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Agenda

• Wiener process.

• Generalized Wiener process (Itô process).

• Itô integral.

• Martingale.

• Quadratic variation of Wiener process.

• Itô’s formula.

• Calculation examples.

• Black-Scholes option pricing theory.
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Wiener Process

• A process W is called the Wiener process if the following
conditions hold:

(1) W (0) = 0.
(2) The process W has independent increments: if r < s ≤ t < u,

then W (u)−W (t) ⊥W (s)−W (r).
(3) For s < t, W (t)−W (s) ∼ N(0, t − s).
(4) W has continuous trajectories.

• Note that W has a nowhere-differentiable trajectory (see the
next page).
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Itô Process

• A stochastic process X (t) is given by

X (t) = a +

∫ t

0
µ(s,X (s))ds +

∫ t

0
σ(s,X (s))dW (s), (1)

where a is the initial condition of X (0), µ(t,X (t)) and
σ(t,X (t)) are two adapted1 processes, and W (t) is a Wiener
process.

• The third item at the right-hand side of Equation (1) is to be
defined.

1Let X and Y be stochastic processes. Y is adapted to FX
t -filtration if Y is

FX
t -measurable.
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Itô Integral

• Let g be a process satisfying the following conditions:
• g is square-integrable, that is,∫ b

a

E
[
g2(s)

]
ds <∞.

• g is adapted to the FW
t -filtration.

• We define the Itô integral as follows:∫ b

a
g(s)dW (s) , lim

∆t→0

n−1∑
k=0

g(tk) [W (tk+1)−W (tk)] .

• Why using the forward increments?
• Because we cannot foresee the future.
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• Then the following relations hold:

E

[∫ b

a
g(s)dW (s)

]
= 0, (2)

E

[(∫ b

a
g(s)dW (s)

)2
]

=

∫ b

a
E
[
g2(s)

]
ds, (3)

and
∫ b
a g(s)dW (s) is FW

b -measurable.2

2We could say that the integral is deterministic at time b.
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Sketch of Proof for Equation (2)

E

[∫ b

a
g(s)dW (s)

]
≈ E

[
n−1∑
k=0

g(tk)∆W (tk)

]

=
n−1∑
k=0

E [g(tk)]E [∆W (tk)] (∵ W (tk) ⊥ ∆W (tk))

= 0. (∵ E[∆W (tk)] = 0)
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Sketch of Proof for Equation (3)

• For all i , j with i 6= j , we first calculate

E [∆W (ti )∆W (tj)] = E [∆W (ti )]E [∆W (tj)] = 0.

• Note that the first equality results from the property of
independent increments.

• Then Equation (3) is proved as follows.
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E

[(∫ b

a
g(s)dW (s)

)2
]
≈ E

(n−1∑
k=0

g(tk)∆W (tk)

)2


=
n−1∑
k=0

E
[
g2(tk)

]
E
[
∆W 2(tk)

]
+∑

i

∑
j

E [g(ti )g(tj)]E [∆W (ti )∆W (tj)]

=
n−1∑
k=0

E
[
g2(tk)

]
E
[
∆W 2(tk)

]
=

n−1∑
k=0

E
[
g2(tk)

]
(tk+1 − tk)

→
∫ b

a
E
[
g2(s)

]
ds.
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Martingale3

• A stochastic process X is called an Ft-martingale if the
following condition hold.
• For all t, E [ |X (t)| ] <∞.
• X is adapted to the filtration {Ft}t≥0.
• For all s and t with s ≤ t, E [X (t) | Fs ] = X (s).

• Now let X (t) =
∫ t

0 g(s)dW (s) with 0 ≤ t ′ < t.

• Then we have

E
[
X (t) FW

t′

]
= X (t ′) + E

[∫ t

t′
g(s)dW (s) FW

t′

]
= X (t ′).

• By Equation (2), every stochastic integral is a martingale.

3It is a notion of fair games.
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Digression: Is the Market a Martingale?

• For stock markets, the stock prices are not martingales.

• Consider that you deposit S(0) in the bank with r ≥ 0.

• Then S(t) = S(0)ert , which is riskless.

• Or we rewrite the equation above like

E[S(t) | F0] = ertS(0) ≥ S(0).

• This implies that the riskless asset is a submartingale.

