Volatility 000000 CBOE VIX

Calculation

Vol of Vo OO

References 000

Python Programming in Finance Volatility & The VIX Index

Zheng-Liang Lu

Department of Computer Science & Information Engineering National Taiwan University

October 26, 2022

Geometric Brownian Motion (GBM)

- Let S be the stock price and dW be a Wiener process with its volatility σ .
- Consider a GBM process

$$\frac{dS}{S} = (\mu - q)dt + \sigma dW, \qquad (1)$$

where μ is the expected return rate and $q\geq 0$ is the dividend yield rate.

• By the Itô's formula, the log price follows

$$d\ln S = (\mu - q - \frac{\sigma^2}{2})dt + \sigma dW.$$
⁽²⁾

• By (1) - (2),

$$\frac{\sigma^2}{2}dt = \frac{dS}{S} - d\ln S.$$

- Let \overline{V} be the average variance rate within the period [0, T].
- Then we have

$$\overline{V} = \frac{1}{T} \int_0^T \sigma^2 dt = \frac{2}{T} \int_0^T \frac{dS}{S} - \frac{2}{T} \ln\left(\frac{S_T}{S_0}\right).$$

• Hence the expectation under the \mathbb{Q} measure is

$$\mathbf{E}^{\mathbb{Q}} \left[\overline{V} \right] = \frac{2}{T} (\mu - q) T - \frac{2}{T} \mathbf{E}^{\mathbb{Q}} \left[\ln \left(\frac{S_T}{S_0} \right) \right],$$
$$= \frac{2}{T} \ln \left(\frac{F_0}{S_0} \right) - \frac{2}{T} \mathbf{E}^{\mathbb{Q}} \left[\ln \left(\frac{S_T}{S_0} \right) \right],$$

where $(\mu - q)T = rT$ replaced by $\ln \left(\frac{F_0}{S_0}\right)$ is an immediate result of martingale pricing.

Volatility	CBOE VIX	Calculation	Vol of Vol	References
00000	00000	0000000000	00	000

• Consider the integration below:

$$\int_{0}^{\infty} \frac{1}{K^{2}} \left(K - S_{T} \right)^{+} dK = \int_{0}^{K^{*}} \frac{1}{K^{2}} \left(K - S_{T} \right)^{+} dK + \int_{K^{*}}^{\infty} \frac{1}{K^{2}} \left(K - S_{T} \right)^{+} dK.$$

• For $K^* > S_T$, the RHS becomes

$$\mathsf{n}\left(\frac{K^*}{S_T}\right) + \frac{S_T}{K^*} - 1 + \mathbf{0}.$$

• For $K^* < S_T$, the RHS becomes

$$0 + \ln\left(\frac{K^*}{S_T}\right) + \frac{S_T}{K^*} - 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Volatility	CBOE VIX	Calculation	Vol of Vol	References
000000	00000	0000000000	00	000

• It is easy to see that

$$\ln\left(\frac{S_{T}}{K^{*}}\right) = \frac{S_{T}}{K^{*}} - 1 - \int_{0}^{K^{*}} \frac{1}{K^{2}} (K - S_{T})^{+} dK - \int_{K^{*}}^{\infty} \frac{1}{K^{2}} (K - S_{T})^{+} dK.$$

• Therefore the expectation value of the above equation is

$$\mathbf{E}^{\mathbb{Q}}\left[\ln\left(\frac{S_{\mathcal{T}}}{K^*}\right)\right] = \frac{F_0}{K^*} - 1 - \int_0^{K^*} \frac{1}{K^2} e^{r\mathcal{T}} p(K) dK - \int_{K^*}^{\infty} \frac{1}{K^2} e^{r\mathcal{T}} c(K) dK,$$

where

$$p(K) = e^{-rT} \mathbf{E}^{\mathbb{Q}} \left[(K - S_T)^+ \right]$$

and

$$c(K) = e^{-rT} \mathbf{E}^{\mathbb{Q}} \left[(S_T - K)^+ \right]$$

Python Programming in Finance

イロン イロン イヨン イヨン 三日

Volatility	CBOE VIX	Calculation	Vol of Vol	References
000000	00000	0000000000	00	000

• Note that we have

$$\mathbf{E}^{\mathbb{Q}}\left[\ln\left(\frac{S_{T}}{S_{0}}\right)\right] = \ln\left(\frac{K^{*}}{S_{0}}\right) + \mathbf{E}^{\mathbb{Q}}\left[\ln\left(\frac{S_{T}}{K^{*}}\right)\right].$$

