them by using a while loop!

```
int sum = 0;
int i = 1;
while (i <= 100) {
 sum = sum + i;
 ++i;
}
```

- Make sure that the loop terminates properly and outputs the correct result.
- In practice, the number of iterations often depends on the data size or the input parameter. (Why?)


## Lurked Bugs: Malfunctioned Loops

- It is easy to make an infinite loop: always true.

```
while (true);
```

- The common issues of writing loops are as follows:
- loops never start;
- loops never stop;
- loops do not finish the expected iterations.


## Example: Working with Uncertainty (Revisited)

Based on the previous program, allow the user to re-enter answers repeatedly until correct.

```
...
while (z != x + y) {
 System.out.println("Try again?");
 z = input.nextInt();
}
System.out.println("Correct.");
```


## Loop Design Strategy

- Identify the statements that need to be repeated.
- Wrap those statements by a loop.
- Set a proper continuation condition.


## Indefinite Loops

Indefinite loops are the loops with unknown number of iterations.

- It is also called the sentinel-controlled loops, whose sentinel value is used to determine whether to execute the loop body.
- For example, the operating systems and the GUI apps.


## Example: Cashier

Write a program to (1) sum over positive integers from consecutive inputs until the first non-positive integer occurs and (2) output the total value.

```
int total = 0, price = 0;
Scanner input = new Scanner(System.in);
System.out.println("Enter price?");
price = input.nextInt();
while (price > 0) {
 total += price;
 System.out.println("Enter price?");
 price = input.nextInt();
}
System.out.println("TOTAL = " + total);
input.close();
```


## The do-while Loops

A do-while loop is similar to a while loop except that it first executes the loop body and then checks the loop condition.

```
do {
 // Loop body.
} while (/* Condition: a boolean expression */);
```

- Do not miss a semicolon at the end of do-while loops.
- The do-while loops are also called the posttest loops, in contrast to the while loops, which are the pretest loops.



## Example: Cashier (Revisited)

Write a program which sums over positive integers from consecutive inputs and then outputs the sum when the input is nonpositive.

```
int total = 0, price = 0;
Scanner input = new Scanner(System.in);
do {
 total += price;
 System.out.println("Enter price?");
 price = input.nextInt();
} while (price > 0);
System.out.println("TOTAL = " + total);
input.close();
```


## The for Loops

A for loop uses an integer counter to control how many times the body is executed.

```
for (initial-action; condition; increment) {
 // Loop body.
}
```

- initial-action: declare and initialize a counter.
- condition: check if the loop continues.
- increment: how the counter changes after each iteration.


## Example: Summation (Revisited)

Write a program to sum up the integers from 1 to 100 .


- Note that the initial action int $\mathrm{i}=1$ is executed only once.
- Make sure that you are clear with the execution flow of loops!



## Example: Even Numbers

## Show all even integers from 1 to 100 .



## Exercises

- Calculate the factorial of nonnegative integer $N .{ }^{5}$
- For example, $10!=3628800$.
- Calculate $x^{n}$ with double value $x$ and integer $n$.
- For example, $2.0^{10}=1024.0$.
- Calculate the following summation

$$
p=4 \times \sum_{i=0}^{10000} \frac{(-1)^{i}}{2 i+1} .
$$

- The result is around 3.14.
- Note that $p \rightarrow \pi$ as $N \rightarrow \infty$.

[^2]
## Numerical Example: Monte Carlo Simulation ${ }^{6}$

- Write a program to estimate $\pi$.
- Let $N$ be the total number of points and $M$ be the number of points falling in a quarter circle, illustrated in the next page.
- The algorithm states as follows:
- For each round, draw a point by invoking Math.random() twice and check if the point falls in the quarter circle.
- If so, then do $\mathrm{M}++$; otherwise, ignore it.
- Repeat the previous two steps for $N$ rounds.
- Hence we can calculate the estimate

$$
\hat{\pi}=4 \times \frac{M}{N}
$$

[^3]

```
int N = 100000;
int M = 0;
for (int i = 1; i <= N; i++) {
 double x = Math.random();
 double y = Math.random();
 if (x * x + Y * y < 1) M++;
}
System.out.println("pi ~ " + 4.0 * M / N);
// Why 4.0 but not 4?
```

- Note that $\hat{\pi} \rightarrow \pi$ as $N \rightarrow \infty$ by the law of large numbers (LLN). ${ }^{7}$
- This algorithm is one example of Monte Carlo simulation. ${ }^{8}$
${ }^{7}$ See https://en.wikipedia.org/wiki/Law_of_large_numbers.
${ }^{8}$ See https://en.wikipedia.org/wiki/Monte_Carlo_method.


