Jump Statements

The keyword **break** and **continue** are often used in repetition structures to provide additional controls.

- **break**: the loop is **terminated** right after a **break** statement is executed.
- **continue**: the loop **skips** this iteration right after a **continue** statement is executed.
- In practice, jump statements in loops should be conditioned.
Example: Primality Test

Write a program which determines if the input integer is a prime number.

• Let \(x > 1 \) be any natural number.
• Then \(x \) is said to be a prime number if \(x \) has no positive divisors other than 1 and itself.
• It is then straightforward to check if it is prime by dividing \(x \) by all natural numbers smaller than \(x \).
• For speedup, you can divide \(x \) by only numbers smaller than \(\sqrt{x} \). (Why?)
Scanner input = new Scanner(System.in);
System.out.println("Enter x > 2?");
int x = input.nextInt();
boolean isPrime = true;
input.close();

double upperBd = Math.sqrt(x);
for (int y = 2; y <= upperBd; y++) {
 if (x % y == 0) {
 isPrime = false;
 break;
 }
}

if (isPrime) {
 System.out.println("Prime");
} else {
 System.out.println("Composite");
}
Exercise (Revisited)

- Redo the cashier problem by using an infinite loop with a break statement.

```java
... 
while (true) {
    System.out.println("Enter price?");
    price = input.nextInt();
    if (price <= 0) break;
    total += price;
}
System.out.println("Total = " + total);
...
```
Write a program which determines the holding years for an investment doubling its value.

- Let \(\text{balance} \) be the current amount, \(\text{goal} \) be the goal of this investment, and \(r \) be the annual interest rate.
- Then this investment should take at least \(n \) years so that the balance of the investment can double its value.
- Recall that the compounding formula is given by

\[
\text{balance} = \text{balance} \times (1 + r/100).
\]
int r = 18; // 18%
int balance = 100;
int goal = 200;

int years = 0;
while (balance <= goal) {
 balance *= (1 + r / 100.0);
 years++;
}

System.out.println("Balance = " + balance);
System.out.println("Years = " + years);

...
A for loop can be an infinite loop by setting true or simply leaving empty in the condition statement.

An infinite for loop with an if-break statement is equivalent to a normal while loop.
In general, a \texttt{for} loop may be used if the number of repetitions is known in advance. If not, a \texttt{while} loop is preferred.
A loop can be nested inside another loop.

- Nested loops consist of an outer loop and one or more inner loops.
- Each time the outer loop is repeated, the inner loops are reentered, and started anew.
Example

Multiplication table

Write a program which displays the multiplication table.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>49</td>
<td>56</td>
<td>63</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>54</td>
<td>63</td>
<td>72</td>
<td>81</td>
</tr>
</tbody>
</table>
You can use `System.out.printf()` to display formatted output on the console.

```java
...  
  double amount = 1234.601;
  double interestRate = 0.00528;
  double interest = amount * interestRate;
  System.out.printf("Interest = %4.2f", interest);
...  
```
By default, a floating-point value is displayed with 6 digits after the decimal point.

<table>
<thead>
<tr>
<th>Format Specifier</th>
<th>Output</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>%b</td>
<td>a Boolean value</td>
<td>true or false</td>
</tr>
<tr>
<td>%c</td>
<td>a character</td>
<td>‘a’</td>
</tr>
<tr>
<td>%d</td>
<td>a decimal integer</td>
<td>200</td>
</tr>
<tr>
<td>%f</td>
<td>a floating-point number</td>
<td>45.460000</td>
</tr>
<tr>
<td>%e</td>
<td>a number in standard scientific notation</td>
<td>4.556000e+01</td>
</tr>
<tr>
<td>%s</td>
<td>a string</td>
<td>“Java is cool”</td>
</tr>
</tbody>
</table>
Multiple Items to Print

```java
int count = 5;
double amount = 45.56;
System.out.printf("count is \%d and amount is \%f", count, amount);
```

display

```
count is 5 and amount is 45.560000
```

- Items must match the format specifiers in order, in number, and in exact type.
- If an item requires more spaces than the specified width, the width is automatically increased.
- By default, the output is right justified.
- You may try the plus sign (+), the minus sign (-), and 0 in the middle of format specifiers.
 - Say % + 8.2f, % − 8.2f, and %08.2f.
public static void main(String[] args) {
 for (int i = 1; i <= 9; ++i) {
 for (int j = 1; j <= 9; ++j) {
 System.out.printf("%3d", i * j);
 }
 System.out.println();
 }
}

...
Exercise: Coupled Loops

```
*   *****   *   *****
**  ****    **  ****
*** ***     ***  ***
**** **      ****  **
*****       ****   *
******      *       *****
(a)  (b)  (c)  (d)
```
public class PrintStarsDemo {
 public static void main(String[] args) {
 // case (a)
 for (int i = 1; i <= 5; i++) {
 for (int j = 1; j <= i; j++) {
 System.out.printf("*");
 }
 System.out.println();
 }
 // case (b), (c), (d)
 // your work here
 }
}
• First, there may exist some algorithms for the same problem.
• Then we compare these algorithms.
• The first question is, Which one is more efficient? (Why?)
• We focus on the growth rate of the running time or space requirement as a function of the input size n, denoted by $f(n)$.
\section*{O-notation1}

\begin{itemize}
 \item In math, \(O\)-notation describes the \textit{limiting behavior} of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions.
 \item \(f(n) \in O(g(n))\) as \(n \to \infty\) if and only if there is a constant \(c > 0\) and a real number \(n_0\) such that

\[
|f(n)| \leq c|g(n)| \quad \forall n \geq n_0.
\]

\item Note that \(O(g(n))\) is a set featured by some simple function \(g(n)\).
 \item Hence \(f(n) \in O(g(n))\) is equivalent to say that \(f(n)\) is one instance of \(O(g(n))\).
\end{itemize}

1See any textbook for data structures and algorithms or https://en.wikipedia.org/wiki/Big_O_notation.
• For example, $8n^2 - 3n + 4 \in O(n^2)$.
• We could say that $8n^2 - 3n + 4 \in O(n^3)$ and $8n^2 - 3n + 4 \notin O(n)$.
Common Fundamental Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>$n = 1$</th>
<th>$n = 2$</th>
<th>$n = 3$</th>
<th>$n = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Logarithm</td>
<td>$\log n$</td>
<td>$\log 2$</td>
<td>$\log 3$</td>
<td>$\log 4$</td>
</tr>
<tr>
<td>Linear</td>
<td>n</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Linear-log</td>
<td>$n \log n$</td>
<td>$2 \times \log 2$</td>
<td>$3 \times \log 3$</td>
<td>$4 \times \log 4$</td>
</tr>
<tr>
<td>Quadratic</td>
<td>n^2</td>
<td>4</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Cubic</td>
<td>n^3</td>
<td>8</td>
<td>27</td>
<td>64</td>
</tr>
<tr>
<td>Exponential</td>
<td>a^n</td>
<td>a^2</td>
<td>a^3</td>
<td>a^4</td>
</tr>
</tbody>
</table>

See Table 4.1 and Figure 4.2 in Goodrich and etc, p. 161.