In the end, we have

$$\begin{split} \mathbf{E}^{\mathbb{Q}}\left[\overline{V}\right] &= \frac{2}{T}\ln\left(\frac{F_0}{S_0}\right) - \frac{2}{T}\mathbf{E}^{\mathbb{Q}}\left[\ln\left(\frac{S_T}{S_0}\right)\right] \\ &= \frac{2}{T}\ln\left(\frac{F_0}{K^*}\right) - \frac{2}{T}\left(\frac{F_0}{K^*} - 1\right) \\ &+ \frac{2}{T}\int_0^{K^*}\frac{1}{K^2}e^{rT}p(K)dK + \frac{2}{T}\int_{K^*}^{\infty}\frac{1}{K^2}e^{rT}c(K)dK. \end{split}$$

Python Programming in Finance

▲□ > ▲圖 > ▲ 臣 > ▲臣 > □ 臣 = の Q @

Volatility	CBOE VIX	Calculation	Vol of Vol	References
00000	00000	0000000000	00	000

- In practice, there are a finite number of strike prices.
- So the aforesaid equation is discretized as follows:

$$\mathbf{E}^{\mathbb{Q}}\left[\overline{V}\right] \approx \frac{2}{T} \ln\left(\frac{F_0}{K_0}\right) - \frac{2}{T} \left(\frac{F_0}{K_0} - 1\right) \\ + \frac{2}{T} \sum_{K=0}^{K_0} \frac{\Delta K}{K^2} e^{rT} \rho(K) + \frac{2}{T} \sum_{K=K_0}^{\infty} \frac{\Delta K}{K^2} e^{rT} c(K).$$

• By the Taylor's 2nd-order expansion to the log term,

$$\mathbf{E}^{\mathbb{Q}}\left[\overline{V}\right] \approx -\frac{1}{T} \left(\frac{F_0}{K_0} - 1\right)^2 + \frac{2}{T} \sum_{K=0}^{K_0} \frac{\Delta K}{K^2} e^{rT} p(K) + \frac{2}{T} \sum_{K=K_0}^{\infty} \frac{\Delta K}{K^2} e^{rT} c(K).$$
(3)

• We follow Equation (3) to calculate the VIX Index.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

CBOE VIX

Calculation 00000000000 Vol of Vol 00 References 000

CBOE VIX Index¹

- The VIX Index is designed to estimate 30-days expected volatility by aggregating the weighted prices of S&P 500 Index puts and calls over a wide range of strike prices.
- It is often referred to as the "fear gauge."

¹See <u>http://www.cboe.com/vix</u>. Zheng-Liang Lu

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

-

/olatility	CBOE VIX	Calculation	Vol of Vol	References
000000	0000	0000000000	00	000

Python Programming in Finance

・ロト ・日ト ・モト・モート

э

ity	CBOE VIX	Calculation	Vol of Vol	References
000	0000	0000000000	00	000

Short History

- 1989: Brenner and Galai proposed the Sigma Index.²
- 1993: first launched; use S&P 100 Index options.
- 2003: changed to S&P 500 Index (SPX) options.
- 2004: launched <u>VIX Futures</u>.
- 2006: launched VIX Options.
- 2008: intraday high of 89.53 on October 24.
- 2020: hit and closed at 75.47 due to a travel ban to the US from Europe was announced.
- 2020: closed at 82.69, the highest level since its inception in 1990.

²Brenner and Galai (1989): New Financial Instruments for Hedging Changes in Volatility.

Volatility	CBOE VIX	Calculation	Vol of Vol	References
000000	00000	0000000000	00	000

Illustration: CBOE VIX Index

▲御▶ ▲ 国▶ ▲ 国▶

э

latility	CBOE VIX	Calculation	Vol of Vol	References
00000	00000	0000000000	00	000

Illustration: Fear Gauge

3. 3

Calculation •000000000 Vol of Vol 00 References 000

Caculation Stages³

- Stage 1: determine the near-term and the next-term S&P 500 Index options.
- Stage 2: calculate the time to maturity for options.
- Stage 3: determine the forward price of options.
- Stage 4: calculate the variance by Equation (3).
- Stage 5: calculate the resulting VIX Index.

³See <u>Volatility Index Methodology: CBOE Volatility Index</u>. ► 4 (D) ► 4 (E) − 4 (E)

 First determine the near-term and the next-term options which reflect the near 30-day expected volatility of the stock market.

near-term option because they expire on 2019-4-17.
For D + 37 (2019-4-26), S&P 500 weekly options expire on 2019-4-24 (4-th week) so they are used as the next-term options.