• Because of risk aversion, one should expect a higher return for
taking higher risk, that is,

E[S ′(t) | F0] > ertS ′(0),

where S ′(t) is a process of one risky asset.
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Digression: Risk-Neutral Valuation & Martingale

• Under a physical measure P, it is known that

EP [S ′(t) F0

]
> ertS ′(0).

• Let Y (t) = e−rtS ′(t).

• Under the risk-neutral measure Q, the discounted asset price
is a martingale because

EQ [Y (t) F0] = Y (0).

• This result is used to price derivatives as follows:

p = EQ
[
e−rTΠ(S ′(T )) F0

]
,

where p is the derivative price and Π is a stochastic
contingent claim for S ′ with the time to maturity T .
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Quadratic Variation of Wiener Process

• Define ∆t = t − s and ∆W = W (t)−W (s) with s < t.

• By definition, we have
• E[∆W ] = 0, (∵ ∆W ∼ N(0,∆t))
• Var[(∆W )] = ∆t.

• Now we are interested in the quadratic variation (∆W )2,
which has:
• E[(∆W )2] = ∆t,
• Var[(∆W )2] = 2(∆t)2. (Why?)

• This is because the trajectory of W is rough!

• In differential form, it reads

(dW )2 = dt.

• This identity will be used in the Itô’s formula.
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Itô Formula

• For convenience, notations are simplified unless necessary.
• For example, X (t) and µ(t,X (t)) are replaced by X and µ,

respectively.

• In a differential form, Equation (1) is equivalent to

dX = µdt + σdW . (4)

• Let f be a C 2-function.4

• Define the process Z by Z = f (t,X ).

• Then Z has a stochastic differential given by

df =

(
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2 ∂

2f

∂x2

)
dt + σ

∂f

∂x
dW . (5)

4The function f is said to be of (differentiability) class C k if the derivatives
f ′, f ′′, . . . , f (k) exist and are continuous.
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Sketch of Proof for Itô Formula

• It is known that the second-order Taylor expansion for f is

df =
∂f

∂t
dt+

∂f

∂x
dX+

1

2

∂2f

∂x2
(dX )2 +

∂2f

∂t∂x
dtdX +

1

2

∂2f

∂t2
(dt)2 .

• We then calculate (dX )2 with the identity (dW )2 = dt so that

(dX )2 = µ2(dt)2 + 2µσdtdW + σ2(dW )2

∼ σ2dt.

• Note that · · · is negligible compared to the dt-term.
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• As a result,

df =
∂f

∂t
dt +

∂f

∂x
dX +

1

2

∂2f

∂x2
(dX )2 +

1

2

∂2f

∂t2
(dt)2 +

∂2f

∂t∂x
dtdX

=
∂f

∂t
dt +

∂f

∂x
dX +

1

2

∂2f

∂x2
σ2dt

=
∂f

∂t
dt +

∂f

∂x
(µdt + σdW ) +

1

2
σ2 ∂

2f

∂x2
dt

=

(
∂f

∂t
+ µ

∂f

∂x
+

1

2
σ2 ∂

2f

∂x2

)
dt + σ

∂f

∂x
dW .

• Hence the proof is complete.

• Note that · · · is used as the second form of Itô’s formula.
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Example 1: E [W 4(t)] =?

• Define Z by Z (t) = W 4(t).

• Then we have
∂Z

∂W
= 4W 3,

and
∂2Z

∂W 2
= 6W 2.

• By the Itô formula,

dZ = 6W 2dt + 4W 3dW with Z (0) = 0.
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• Written in integral form, this reads

Z (t) = 0 + 6

∫ t

0
W 2(s)ds + 4

∫ t

0
W 3(s)dW (s).

• Taking the expected value on the equation above, the
stochastic-integral term will vanish.

• So we have

E [W 4(t)] = 6

∫ t

0
E [W 2(s)]ds = 6

∫ t

0
sds = 3t2.

• Note that the exchange between doing an integration and
taking an expected value works in most cases of financial
math.5

• This result could be used to prove Var[(∆W )2] = 2(∆t)2.

5See Fubini’s theorem.
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Example 2: E [eαW (t)] =?

• Define Z by Z (t) = eαW (t) with Z (0) = 1.

• The Itô formula gives us

dZ (t) =
1

2
α2eαW (t)dt + αeαW (t)dW

=
1

2
α2Z (t)dt + αZ (t)dW (t).

