Java Programming

Zheng-Liang Lu

Department of Computer Science & Information Engineering
National Taiwan University

Java 304
Fall 2018
Class Information

- Instructor: Zheng-Liang Lu
- Email: d00922011@ntu.edu.tw
- The course website is http://www.csie.ntu.edu.tw/~d00922011/java.html.
- All lecture slides are organized in English and will be modified if necessary.
Prerequisites

• This class is organized for students who are not EE/CS majors.
• No programming experience required; it would be helpful if you have some programming experiences.
• May involve with high school math in examples.
• I promise to keep everything simple in this class.¹

¹“Simple is not easy. ... Easy is a minimum amount of effort to produce a result. ... Simple is very hard. Simple is the removal of everything except what matters. ...” See here.
Teaching Philosophy

- First, I try to lower the barriers to entry.
- Second, I provide resources as many as possible.
- Third, I answer your questions.
Learning Tips

- Start with just one language and master it.
- Ask lots of questions; Google first.
- Practice makes permanent (and hopefully, perfect).
- It may take 10000 hours, more or less; it is never too late.
- Grasp the fundamentals for long-term benefits; code from the bottom.
- Code by hand.²

²It sharpens proficiency and you’ll need it to get a job. For example, technical interview of Google.
“Knowledge is of no value unless you put it into practice.”

– Anton Chekhov (1860-1904)

“Many roads lead to the path, but basically there are only two: reason and practice.”

– Bodhidharma
Grading Policy

• To acquire the certificate, you need at least 70 pts at the end of class:
 • Programming assignments (30%)
 • Practice makes perfect.
 • Final exam (70%)
 • On-site programming
 • 2 hours
 • Open everything (honor code)
Roll Call
class Lecture1 {

 "Introduction"

}

// Keywords:
public, class, static, void
What Is Programming?

- Programming is the activity of writing a sequence of instructions to tell a machine to perform a specific task.
 - A sequence of instructions → program
 - A set of well-defined notations used to write a program → programming language
 - People who write programs → programmer designer
- Writing codes is not what the CS people work for. We are writing codes to make a better world.
PROGRAMMER

WHAT MY MOM THINKS I DO
WHAT MY FRIENDS THINK I DO
WHAT SOCIETY THINKS I DO
WHAT ARTISTS THINK I DO
WHAT I THINK I DO
WHAT I ACTUALLY DO

[JavaScript Application]
Hello, world!

WHY WON'T YOU COMPILe?
Deep Learning

What society thinks I do
What my friends think I do
What other computer scientists think I do

What mathematicians think I do
What I think I do
What I actually do

In Practice

Programming is to provide a solution to a real-world problem using computational models supported by programming languages.

- The computational solution is a program.
• A program is a sequence of **instructions**, written in an artificial **language**, to perform a **specified task** by a machine.

• They are almost everywhere, for example,
 • Video games (e.g. Pokémon Go, Travel Frog, . . .)
 • Operating systems
 • Transportations (e.g. traffic light, MRT, airplane, . . .)
 • Search engine (e.g. Google, . . .)
 • **Computer virus**
How and Where The Programs Run

- The programs are activated from the disk into the main memory.
- Now we call them the processes. \(^3\)
- CPUs contain the arithmetic and logic unit (ALU) and the registers.
 - ALU is responsible for the computational power.
 - Registers store the data to be used temporarily. \(^4\)
- The outputs are written back to the main memory and further stored into the disk if necessary.

\(^3\) The “process” is a formal terminology used in operating systems.
\(^4\) CPUs have only limited number of registers.
\(^5\) You may refer to any class for an introduction to computer system. For example, [Introduction to Computer Science & Programming in C.](#)
Figure 1.9 An example of a memory hierarchy.

See Figure 1-9 in Bryant, p. 14.
Programming Languages

• A **programming language** is an artificial language to *communicate* with machines.

• Recall how you learned the 2nd nature language when you were a kid.