• For D + 30 (2019-4-19), S&P 500 monthly options are used as the

• For *D* + 24 (2019-4-13), no option expires.

Assume that D is 2019-3-20.

イロト 不得 とくきとくきとうき

tility	CBOE VIX	Calculation	Vol of Vol	References
0000	00000	0000000000	OO	000
		Stage 2		

• Calculate the time to maturity, which is

$$T = rac{M_1 + M_2 + M_3}{M_4},$$

where

- M₁: minutes remaining until midnight of the current day,
- *M*₂: minutes from the midnight to 0830 in the next morning for monthly option (, or 1500 in the next afternoon for weekly options),
- *M*₃: total minutes in the days between current day and expiration day,
- *M*₄: minutes in one year.
- For example,
 - $T_{near} = (717 + 510 + 43200) / 525600 = 0.084526$, and
 - $T_{\text{next}} = (717 + 900 + 53280) / 525600 = 0.104446.$

/olatility CI	BOE VIX	Calculation	Vol of Vol	References
0 00000	0000	000000000	00	000

Stage 3

• The forward price F can be calculated by

$$F = K^* + e^{rT} \left(C(K^*) - P(K^*) \right),$$

with the ATM strike price

$$K^* = \arg\min_{K} |C(K) - P(K)|.$$

For example,

Near Term Options					Next Terr	m Options	
Strike Price	Call	Put	Difference	Strike Price	Call	Put	Difference
1955	27.60	19.75	7.85	1950	34.05	21.60	12.45
1960	24.25	21.30	2.95	1955	30.60	23.20	7.40
1965	21.05	23.15	2.10	1960	27.30	24.90	2.40
1970	18.10	25.05	6.95	1965	24.15	26.90	2.75
1975	15.25	27.30	12.05	1970	21.10	28.95	7.85

$$\begin{split} F_{near} &= 1965 + \ e^{(0.0305 \times 0.084526)} \times (21.05 - 23.15) = 1962.8947 \\ F_{next} &= 1960 + \ e^{(0.0286 \times 0.104446)} \times (27.30 - 24.90) = 1962.4070 \end{split}$$

Python Programming in Finance

	CBOE VIX	Calculation	Vol of Vol	Reference
0	00000	000000000	00	000

Elimination Rule

Put Strike	Bid	Ask	Include?	Call Strike	Bid	Ask	Include?
1345	0	0.15	Ν	2095	0.05	0.35	Y
1350	0.05	0.15	Ν	2100	0.05	0.15	Y
1355	0.05	0.35	Ν	2120	0	0.15	N
1360	0	0.35	N	2125	0.05	0.15	Y
1365	0	0.35	Ν	2150	0	0.1	N
1370	0.05	0.35	Y	2175	0	0.05	N
1375	0.1	0.15	Y	2200	0	0.05	Ν
1380	0.1	0.2	Y	2225	0.05	0.1	N
				2250	0	0.05	N

- Start from the strike closest to the forward price.
- Include all OTM options until the consecutive two zero bid prices occur.
- Ignore the options which has a bid price of zero.

Volatility	CBOE VIX	Calculation	Vol of Vol	References
000000	00000	000000000	00	000

Near term Strike	Option Type	Mid-quote Price
1370	Put	0.2
1375	Put	0.125
1380	Put	0.15
1950	Put	18.25
1955	Put	19.75
1960	Put/Call Average	22.775
1965	Call	21.05
1970	Call	18.1
2095	Call	0.2
2100	Call	0.1
2125	Call	0.1

• Calculate the mid-quote price by simply averaging the best bid price and the best ask price.

イロン イボン イヨン トヨ

olatility	CBOE VIX	Calculation	Vol of Vol	References
00000	00000	00000000000	OO	000
		Stage 4		

• For
$$i \in \{\text{near}, \text{next}\},\$$

$$\sigma_i^2 = \frac{2}{T_i} \sum_{j=1}^{n_i} \frac{\Delta K_j}{K_j^2} e^{r_i T_i} Q(K_j) - \frac{1}{T_i} \left(\frac{F_i}{K_{0,i}} - 1\right)^2, \qquad (4)$$

where n_i is the number of selected options, $Q(K_j)$ is the price quote with strike K_i , and $K_{0,i}$ is the ATM strike price.