## Numerical Example: Root Finding

- Consider to find the root for the polynomial $x^{3}-x-2$.
- Choose $a=1$ and $b=2$ as initial guess. ${ }^{9}$
- By the bisection method ${ }^{10}$, divide the search interval into two sub-intervals, and decide which sub-interval is the next search interval.
- The algorithm will stop to output the approximate root when it meets the preset error tolerance, say $\varepsilon=10^{-9}$. (Why?)
- This strikes a balance between efficiency and accuracy.

[^4]
https://en.wikipedia.org/wiki/Bisection_method\#/media/File:Bisection_method.svg


## Jump Statements: Example

The statement break and continue are often used to provide additional controls in repetition structures.

```
for (int i = 1; i <= 5; ++i) {
 if (i == 3) {
 break;
 // Early termination.
 }
 System.out.println(i);
}
// Output: 1 2
```

```
for (int i = 1; i <= 5; ++i) {
 if (i == 3) {
 continue;
 // Skip this round.
 }
 System.out.println(i);
 Output: 1 2 4 5
```


## Example: Primality Test ${ }^{11}$

Write a program to check if the input integer is a prime number.

- Let $x$ be any integer larger than 2 .
- Then $x$ is a prime number if $x$ has no positive divisors other than 1 and itself.
- It is straightforward to divide $x$ by all integers from 2 to $x-1$.
- To speed up, divide $x$ by only integers smaller than $\sqrt{x}$ instead of $x$. (Why?)



## Example: Cashier (Revisited)

```
while (true) {
 System.out.println("Enter price?");
 price = input.nextInt();
 if (price <= 0) break; // Stop criteria.
 total += price;
}
System.out.println("Total = " + total);
```


## Remarks

- The while loops are equivalent to the for loops.
- You can always rewrite the for loops by the while loops, and versa.
- In practice, you could use a for loop when the number of repetitions is known.
- Otherwise, a while loop is preferred.


## One More Example: Compounding

Write a program to determine the holding years for an investment doubling its value.

- Let balance be the current amount, goal be the goal of this investment, and $r$ be the annual interest rate (\%).
- The compounding formula is represented in recursive form:

$$
\text { balance }=\text { balance } \times(1+r / 100.0) .
$$

- Output the holding years with the final balance.

```
int r = 18; // In percentage.
int balance = 100;
int goal = 200;
int years = 0;
while (balance < goal) {
 balance *= (1 + r / 100.0);
 years++;
}
System.out.println("Holding years = " + years);
System.out.println("Balance = " + balance);
```

- If the interests are paid monthly, how many months you may hold to reach the goal?
int years = 0; // Should be declared here; scope issue.
int years = 0; // Should be declared here; scope issue.
for (; balance < goal; years++) {
for (; balance < goal; years++) {
balance *= (1 + r / 100.0);
balance *= (1 + r / 100.0);
}
}
int years = 1; // Why?
int years = 1; // Why?
for (; ; years++) {
for (; ; years++) {
balance *= (1 + r / 100.0);
balance *= (1 + r / 100.0);
if (balance >= goal) break;
if (balance >= goal) break;
}
}
- Leaving the condition blank assumes true.


## Nested Loops: Example

Write a program to print the $9 \times 9$ multiplication table.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 |
| 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 |
| 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 |
| 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
| 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 |
| 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 |
| 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 |
| 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 |

```
...
 public static void main(String[] args) {
 for (int i = 1; i <= 9; ++i) {
 // In row i, output each i * j.
 for (int j = 1; j <= 9; ++j) {
 System.out.printf("%3d", i * j);
 }
 System.out.println();
 }
 }
```

- For each $i$, the inner loop goes from $j=1$ to $j=9$.
- As an analog, $i$ acts like the hour hand of the clock, while $j$ acts like the minute hand of the clock.


