Exercise (Revisited)

• Redo the cashier problem by using an infinite loop with a break statement.

```java
...  
while (true) {
    System.out.println("Enter price?");
    price = input.nextInt();
    if (price <= 0) break;
    total += price;
}
System.out.println("Total = " + total);
...  
```
Another Example: Compounding

Write a program which determines the holding years for an investment doubling its value.

- Let $balance$ be the current amount, $goal$ be the goal of this investment, and r be the annual interest rate.
- Then this investment should take at least n years so that the balance of the investment can double its value.
- Recall that the compounding formula is given by

$$\text{balance} = \text{balance} \times (1 + r/100).$$
int r = 18; // 18%
int balance = 100;
int goal = 200;

int years = 0;
while (balance <= goal) {
 balance *= (1 + r / 100.0);
 years++;
}

System.out.println("Balance = " + balance);
System.out.println("Years = " + years);

...
• A for loop can be an infinite loop by setting true or simply leaving empty in the condition statement.
• An infinite for loop with an if-break statement is equivalent to a normal while loop.
In general, a `for` loop may be used if the number of repetitions is known in advance. If not, a `while` loop is preferred.
A loop can be nested inside another loop.

- Nested loops consist of an outer loop and one or more inner loops.
- Each time the outer loop is repeated, the inner loops are reentered, and started anew.
Example

Multiplication table

Write a program which displays the multiplication table.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>21</td>
<td>28</td>
<td>35</td>
<td>42</td>
<td>49</td>
<td>56</td>
<td>63</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
<td>64</td>
<td>72</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>54</td>
<td>63</td>
<td>72</td>
<td>81</td>
<td>90</td>
</tr>
</tbody>
</table>
You can use `System.out.printf()` to display **formatted** output on the console.

```java
... 
 double amount = 1234.601;
 double interestRate = 0.00528;
 double interest = amount * interestRate;
 System.out.printf("Interest = %4.2f", interest);
 ...
```

Format specifier

- **Field width**: 4
- **Precision**: 2
- **Conversion code**: f

Zheng-Liang Lu
Java Programming
<table>
<thead>
<tr>
<th>Format Specifier</th>
<th>Output</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>%b</td>
<td>a Boolean value</td>
<td>true or false</td>
</tr>
<tr>
<td>%c</td>
<td>a character</td>
<td>‘a’</td>
</tr>
<tr>
<td>%d</td>
<td>a decimal integer</td>
<td>200</td>
</tr>
<tr>
<td>%f</td>
<td>a floating-point number</td>
<td>45.460000</td>
</tr>
<tr>
<td>%e</td>
<td>a number in standard scientific notation</td>
<td>4.556000e+01</td>
</tr>
<tr>
<td>%s</td>
<td>a string</td>
<td>“Java is cool”</td>
</tr>
</tbody>
</table>

- By default, a floating-point value is displayed with 6 digits after the decimal point.
Multiple Items to Print

```java
int count = 5;
double amount = 45.56;
System.out.printf("count is %d and amount is %f", count, amount);

display
```

count is 5 and amount is 45.560000

- Items must match the format specifiers in order, in number, and in exact type.
- If an item requires more spaces than the specified width, the width is automatically increased.
- By default, the output is right justified.
- You may try the plus sign (+), the minus sign (-), and 0 in the middle of format specifiers.
 - Say % + 8.2f, % − 8.2f, and %08.2f.
public static void main(String[] args) {
 for (int i = 1; i <= 9; ++i) {
 for (int j = 1; j <= 9; ++j) {
 System.out.printf("%3d", i * j);
 }
 System.out.println();
 }
}
...
Exercise: Coupled Loops

* ******** * ********
** ***** ** ******
*** *** *** ***
**** ** **** **
***** * ****** *
******** * ******** *

(a) (b) (c) (d)
```java
public class PrintStarsDemo {
    public static void main(String[] args) {
        // case (a)
        for (int i = 1; i <= 5; i++) {
            for (int j = 1; j <= i; j++) {
                System.out.printf("\*" + "\n");
            }
            System.out.println();
        }
        // case (b), (c), (d)
        // your work here
    }
}
```
First, there may exist some algorithms for the same problem. Then we compare these algorithms. The first question is, Which one is more efficient? (Why?) We focus on the growth rate of the running time or space requirement as a function of the input size n, denoted by $f(n)$.
In math, \(O - \text{notation} \) describes the \textbf{limiting behavior} of a function when the argument tends towards a particular value or infinity, usually in terms of simpler functions.

\[f(n) \in O(g(n)) \text{ as } n \to \infty \text{ if and only if there is a constant } c > 0 \text{ and a real number } n_0 \text{ such that} \]

\[\vert f(n) \vert \leq c \vert g(n) \vert \quad \forall n \geq n_0. \tag{1} \]

- Note that \(O(g(n)) \) is a set featured by some simple function \(g(n) \).
- Hence \(f(n) \in O(g(n)) \) is equivalent to say that \(f(n) \) is one instance of \(O(g(n)) \).

\[^1 \text{See any textbook for data structures and algorithms or https://en.wikipedia.org/wiki/Big_O_notation.} \]
• For example, $8n^2 - 3n + 4 \in O(n^2)$.

• We could say that $8n^2 - 3n + 4 \in O(n^3)$ and $8n^2 - 3n + 4 \notin O(n)$.
Common Fundamental Functions

2See Table 4.1 and Figure 4.2 in Goodrich and etc, p. 161.