• Note that Equation (4) is identical to Equation (3) except that we need both the near/next terms.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Volatility	CBOE VIX	Calculation	Vol of Vol	References
000000	00000	00000000000	00	000

Near term Strike	Option Type	Mid-quote Price	Contribution by Strike	Near term Strike	Option Type	Mid-quote Price	Contribution by Strike
1370	Put	0.2	0.000005328	1275	Put	0.075	0.0000023069
1375	Put	0.125	0.000003306	1325	Put	0.15	0.0000032041
1380	Put	0.15	0.000003938	1350	Put	0.15	0.0000020577
1950	Put	18.25	0.0000239979	1950	Put	21.6	0.0000284031
1955	Put	19.75	0.0000258376	1955	Put	23.2	0.0000303512
1960	Put/Call Average	22.775	0.0000296432	1960	Put/Call Average	26.1	0.0000339711
1965	Call	21.05	0.0000272588	1965	Call	24.15	0.0000312732
1970	Call	18.1	0.0000233198	1970	Call	21.1	0.0000271851
2095	Call	0.2	0.000002278	2125	Call	0.1	0.000005536
2100	Call	0.1	0.000003401	2150	Call	0.1	0.000008113
2125	Call	0.1	0.000005536	2200	Call	0.075	0.000007748

$$\sigma_{near}^{2} = \frac{2}{0.084526} \times 0.00063364 - \frac{1}{0.084526} \left[\frac{1962.6947}{1960} - 1 \right]^{2} = 0.0149671$$

$$\sigma_{next}^{2} = \frac{2}{0.104446} \times 0.00083382 - \frac{1}{0.104446} \left[\frac{1962.4070}{1960} - 1 \right]^{2} = 0.0159520$$

____ -

Python Programming in Finance

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣…

- Let $N_{30} = 43200$ be the minutes in 30 days, $N_{365} = 525600$ be the minutes of one year, and $N_i = M_1 + M_2 + M_3$ for $i \in \{\text{near, next}\}$.
- The VIX formula is

$$VIX = 100 \sqrt{\frac{N_{365}}{N_{30}}} \left(T_{\text{near}} \sigma_{\text{near}}^2 \omega_{\text{near}} + T_{\text{next}} \sigma_{\text{next}}^2 \omega_{\text{next}} \right), \qquad (5)$$

where
$$\omega_{\text{near}} = \frac{N_{T_{\text{next}}} - N_{30}}{N_{T_{\text{next}}} - N_{T_{\text{near}}}} \approx 1.12172$$
 and $\omega_{\text{next}} = 1 - \omega_{\text{near}}$.

- Hence we have
- $\begin{aligned} \mathsf{VIX} &= 100 \times \sqrt{0.0845 \times 0.01487 \times \omega_{\mathsf{near}} + 0.1044 \times 0.01595 \times \omega_{\mathsf{next}} } \\ &= 12.164787. \end{aligned}$

イロト 不得 トイヨト イヨト 二日

Volatility	CBOE VIX	Calculation	Vol of Vol	References
000000	00000	0000000000	00	000

Remarks for Calculation of TAIWAN VIX

- Use monthly options (expiration on 3rd Wed.) for the near/next term options.
- Use TAIBOR for the risk-free rate (r).
- No elimination rule.
 - Following this will produce numbers smaller than the market data. (Why?)
- CBOE VIX exploits implied forward price (by put-call parity) in the calculation.
- We find that TAIWAN VIX becomes more stable when using TX futures prices.

Volatility	CBOE VIX	Calculation	Vol of Vol	References
000000	00000	000000000●	OO	000
	_			

Example: TAIWAN VIX Index

CBOE VIX

Calculation 000000000000 Vol of Vol •O References 000

Volatility of Volatility

- In 2012, the CBOE introduced the VVIX index (also referred to as "vol of vol"), a measure of the VIX's expected volatility.
- VVIX is calculated using the same methodology as VIX, except the inputs are market prices for VIX options instead of stock market options.
- The VIX can be thought of as the velocity of investor fear while the VVIX can be thought of as the acceleration of investor fear.

イロト 不得 トイヨト イヨト

-

Volatility	CBOE VIX	Calculation	Vol of Vol	References
000000	00000	0000000000	0.	000

• a photo?

Zheng-Liang Lu

Python Programming in Finance

◆□> ◆□> ◆注> ◆注> □注:

Volatility	CBOE VIX	Calculation	Vol of Vol	References
000000	00000	0000000000	OO	●00
		Papers		

• TBA

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →

• CBOE Volatility Index (VIX Index):

http://www.cboe.com/publish/methodology-volatility/vix_methodology.pdf 2019-07-26.

イロト イポト イヨト イヨト

э

Volatility	CBOE VIX	Calculation	Vol of Vol	References
000000	00000	00000000000	OO	○○●
		Lectures		

◆□ → ◆□ → ◆三 → ◆□ → ◆□ →