## Digression: Output Format

- Use System.out.printf() to display formatted outputs.
- For example,

```
System.out.printf("Pi = %4.2f", 3.1415926);
// Output 3.14.
```



- Without specifying the width, only 6 digits after the decimal point are displayed.

| Format specifier | Corresponding type | Example |
| :---: | :---: | :---: |
| \%b | boolean | true, false |
| \%c | char | a |
| \%d | int | 123 |
| \%f | float, double | 3.141592 |
| \%e | float, double | $6.626070 \mathrm{e}-34$ |
| \%s | String | NTU |

- By default, the output is right justified.
- If a value requires more spaces than the specified width, then the width is automatically increased.
- You may try various parameters such as the plus sign (+), the minus sign (-), and 0 in the middle of format specifiers.
- Say $\%+8.2 f, \%-8.2 f$, and $\% 08.2 f$.


## Formatted Output with Multiple Items

```
int count = 5;
doub1e amount = 45.56;
System.out.printf("count is %d and amount is %f", count, amount);
```



```
display
 count is 5 and amount is 45.560000
```

- All items must match the format specifiers in order, in number, and in exact type.


## Exercise: Triangles




## Analysis of Algorithms

- A problem may be solved by various algorithms.
- We compare these algorithms by measuring their efficiency.
- Adopting a theoretical approach, we identify the growth rate of running time in function of input size $n$.
- This introduces the notion of time complexity. ${ }^{12}$
- Let's analyze the following two examples.

[^5] complexity, we later turn to the notion of space complexity.

## Example 1: SUM

```
int sum = 0, i = 1; // Assign -> 2.
while (i <= n) { // Compare }\quad>>n+1
 sum = sum + i; // Add and assign }->2n
 ++i; // Increase by 1 -> n.
}
```

- Let $n$ be any nonnegative number.
- Then count the number of all runtime operations.
- Note that we ignore declarations in the calculation. (Why?)
- In this case, the total number of operations is $4 n+3$.


## Example 2: TRIANGLE



$$
1+2+\cdots+n=\frac{(1+n) \times n}{2}
$$

## Big $O$ Notation ${ }^{13}$

- Let $f(n)$ be the time cost of your algorithm, and $g(n)$ be some simple function.
- We define

$$
f(n)=O(g(n)) \text { as } n \rightarrow \infty
$$

provided that there is a constant $c>0$ and some $n_{0}$ such that

$$
f(n) \leq c \times g(n), \quad \forall n \geq n_{0} .
$$

- No clue? See the illustration shown in the next page.
${ }^{13}$ See https://en.wikipedia.org/wiki/Big_O_notation. You can also check the other 4 symbols ( $o, \Theta, \Omega$, and $\omega$ ) in any algorithm textbook.

- Clearly, $g(n)$ is the asymptotic upper bound of $f(n) .{ }^{14}$
- In other words, Big $O$ implies the worst case of the algorithm.
- We then classify the algorithms in $\mathrm{Big} O$ sense.


## Discussions (1/4)

- Assume that the algorithm takes $8 n^{2}-3 n+4$ steps.
- When $n$ becomes large enough, the leading term dominates the whole behavior of the polynomial.
- So we simply focus on the leading term.
- It is easy to find a constant, say $c=9$, so that $9 n^{2} \geq 8 n^{2}$ holds.
- We then conclude that

$$
8 n^{2}-3 n+4=O\left(n^{2}\right)
$$

- It could say that the algorithm runs in $O\left(n^{2}\right)$ time.


## Discussions (2/4)

- It is clear that SUM runs in $O(n)$ time and TRIANGLE runs in $O\left(n^{2}\right)$ time. (Why?)
- As a thumb rule, $k$-level loops run in $O\left(n^{k}\right)$ time.
- Determine the time complexity for the loop shown below.



## Discussions (3/4): Which Will You Choose?

Benchmark

| Size | $O(n)$ | $O\left(n^{2}\right)$ | $O\left(n^{3}\right)$ |
| :--- | :--- | :--- | :--- |
| 1 | $c_{1}$ | $c_{2}$ | $c_{3}$ |
| 10 | $10 c_{1}$ | $100 c_{2}$ | $1000 c_{3}$ |
| 100 | $100 c_{1}$ | $10000 c_{2}$ | $1000000 c_{3}$ |

- In theory, the smaller the order, the faster the algorithm.