• Programming languages → *syntax* and *semantics*
 • Used to express algorithms
 • Used to control the behavior of machines

• How many programming languages in the world?
 • More than 1000.
 • Top 20 programming languages can be found in **TIOBE**.
 • Java: top 3

• Note that every language originates from reasons.
History

- 1st generation: machine code
- 2nd generation: assembly code
- 3rd generation: high-level programming languages
- Post 3rd generations
- Java is one of the 3rd-generation programming languages.

High-level language program (in C)

```c
swap(int v[], int k)
{
    int temp;
    temp = v[k];
    v[k] = v[k+1];
    v[k+1] = temp;
}
```

Assembly language program (for MIPS)

```assembly
swap:
    multi $2, $5, 4
    add $2, $4, $2
    lw $15, 0($2)
    lw $16, 4($2)
    sw $16, 0($2)
    sw $15, 4($2)
    jr $31
```

Binary machine language program (for MIPS)

```
00000000010100010000000000100011000
00000000010000010000010000000100001
10001101111000100000000000000000000
1000110000100100000000000000000000
1001111000010010000000000000000000
00000011111000000000000000000000100
```
1st-Generation Programming Languages

- Computers understand instructions only in binary, which is a sequence of 0’s and 1’s. (Why?)
- Each computer has its own set of instructions.
- So the programs at the very early stage were machine-dependent.
- These are so-called the machine language, aka machine code.
- Pros:
 - Most efficient for machines
- Cons:
 - Hard to program for human
 - Not portable
- Still widely used in programming lower level functions of the system, such as drivers, interfaces with firmware and hardware.

\[^8 \text{For example, X86 and ARM.} \]
2nd-Generation Programming Languages

- An *assembly language* uses mnemonics\(^9\) to represent instructions as opposed to the machine codes.
- Hence, the code can be read and written by human programmers.
- Yet, it is still machine-dependent.

To run on a computer, it must be converted into a machine readable form, a process called *assembly*.
• More often used in extremely intensive processing such as games, video editing, graphic manipulation/rendering.

• Note that machine languages and assembly languages are also known as low-level languages.
3rd-Generation Programming Languages

- High-level programming languages use English-like words, mathematical notation, and punctuation to write programs.
- They are closer to human languages.
- Pros:
 - Portable, machine-independent
 - Human-friendly
- For example, C10, C++11, and Java12.

\begin{flushleft}
10Dennis Ritchie (1973)
11Bjarne Stroustrup (1983)
12James Gosling (1995)
\end{flushleft}
• Note that the machines understand and execute only the machine codes as before.

• The translation is accomplished by a compiler, an interpreter, or a combination of both.\(^{13}\)

\(^{13}\)If you’ve learned C, you should take a look at the design of compiler.
What Can A Program Do?

- A **program** is an implementation of an **algorithm** expressed in a specific **programming language**.
• An algorithm is a well-defined computational procedure that takes a set of values as input and produces a set of values as output.

• Simply put, an algorithm is a procedure that solves a particular class of problems, such as a cookbook.
Properties of Algorithms15

An algorithm must possess the following properties14:

- **Input and output**
- **Correctness**
- **Definiteness**: basic instructions provided by a machine, e.g. $+ - \times \div$.
- **Effectiveness**: action which can be completed by combination of basic instructions.
- **Finiteness**: resource requirement, especially time and space.

Note that an algorithm is not necessarily expressed in a specific programming language.
- Could use human languages, graphs, and pseudo codes.

14 Alan Turing (1912–1954)
15 Donald E. Knuth (1938–)
Example

• Organize an algorithm that finds the greatest element in the input list, say A.

Input: A (a list of n numbers)
Output: max (the greatest element in A)

• Can you provide a procedure to determine the greatest element? For all situations?
The first element of A can be fetched by calling A(1).

Let ← be the assignment operator in the following pseudo code.

```
max ← A(1)
for i ← 2 ~ n
    if A(i) > max
        max ← A(i)
    end
end
return max
```

How to find the minimal element?

