
Real-Time All-Frequency Relighting in Local Frame

Wan-Chun Ma Chun-Tse Hsiao Ken-Yi Lee Yung-Yu Chuang

National Taiwan University

Figure 1 Sample results using our technique. Our method can handle complex materials, varying illumination and changing view. Here, models and the floors are mapped

with SBRDFs. Illumination and viewpoint can be changed in real-time. From left to right, we demonstrate the effects of illumination change using an area light and the

Grace Cathedral for the lobster model, and effects of changing view using two different views for the statue model.

1 Introduction

We address the problem of real-time rendering for objects with
complex materials under varying all-frequency illumination and
changing view. Our approach is based on the triple product algo-
rithm proposed by Ng et al. [2004] with the following extensions:

The use of local frame for shading. We change the coordinate sys-
tem for shading computation from the global frame used in previous
papers [Ng et al. 2004] into a local frame. Since both of the visibil-
ity function and BRDF stay in the local frame, it is not necessary
to recompute their wavelet coefficients when viewing or lighting
condition is changed. Storing BRDF in a local frame enables us to
easily handle complex BRDFs and incorporate bump mapping. In
addition, it greatly reduces the data size compared to storing BRDF
in the global frame.

The use of spherical wavelets. Since functions involved in the ren-
dering equation, illumination, visibility and BRDF, are all spherical
functions, it makes more sense to represent them using spherical
wavelets [Schröder and Sweldens 1995] to avoid uneven sampling
and energy normalization for cubical parameterization.

The use of per-pixel shading and visibility textures for efficient
GPU implementation. A fine tessellation is typically required to
capture the visibility variation over a surface even if the surface is
flat since rendering is performed on a per-vertex base. Instead, we
use per-pixel shading to shift computation from vertex shaders to
more powerful pixel shaders for a more efficient GPU implementa-
tion. In addition, we sample the visibility functions over a surface
and store them in a visibility texture. By doing so, a fine tessellation
is replaced with a coarse mesh plus a visibility texture, along with
per-pixel shading, resulting in an efficient GPU implementation.

With these extensions, the resulting system can render scenes
with realistic shadow effects, complex BRDFs, bump mapping and
spatially-varying BRDFs under varying complex illumination and
changing view in real-time on modern graphics hardware.

2 Algorithm and Results

As shown by Ng et al. [2004], the reflection equation can be written
in terms of basis functions Ψ(ω),

B = ∑
i

∑
j
∑
k

LiV jρk

∫
Ω

Ψi(ω)Ψ j(ω)Ψk(ω)dω, (1)

where Li, V j and ρk are coefficients for illumination, visibility and
BRDF respectively.

Pre-computation. We choose to use spherical wavelets as the ba-
sis functions Ψ in Equation 1. An n-subdivided icosahedron is used
for spherical function projection and a discrete spherical wavelet
transform is applied to generate wavelet coefficients. Note that
the BRDF and visibility functions are sampled in the local frame.
Hence, the global illumination function needs to be rotated into dif-
ferent local frames for different vertices during rendering. Unfortu-
nately, we are not aware of any efficient algorithm to rotate spheri-
cal wavelet coefficients. Instead, we generate many rotated versions
of the illumination function and their spherical wavelet coefficients
by uniformly sampling Euler angles. In order to convert per-vertex
shading into per-pixel shading, the key is to store the visibility co-
efficients in a texture. Hence, for each texel pt in the texture space,
we find its corresponding point pm in the model space. Then, we
use pm and its local frame to sample the visibility. After applying
spherical wavelet transform on the visibility function, we store the
coefficients back to pt .

Rendering. The pre-computation stage outputs three textures for
illumination, visibility, and BRDF functions in wavelet space. Dur-
ing the rendering pass, a pixel shader simply retrieves coefficients
Li, V j and ρk from the above three textures, and applies the triple
product algorithm to evaluate Equation 1. Spatially-variant BRDF
can be done easily by having different basis BRDF textures and in-
terpolating BRDF coefficients by weighted summation. For bump
mapping effect, we rotate the lighting function using the perturba-
tion indicated by the bump map.

All the rendering computation is done by GPU. We use 80 scaling
wavelet coefficients for each function. The final texture size for
BRDF and illumination are 1MB and 6MB respectively. The size
of visibility texture depends on the resolution of texture (current
setting produces around 20MB data). The rendering frame rates
are between 50 to 100 FPS on an ATIX1900 GPU. Figure 1 shows
results using our technique.

References

NG, R., RAMAMOORTHI, R., AND HANRAHAN, P. 2004. Triple prod-

uct wavelet integrals for all-frequency relighting. ACM Transaction on

Graphics 23, 3, 477–487.

SCHRÖDER, P., AND SWELDENS, W. 1995. Spherical wavelets: effi-

ciently representing functions on the sphere. In Proceedings of ACM

SIGGRAPH 1995, 161–172.