## Discussions (4/4)

- It is worth to note that

$$
8 n^{2}-3 n+4 \neq O(n), \text { and } 8 n^{2}-3 n+4=O\left(n^{3}\right) .(\text { Why? })
$$

- We would say that $8 n^{2}-3 n+4=O\left(n^{2}\right)$ for complexity analysis. (Why?)


## Orders of Growth Rates



## Big $O$ Table

| Growth order | Description | Example |
| :---: | :---: | :---: |
| $O(1)$ | independent of $n$ | $\mathrm{x}=\mathrm{y}+\mathrm{z}$ |
| $O(\log n)$ | divide in half | binary search |
| $O(n)$ | one loop | find maximum |
| $O(n \log n)$ | divide and conquer | merge sort |
| $O\left(n^{2}\right)$ | double loop | check all pairs |
| $O\left(n^{3}\right)$ | triple loop | check all triples |
| $O\left(2^{n}\right)$ | exhaustive search | check all subsets |

## Constant-Time Algorithms

- Basic instructions (e.g. + ) run in $O(1)$ time. (Why?)
- Some algorithms indeed run in $O(1)$ time, for example, the arithmetic formulas. (Why?)
- However, there is no free lunch. (Why?)
- We should strike a balance by making a trade-off between generality and efficiency.
- To reuse the program, it must be a general solution whose assumption should be little and weak.
- To speed up the program, it could be optimized for the desire cases (so making assumptions).
- In addition, a program without writing explicit loops may not run in $O(1)$ time.
- For example, calling Arrays.sort() still takes more than $O(1)$ time to finish the sorting task.
- All in all, the time complexity is about the effort spent on the task but not how many time you sacrifice.


## Exponential-Time Algorithms \& Computability

- We, in fact, are overwhelmed by lots of intractable problems.
- For example, the travelling salesman problem (TSP). ${ }^{15}$
- Playing game well is hard. ${ }^{16}$
- Even worse, Turing (1936) proved the first undecidable (unsolvable) problem, called the halting problem. ${ }^{17}$
- You can find any textbook for theory of computation or computational complexity for further details.

[^6]



## Logarithmic-Time Algorithms

- We have met one of logarithmic-time algorithms. (Which?)
- In conclusion, the log-time algorithms run much faster than the linear-time algorithms.
- However, the log-time algorithms require one assumption: ordered sequence.
- You will learn this kind of algorithms in any course about algorithms and data structures.


## Outstanding Theoretical Problem ${ }^{19}$

$$
\mathbb{P} \stackrel{?}{=} \mathbb{N} \mathbb{P}
$$

- In layman's term, $\mathbb{P}$ is the problem set of "being solved and verified in polynomial time."
- $\mathbb{N P}$ is the problem set of "being verified in polynomial time but perhaps being solved in exponential time."
- For example, id verification is easier than hacking an account.
- One could say that $\mathbb{P}$ is easier than $\mathbb{N} \mathbb{P}$.
- $\mathbb{P} \stackrel{?}{=} \mathbb{N} \mathbb{P}$ asks if $\mathbb{N P}$ is solved by $\mathbb{P}$.
- It is still an open issue and also one of the Millennium Prize Problems. ${ }^{18}$


[^0]:    ${ }^{1}$ See https://en.wikipedia.org/wiki/Pseudorandomınumber_generator-

[^1]:    ${ }^{4}$ You may check any algorithm textbook or course，say Algorithms Lab．

[^2]:    ${ }^{5}$ See https://en.wikipedia.org/wiki/Factorial.

[^3]:    ${ }^{6}$ See https://en.wikipedia.org/wiki/Monte_Carlo_method.

[^4]:    ${ }^{9}$ For most of numerical algorithms, say Newton's method, we need an initial guess to start the root-finding procedure. Even more, the result is severely sensitive to an initial guess.
    ${ }^{10}$ It is also called the binary search. See Bisection Method

[^5]:    ${ }^{12}$ See https://en.wikipedia.org/wiki/Time_complexity. Similar to time

[^6]:    ${ }^{15}$ See https://en.wikipedia.org/wiki/Travelling_salesman_problem.
    ${ }^{16}$ See https://en.wikipedia.org/wiki/Game_complexity. Check out AlphaGo.
    ${ }^{17}$ See https://en.wikipedia.org/wiki/Halting_problem-