How to find the location of the greatest element?

Why not max ← 0?
“Computers are good at following instructions, but not at reading your mind.”

– Donald Knuth (1938-)

“There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult.”

– Tony Hoare (1934-)
Alan Turing

• Provided a formalization of the concepts of algorithm and universal computation model for general-purpose computers.
 • As known as Turing machine.\(^{16}\)
 • Also first proved that there exist problems which are undecidable by Turing machine.\(^{17}\)

• Father of computing theory and artificial intelligence\(^{18,19}\)

• Turing Award of ACM\(^{20}\)

• You may watch The Imitation Game (2014)

\(^{16}\) Try this [toy example](#) by Google for celebration of Turing’s birthday.

\(^{17}\) See [Halting problem](#).

\(^{18}\) See [Turing test](#).

\(^{19}\) See [Pretty sure Google's new talking AI just beat the Turing test](#).

\(^{20}\) Association for Computing Machinery
What Is Java?

- Java is a general purpose programming language.
- It has features to support programming based on the object-oriented paradigms.
- The initial version of the Java platform was released by Sun Microsystems in 1995.\(^\text{21}\)
- At the very early stage, this language was called Oak and it was meant to be used in set-top boxes for televisions.
- Slogan: “Write once, run anywhere.”
- That is, Write a Java program once and run it on any platform. (How?)

\(^{21}\)Now owned by Oracle Corporation, since January 2010.
Java Virtual Machine (JVM) is used to run the bytecodes on each platform.

- JVM is a program, not a physical machine.
- The job of JVM is to translate the bytecodes into machine codes according to the platform it is running on.
- To enhance the security, the JVM verifies all bytecodes before the program is executed.
- “No user program can crash the host machine.”

22 The platform could be Windows, Linux, MacOS and so on.
23 However, there are a number of possible sources of security vulnerabilities in Java applications. See [here](#).
24 See [JVM](#).
Compiling and Running A Java Program

See Figure 2-19 in Sharan, p. 59.

Zheng-Liang Lu
Java Programming
An integrated development environment (IDE) is a software application that provides comprehensive facilities to computer programmers for software development.

- An IDE normally consists of a source code editor, build automation tools and a debugger.
- Most modern IDEs offer the intelligent code completion.

In this class, we need **Java Development Kit (JDK)** and **Eclipse IDE for Java Developers**.
Example: A Simple Template

Write a program which says hello to Java.

```java
public class HelloJava {
    public static void main(String[] args) {
        // Print "Hello, Java." on the screen.
        System.out.println("Hello, Java.");
    }
}
```

Keywords are marked in violet.

- **class**: declare a new class followed a distinct class name
- **public**: can be accessed by any other class
- **static**: can be called without having to instantiate a particular instance of the class
- **void**: do not return a value
• Every statement ends with a semicolon (;).
• A special method `main` is used as the entry point of the program.
• `System.out` refers to the standard output device, normally the screen.
• `println()` is a method within `System.out`, which is automatically imported by default.
The public keyword is one of access modifiers26, which allows the programmer to control the visibility of classes and also members.

- One public class in the java file whose filename is identical to that of the public class.
- There must be at most one public class in one java file.

26We will visit the access control later when it comes to encapsulation.
How To Run A Java Program

```java
public class Welcome {
    public static void main(String[] args) {
        System.out.println("Welcome to Java!");
    }
}
```

Source code (developed by the programmer)

Bytecode (generated by the compiler for JVM to read and interpret)

```java
Method Welcome()
  0 aload_0
  ...
Method void main(java.lang.String[])
  0 getstatic #2 ...
  3 ldc #3 <String "Welcome to Java!">
  5 invokevirtual #4 ...
  8 return
```