• In integral form, this reads

Z (t) = 1 +
1

2
α2

∫ t

0
Z (s)ds + α

∫ t

0
Z (s)dW (s).

• Why bother?6

6One can rewrite the stochastic process in form of · · · dt + · · · dW via
the Itô formula. Starting from this form, it is easier to derive the expected
values associated with the stochastic process. For most time, you cannot derive
these expected values without this form.
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• Now define m(t) = E [Z (t)] and differentiate the resulting
equation as follows:

dm(t) =
1

2
α2m(t)dt.

• Using the ODE technique7, we have

m(t) = E [eαW (t)] = e
1
2
α2t .

• Note that E [eαW (t)] is the moment-generating function
(MGF)8 of W (t) so that you may follow the definition of
MGF to produce the same result.

7To be more specific, you need the identity dx
x

= d ln x .
8See https://en.wikipedia.org/wiki/Moment-generating_function.
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Example 3:
∫ t

0 W (s)dW (s) =?

• Define Z by Z (t) = W 2(t).

• By the Itô formula,

dZ (t) = dt + 2W (t)dW (t).

• In integral form this reads

Z (t) = W 2(t) = t + 2

∫ t

0
W (s)dW (s).

• So we have ∫ t

0
W (s)dW (s) =

W 2(t)

2
− t

2
.

• The second term in the RHS differs from the ordinary calculus!
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Example 4: Geometric Brownian Motion (GBM)

• Let µ and σ be constant, and W be under the P measure.

• A GBM is given by

dS = µSdt + σSdW .

• Now take X = lnS with X (0) = lnS0.

• It is easy to see that

∂X

∂S
=
∂(lnS)

∂S
=

1

S
,

and
∂2X

∂S2
=
∂2(lnS)

∂S2
= − 1

S2
.
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• By the Itô’s formula,

dX =
∂(lnS)

∂t
dt+

∂(lnS)

∂S
dS +

1

2

∂2(lnS)

∂S2
(dS)2

=
1

S
dS +

1

2
(
−1

S2
)S2σ2dt

=
1

S
(µSdt + σSdW )− 1

2
σ2dt.

= (µ− 1

2
σ2)dt + σdW .
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• In integral form, this reads

lnS = lnS0 +

∫ t

0
(µ− 1

2
σ2)dt +

∫ t

0
σdW

= lnS0 + (µ− 1

2
σ2)t + σW (t).

• This gives us

lnS(t) ∼ N

(
lnS0 + (µ− 1

2
σ2)t, σ2t

)
.

• Note that the price volatility of one asset is σ
√
t.
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• In the end, we have

S(t) = S0e
(µ− 1

2
σ2)t+σW (t),

which follows a so-called lognormal distribution with

E [S(t)] = S0e
µt ,

Var [S(t)] = S2
0

(
e(2µ+σ2)t − e2µt

)
.(Why?)
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Exercise: Futures Price

• Assume that S(t) follows a GBM.

• It is known that the futures price F (t) is given by

F (t) = S(t)er(T−t).

• By the Itô’s formula,

dF = (µ− r)Fdt + σFdW .

• If we shift to the Q measure (i.e., µ is replaced by r), then

dF = σFdW

with E [F (t)] = F0, which is a martingale.
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Exercise: Product of GBM Processes

• Let Y and Z be two GBM processes:

dY

Y
= a dt + b dWY ,

dZ

Z
= f dt + g dWZ ,

where dWY and dWZ has correlation ρ.

• Consider the product of two GBM processes,

U = YZ .
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• By the Itô’s formula,

dU = Z dY + Y dZ + dY dZ

= YZ (a dt + b dWY ) + YZ (f dt + g dWZ )+

YZ (a dt + b dWY )(f dt + g dWZ )

= U [(a + f + bgρ)dt + b dWY + g dWZ ] .

• Rewrite the above equation as below:

dU

U
= (a + f + bgρ)dt + b dWY + g dWZ .

• We show that the product of correlated GBM processes thus
remains a GBM.

• In particular, we can also show that Sn is also a GBM process
for n ∈ N.
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Exercise: Quotients of GBM Processes

• Consider the quotient of two GBM processes,

U =
Y

Z
,

where Y and Z are drawn from Example 6.

• By the Itô formula,

dU =
1

Z
dY − Y

Z 2
dZ − 1

Z 2
dYdZ +

Y

Z 3
(dZ )2

...