“Welcome to Java” is displayed on the console

```
Welcome to Java!
```

27 See Figure 1.14 in YDL, p.20.
Table of Special Characters

<table>
<thead>
<tr>
<th>Character</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>Opening and closing braces</td>
<td>Denote a block to enclose statements.</td>
</tr>
<tr>
<td>()</td>
<td>Opening and closing parentheses</td>
<td>Used with methods.</td>
</tr>
<tr>
<td>[]</td>
<td>Opening and closing brackets</td>
<td>Denote an array.</td>
</tr>
<tr>
<td>//</td>
<td>Double slashes</td>
<td>Precede a comment line.</td>
</tr>
<tr>
<td>" "</td>
<td>Opening and closing quotation marks</td>
<td>Enclose a string (i.e., sequence of characters).</td>
</tr>
<tr>
<td>;</td>
<td>Semicolon</td>
<td>Mark the end of a statement.</td>
</tr>
</tbody>
</table>

\[^{28}\]See Table 1.2 in YDL, p.18.
Bugs

A bug is an error, flaw, failure, or fault in a computer program or system, producing an incorrect or unexpected result, or misbehaving in unintended ways.

- **Compile-time error**: most of them are syntax errors
- **Runtime error**: occurs when Java program runs, e.g. $1/0$
- **Logic error**: introduced by the programmer by implementing the functional requirement incorrectly

Note that logic errors are the obscurest in programs since they are hard to be found.
“If debugging is the process of removing software bugs, then programming must be the process of putting them in.”

Programming Style

- **Good programming style** makes a program easy to read and helps programmers prevent from errors.
 - **Indentation**: enhance the *structural* relationships by visual
 - Curly braces by: next-line style or end-of-line style
 - Be consistent through the whole program!

- For example, [Google Java Style](https://google.github.io/styleguide/javaguide.html).
class Lecture2 {
 "Data types, Variables, and Operators"
}

// Keywords:
byte, short, int, long, char, float, double, boolean, true, false, import, new
Example

Given the radius of a circle, say 10, determine the area.

Recall that a program comprises data and algorithms.

- How to store the data?
 → variables, data types

- How to compute the area?
 → arithmetic operators

- How to show the result?
 → System.out.println()
public class ComputeArea {
 public static void main(String[] args) {
 // input
 int r = 10;
 // algorithm
 double area = r * r * 3.14;
 // output
 System.out.println(area);
 }
}

• The type int and double are two of primitive data types.
• We use two variables r and area.
Variable \approx Box
Variable Declaration

• You give a name for the variable, say \texttt{x}.
• Additionally, you need to assign a type for the variable.
• For example,

\begin{verbatim}
... int x; // x is a variable declared an integer type.
...
\end{verbatim}

• Variable declaration tells the compiler to allocate appropriate memory space for the variable based on its data type.\footnote{Actually, all declared variables are created at the compile time.}
• It is worth to mention that, the data type determines the size, which is measured in \textit{bytes}\footnote{1 byte = 8 bits; bit = binary digit.}.

\textcopyright Zheng-Liang Lu

Java Programming
Naming Rules

- Identifiers are the names that identify the elements such as variables, methods, and classes in the program.
- The naming rule excludes the following situations:
 - cannot start with a digit
 - cannot be any reserved word\(^{31}\)
 - cannot include any blank between letters
 - cannot contain +, −, *, / and %
- Note that Java is case sensitive\(^{32}\).

\(^{31}\)See the next page.