= U
[
(a− f + g2 − bgρ)dt + b dWY − g dWZ

]
.

• This example reminds us to collect all dt-terms.
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Example 5: Vasicek Model9

• X is a Vasicek process, defined by

dX = κ(θ − X )dt + σdW ,

with θ, κ, σ > 0.

• Let Y = eκtX .

• By the Itô’s formula, we then have

dY = κeκtXdt + eκtdX

= κeκtXdt + eκt(κ(θ − X )dt + σdW )

= κθeκtdt + σeκtdW .

9Vasicek (1977). It is one of extension of the Ornstein-Uhlenbeck process,
proposed by Ornstein and Uhlenbeck in 1930. Now the Vasicek model is
out-of-date. The main focus aims at the LIBOR market model (LMM).

30 / 38



• So it reads

eκtX = X0 +

∫ t

0
κθeκsds +

∫ t

0
σeκsdW .

• Moreover, we could calculate

E [X ] = X0e
−κt + θ(1− e−κt),

Var [X ] =
σ2

2κ

(
1− e−2κt

)
.

• As t → 0, it is easy to see that E [X ] = X0 and Var [X ] = 0.

• As t →∞, E [X ] = θ and Var [X ] = σ2

2κ , which is finite due
to the mean-reverting property!

• Note that X is a process following a normal distribution.
(Why?)
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Black-Scholes Option Pricing Theory

• Assume that the stock price St follows a GBM (see p. 22).

• For this stock, we now consider to sell a European call option
which expires in time T and has the payoff function

Φ(ST ) = (ST − K )+ .

• Insert a figure as an illustration of options.
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• Define the call price Ct = f (t,St).

• By the Itô’s formula,

df =
∂f

∂t
dt +

∂f

∂St
dSt +

1

2

∂2f

∂S2
t

(dSt)
2

=
∂f

∂t
dt +

∂f

∂St
(µStdt + σStdW ) +

1

2

∂2f

∂S2
t

σ2S2
t dt

=

(
∂f

∂t
+ µSt

∂f

∂St
+
σ2S2

t

2

∂2f

∂S2
t

)
dt +

∂f

∂St
σStdW .

• What is the fair price of this call option?

• The no-arbitrage principle comes into play.
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• Construct a riskless portfolio as follows: buy ∆ = ∂f
∂St

shares
of the stock and sell one European call.

• The portfolio value V is V = ∆× St − f .

• For a small variation of St ,

dV = ∆× dSt − df . (6)

• If the market is free of arbitrage, then the risk-free asset must
earn the risk-free rate, denoted by r > 0.

• This gives us

dV = rVdt = r (∆× St − f )dt. (7)

• Now equate (6) and (7):

r (∆× St − f )dt = −
(
∂f

∂t
+
σ2S2

t

2

∂2f

∂S2
t

)
dt.
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• Hence we derive the famous Black-Scholes PDE as follows:

∂f

∂t
+ rSt

∂f

∂St
+
σ2S2

t

2

∂2f

∂S2
t

= rf . (8)

• Define ∆ = ∂f
∂St

, Θ = ∂f
∂t , and Γ = ∂2f

∂S2
t

.

• Then we have another representation of BS-PDE as follows:

Θ + rSt∆ +
σ2S2

t

2
Γ = rf .

• If one considers the delta neutral (∆ = 0), then the previous
equation becomes

Θ +
σ2S2

t

2
Γ = rf .
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Feynman-Kac10 Theorem

• This discovery bridges two research domains (PDE and SDE)!

• If f (t, x) with t ∈ [0,T ] is a solution to

∂f

∂t
+ µ(x)

∂f

∂x
+

1

2
σ2(x)

∂2f

∂x2
= rf ,

f (T , x) = Φ(x),

then f (t, x) has a representation

f (t,X ) = e−r(T−t)EQ [ Φ(XT ) |Xt = x ],

where X follows a Itô process.

10Mark Kac (1914–1984), a Polish American mathematician.
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• Now replace X by S .

• Then the call price is

C = f (0, S0) = e−rTEQ [ (ST − X )+ ].

• This is called risk-neutral valuation.

• The price of European call options is

C = S0N(d1)− Ke−rTN(d2), (9)

where N(·) is a cdf of a standard normal distribution,

d1 =
log(S0

K ) + (r − σ2

2 )T

σ
√
T

,

and d2 = d1 − σ
√
T .
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