\(^{32}\)The letter A and a are different.
<table>
<thead>
<tr>
<th>reserved word</th>
<th>reserved word</th>
<th>reserved word</th>
<th>reserved word</th>
</tr>
</thead>
<tbody>
<tr>
<td>abstract</td>
<td>double</td>
<td>int</td>
<td>super</td>
</tr>
<tr>
<td>assert</td>
<td>else</td>
<td>interface</td>
<td>switch</td>
</tr>
<tr>
<td>boolean</td>
<td>enum</td>
<td>long</td>
<td>synchronized</td>
</tr>
<tr>
<td>break</td>
<td>extends</td>
<td>native</td>
<td>this</td>
</tr>
<tr>
<td>byte</td>
<td>final</td>
<td>new</td>
<td>throw</td>
</tr>
<tr>
<td>case</td>
<td>finally</td>
<td>package</td>
<td>throws</td>
</tr>
<tr>
<td>catch</td>
<td>float</td>
<td>private</td>
<td>transient</td>
</tr>
<tr>
<td>char</td>
<td>for</td>
<td>protected</td>
<td>try</td>
</tr>
<tr>
<td>class</td>
<td>goto</td>
<td>public</td>
<td>void</td>
</tr>
<tr>
<td>const</td>
<td>if</td>
<td>return</td>
<td>volatile</td>
</tr>
<tr>
<td>continue</td>
<td>implements</td>
<td>short</td>
<td>while</td>
</tr>
<tr>
<td>default</td>
<td>import</td>
<td>static</td>
<td></td>
</tr>
<tr>
<td>do</td>
<td>instanceof</td>
<td>strictfp*</td>
<td></td>
</tr>
</tbody>
</table>

33 See Appendix A in YDL, p. 1253.
Variable as Alias of Memory Address

- The number 0x000abc26 stands for one memory address in hexadecimal (0-9, and a-f).\(^\text{34}\)
- The variable \(x\) itself refers to 0x000abc26 in the program after compilation.

\[^{34}\text{See https://en.wikipedia.org/wiki/Hexadecimal.}\]
Data Types

- Java is a \textit{static typed}\footnote{You cannot change the type of the variable after declaration.} programming language.
- Every variable has a type.
- Also, every (mathematical) expression has a type.
- There are two categories of data types: \textit{primitive} data types, and \textit{reference} data types.
Primitive Data Types

Primitive Data Type

boolean

Numeric Type

Integral Type

byte short int long char

Floating-Point Type

float double

See Figure 3-4 in Sharan, p. 67.
Integers

<table>
<thead>
<tr>
<th>Name</th>
<th>Width</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>long</td>
<td>64</td>
<td>(-9,223,372,036,854,775,808) to (9,223,372,036,854,775,807)</td>
</tr>
<tr>
<td>int</td>
<td>32</td>
<td>(-2,147,483,648) to (2,147,483,647)</td>
</tr>
<tr>
<td>short</td>
<td>16</td>
<td>(-32,768) to (32,767)</td>
</tr>
<tr>
<td>byte</td>
<td>8</td>
<td>(-128) to (127)</td>
</tr>
</tbody>
</table>

- The most commonly used integer type is `int`.
- If the integer values are larger than its feasible range, then an overflow occurs.
Floats

- Floats are used when evaluating expressions that require fractional precision.
 - For example, sin(), cos(), and sqrt().
- The performance for the `double` values is actually faster than that for `float` values on modern processors that have been optimized for high-speed mathematical calculations.
- Be aware that floating-point arithmetic can only approximate real arithmetic.\(^{37}\) (Why?)

Example: $0.5 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1 = 0$?

```java
public class FloatsDemo {
    public static void main(String[] args) {
        System.out.println(0.5 - 0.1 - 0.1 - 0.1 - 0.1 - 0.1);
    }
}
```

- The result is surprising. (Why?)
- You may try this [decimal-binary converter](https://finance.technews.tw/2017/01/10/largan-stock-trouble/).
- This issue occurs not only in decimal numbers, but also big integers represented in floats.\(^{38}\)
- So the floats are not reliable unless the algorithm is designed elaborately for numerical errors.\(^{39}\)

\(^{38}\)Thanks to a lively discussion on June 26, 2016.

\(^{39}\)See

Example: Loss of Significance

- For example,

```java
1... System.out.println(3.14 + 1e20 - 1e20); // output ?
2 System.out.println(3.14 + (1e20 - 1e20)); // output ?
3... ...
```

- Can you explain why?